
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



10 

A Particle Swarm Optimization technique used 
for the improvement of analogue circuit 

performances  

Mourad Fakhfakh1, Yann Cooren2, Mourad Loulou1 and Patrick Siarry2 
1University of Sfax, 2University of Paris 12 

1Tunisia, 2France 

1. Introduction  

The importance of the analogue part in integrated electronic systems cannot be 
overstressed. Despite its eminence, and unlike the digital design, the analogue design has 
not so far been automated to a great extent, mainly due to its towering complexity 
(Dastidar et al., 2005). Analogue sizing is a very complicated, iterative and boring process 
whose automation is attracting great attention (Medeiro et al., 1994). The analogue design 
and sizing process remains characterized by a mixture of experience and intuition of 
skilled designers (Tlelo-Cuautle & Duarte-Villaseñor, 2008). As a matter of fact, optimal 
design of analogue components is over and over again a bottleneck in the design flow.  
Optimizing the sizes of the analogue components automatically is an important issue 
towards ability of rapidly designing true high performance circuits (Toumazou & Lidgey, 
1993;  Conn et al., 1996). 
Common approaches are generally either fixed topology ones or/and statistical-based 
techniques. They generally start with finding a “good” DC quiescent point, which is 
provided by the skilled analogue designer. After that a simulation-based tuning 
procedure takes place. However these statistic-based approaches are time consuming and 
do not guarantee the convergence towards the global optimum solution (Talbi, 2002).  
Some mathematical heuristics were also used, such as Local Search (Aarts & Lenstra, 
2003), Simulated Annealing (Kirkpatrick et al., 1983; Siarry(a) et al., 1997), Tabu Search 
(Glover, 1989; Glover, 1990), Genetic Algorithms (Grimbleby, 2000; Dréo et al., 2006), etc. 
However these techniques do not offer general solution strategies that can be applied to 
problem formulations where different types of variables, objectives and constraint 
functions are used. In addition, their efficiency is also highly dependent on the algorithm 
parameters, the dimension of the solution space, the convexity of the solution space, and 
the number of variables.  
Actually, most of the circuit design optimization problems simultaneously require 
different types of variables, objective and constraint functions in their formulation. Hence, 
the abovementioned optimization procedures are generally not adequate or not flexible 
enough.  
In order to overcome these drawbacks, a new set of nature inspired heuristic optimization 
algorithms were proposed. The thought process behind these algorithms is inspired from 
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the collective behaviour of decentralized, self-organized systems. It is known as Swarm 
Intelligence (SI) (Bonabeau et al. 1999). SI systems are typically made up of a population 
of simple agents (or ‘’particles’’) interacting locally with each other and with their 
environment. These particles obey to very simple rules, and although there is no 
centralized control structure dictating how each particle should behave, local interactions 
between them lead to the emergence of complex global behaviour. Most famous such SIs 
are Ant Colony Optimization (ACO) (Dorigo et al., 1999), Stochastic Diffusion Search 
(SDS) (Bishop, 1989) and Particle Swarm Optimization (PSO) (Kennedy & Eberhart, 1995; 
Clerc, 2006). 
PSO, in its current form, has been in existence for almost a decade, which is a relatively 
short period when compared to some of the well known natural computing paradigms, 
such as evolutionary computation. PSO has gained widespread demand amongst 
researchers and has been shown to offer good performance in an assortment of 
application domains (Banks et al., 2007). 
In this chapter, we focus on the use of PSO technique for the optimal design of analogue 
circuits. The practical applicability and suitability of PSO to optimize performances of 
such multi-objective problems are highlighted. An example of optimizing performances of 
a second generation MOS current conveyor (CCII) is presented. The used PSO algorithm 
is detailed and Spice simulation results, performed using the 'optimal' sizing of transistors 
forming the CCII and bias current, are presented. Reached performances are discussed 
and compared to others presented in some published works, but obtained using classical 
approaches.  

2. The Sizing Problem 

The process of designing an analogue circuit mainly consists of the following steps 
(Medeiro et al., 1994) : 

• the topology choice: a suitable schematic has to be selected, 

• the sizing task: the chosen schematic must be dimensioned to comply with the 
required specifications, 

• The generation of the layout. 
Among these major steps, we focus on the second one, i.e. the optimal sizing of analogue 
circuits.  
Actually, analogue sizing is a constructive procedure that aims at mapping the circuit 
specifications (objectives and constraints on performances) into the design parameter 
values. In other words, the performance metrics of the circuit, such as gain, noise figure, 
input impedance, occupied area, etc. have to be formulated in terms of the design 
variables (Tulunay & Balkir, 2004). 
In a generic circuit, the optimization problem consists of finding optimal values of the 

design parameters. These variables form a vector { }N

T xxxX ,,, 21=
r

 belonging to an N-

dimensional design space. This set includes transistor geometric dimensions and passive 
component values, if any. Hence, performances and objectives involved in the design 
objectives are expressed as functions of X. 
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These performances may belong to the set of constraints ( )(Xg
rr

) and/or to the set of 

objectives ( )(Xf
rr

). Thus, a general optimization problem can be formulated as follows: 

 minimize : )(Xfi

r
, ],1[ ki ∈  

 such that: : 0)( ≤Xg j

r
, ],1[ lj ∈  

( ) 0≤Xhm

r
, ],1[ pm∈  

],1[, Nixxx UiiLi ∈≤≤  

                                                        (1) 

k, l and p denote the numbers of objectives, inequality constraints  and equality constraints, 

respectively.  Lx
r

 and  
Ux
r

 are lower and upper boundaries vectors of the parameters. 

The goal of optimization is usually to minimize an objective function; the problem for 

maximizing  )(xf
r

 can be transformed into minimizing )(xf
r

− . This goal is reached when 

the variables are located in the set of optimal solutions. 
For instance, a basic two-stage operational amplifier has around 10 parameters, which 
include the widths and lengths of all transistors values which have to be set. The goal is to 
achieve around 10 specifications, such as gain, bandwidth, noise, offset, settling time, slew 
rate, consumed power, occupied area, CMRR (common-mode rejection ratio) and PSRR 
(power supply rejection ratio). Besides, a set of DC equations and constraints, such as 
transistors’ saturation conditions, have to be satisfied (Gray & Meyer, 1982). 
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Figure 1. Pictorial view of a design optimization approach 

The pictorial flow diagram depicted in Fig. 1 summarizes main steps of the sizing approach. 
As it was introduced in section 1, there exist many papers and books dealing with 
mathematic optimization methods and studying in particular their convergence properties 
(see for example (Talbi, 2002; Dréo et al., 2006; Siarry(b) et al., 2007)). 
These optimizing methods can be classified into two categories: deterministic methods and 
stochastic methods, known as heuristics.  
Deterministic methods, such as Simplex (Nelder & Mead, 1965), Branch and Bound (Doig, 
1960), Goal Programming (Scniederjans, 1995), Dynamic Programming (Bellman, 2003)… 
are effective only for small size problems. They are not efficient when dealing with NP-hard 
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and multi-criteria problems. In addition, it has been proven that these optimization 
techniques impose several limitations due to their inherent solution mechanisms and their 
tight dependence on the algorithm parameters. Besides they rely on the type of objective, the 
type of constraint functions, the number of variables and the size and the structure of the 
solution space. Moreover they do not offer general solution strategies. 
Most of the optimization problems require different types of variables, objective and 
constraint functions simultaneously in their formulation. Therefore, classic optimization 
procedures are generally not adequate.  
Heuristics are necessary to solve big size problems and/or with many criteria (Basseur et al., 
2006). They can be ‘easily’ modified and adapted to suit specific problem requirements. 
Even though they don’t guarantee to find in an exact way the optimal solution(s), they give 
‘good’ approximation of it (them) within an acceptable computing time (Chan & Tiwari, 
2007). Heuristics can be divided into two classes: on the one hand, there are algorithms 
which are specific to a given problem and, on the other hand, there are generic algorithms, 
i.e. metaheuristics. Metaheuristics are classified into two categories: local search techniques, 
such as Simulated Annealing, Tabu Search … and global search ones, like Evolutionary 
techniques, Swarm Intelligence techniques … 
ACO and PSO are swarm intelligence techniques. They are inspired from nature and were 
proposed by researchers to overcome drawbacks of the aforementioned methods. In the 
following, we focus on the use of PSO technique for the optimal design of analogue circuits. 

3. Overview of Particle Swarm Optimization 

The particle swarm optimization was formulated by (Kennedy & Eberhart, 1995). The 
cogitated process behind the PSO algorithm was inspired by the optimal swarm behaviour 
of animals such, as birds, fishes and bees. 
PSO technique encompasses three main features: 

• It is a SI technique; it mimics some animal’s problem solution abilities,   

• It is based on a simple concept. Hence, the algorithm is neither time consumer nor 
memory absorber, 

• It was originally developed for continuous nonlinear optimization problems. As a 
matter of fact, it can be easily expanded to discrete problems. 

PSO is a stochastic global optimization method. Like in Genetic Algorithms (GA), PSO 
exploits a population of potential candidate solutions to investigate the feasible search 
space. However, in contrast to GA, in PSO no operators inspired by natural evolution are 
applied to extract a new generation of feasible solutions. As a substitute of mutation, PSO 
relies on the exchange of information between individuals (particles) of the population 
(swarm). 
During the search for the promising regions of the landscape, and in order to tune its 
trajectory, each particle adjusts its velocity and its position according to its own experience, 
as well as the experience of the members of its social neighbourhood. Actually, each particle 
remembers its best position, and is informed of the best position reached by the swarm, in 
the global version of the algorithm, or by the particle’s neighbourhood, in the local version 
of the algorithm. Thus, during the search process, a global sharing of information takes 
place and each particle’s experience is thus enriched thanks to its discoveries and those of all 
the other particles. Fig. 2 illustrates this principle. 
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Figure 2. Principle of the movement of a particle 

In an N-dimensional search space, the position and the velocity of the ith particle can be 

represented as ],,,[ ,2,1, Niiii xxxX K=  and ],,,[ ,2,1, Niiii vvvV K=  respectively. Each 

particle has its own best location ],,,[ ,2,1, Niiii pppP K= , which corresponds to the best 

location reached by the ith particle at time t. The global best location is 

named ],,,[ 21 Ngggg K= , which represents the best location reached by the entire 

swarm. From time t to time t+1, each velocity is updated using the following equation: 

  
44 844 76444 8444 7648476 InfluenceSocial

jii

InfluencePersonal

jiji

inertia

jiji tvgrctvprctvwtv ))(())(()()1( ,22,,11,, −+−+=+  (2) 

where w is a constant known as inertia factor, it controls the impact of the previous velocity 
on the current one, so it ensures the diversity of the swarm, which is the main means to 
avoid the stagnation of particles at local optima. c1 and c2 are constants called acceleration 
coefficients; c1 controls the attitude of the particle of searching around its best location and c2 
controls the influence of the swarm on the particle’s behaviour. r1 and r2 are two 
independent random numbers uniformly distributed in [0,1]. 
The computation of the position at time t+1 is derived from expression (2) using: 

  
, , ,( 1) ( ) ( 1)i j i j i jx t x t v t+ = + +  (3) 

It is important to put the stress on the fact that the PSO algorithm can be used for both 
mono-objective and multi-objective optimization problems.  
The driving idea behind the multi-objective version of PSO algorithm (MO-PSO) consists of 
the use of an archive, in which each particle deposits its ‘flight’ experience at each running 
cycle. The aim of the archive is to store all the non-dominated solutions found during the 
optimization process. At the end of the execution, all the positions stored in the archive give 
us an approximation of the theoretical Pareto Front. Fig. 3 illustrates the flowchart of the 
MO-PSO algorithm. Two points are to be highlighted: the first one is that in order to avoid 
excessive growing of the storing memory, its size is fixed according to a crowding rule 
(Cooren et al., 2007). The second point is that computed optimal solutions’ inaccuracy 
crawls in due to the inaccuracy of the formulated equations. 
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Figure 3. Flowchart of a MO-PSO 

In the following section we give an application example dealing with optimizing 
performances of an analogue circuit, i.e. optimizing the sizing of a MOS inverted current 
conveyor in order to maximize/minimize performance functions, while satisfying imposed 
and inherent constraints. The problem consists of generating the trade off surface (Pareto 
front1) linking two conflicting performances of the CCII, namely the high cut-off current 
frequency and the parasitic X-port input resistance. 

                                                                 
1 Definition of Pareto optimality is given in Appendix. 
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4. An Application Example  

The problem consists of optimizing performances of a second generation current conveyor 
(CCII) (Sedra & Smith, 1970) regarding to its main influencing performances. The aim 
consists of maximizing the conveyor high current cut-off frequency and minimizing its 
parasitic X-port resistance (Cooren et al., 2007). 
In the VLSI realm, circuits are classified according to their operation modes: voltage mode 
circuits or current mode circuits. Voltage mode circuits suffer from low bandwidths arising 
due to the stray and circuit capacitances and are not suitable for high frequency applications 
(Rajput & Jamuar, 2007). 
In contrary, current mode circuits enable the design of circuits that can operate over wide 
dynamic ranges. Among the set of current mode circuits, the current conveyor (CC) (Smith 
& Sedra, 1968; Sedra & Smith, 1970) is the most popular one. 
The Current Conveyor (CC) is a three (or more) terminal active block. Its conventional 
representation is shown in Fig. 4a. Fig. 4b shows the equivalent nullator/norator 
representation (Schmid, 2000) which reproduces the ideal behaviour of the CC. Fig. 4.c 
shows a CCII with its parasitic components (Ferry et al. 2002). 
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Figure 4. (a) General representation of current conveyor, (b) the nullor equivalency: ideal 
CC, (c) parasitic components: real CC 

Relations between voltage and current terminals are given by the following matrix relation 
(Toumazou & Lidgey, 1993): 
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 (4) 

For the above matrix representation, α specifies the kind of the conveyor. Indeed, for α =1, 

the circuit is considered as a first generation current conveyor (CCI). Whereas when α =0, it 

is called a second generation current conveyor (CCII). β characterizes the current transfer 

from X to Z ports. For β =+1, the circuit is classified as a positive transfer conveyor. It is 

considered as a negative transfer one when β =-1. γ =±1: When γ =-1 the CC is said an 

inverted CC, and a direct CC, otherwise. 
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Accordingly, the CCII ensures two functionalities between its terminals: 

• A Current follower/Current mirror between terminals X and Z. 

• A Voltage follower/Voltage mirror between terminals X and Y. 
In order to get ideal transfers, CCII are commonly characterized by low impedance on 
terminal X and high impedance on terminals Y and Z. 
In this application we deal with optimizing performances of an inverted positive second 
generation current conveyor (CCII+) (Sedra & Smith, 1970; Cooren et al., 2007) regarding to 
its main influencing performances. The aim consists of determining the optimal Pareto 
circuit’s variables, i.e. widths and lengths of each MOS transistor, and the bias current I0, 
that maximizes the conveyor high current cut-off frequency and minimizes its parasitic X-
port resistance (RX) (Bensalem et al., 2006; Fakhfakh et al. 2007). Fig. 5 illustrates the CCII+’s 
MOS transistor level schema. 
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Figure 5. The second generation CMOS current conveyor 

Constraints: 

• Transistor saturation conditions: all the CCII transistors must operate in the saturation 
mode. Saturation constraints of each MOSFET were determined. For instance, 
expression (5) gives constraints on M2 and M8 transistors: 

 

NNN

TP
DD

PPP LWK

I
V

V

LWK

I 00

2
−−≤  (5) 

where I0 is the bias current, W(N,P)/L(N,P) is the aspect ratio of the corresponding MOS 
transistor. K(N,P) and VTP are technology parameters. VDD is the DC voltage power 
supply. 

Objective functions: 
In order to present simplified expressions of the objective functions, all NMOS transistors 
were supposed to have the same size. Ditto for the PMOS transistors. 

• RX: the value of the X-port input parasitic resistance has to be minimized, 

• fchi: the high current cut-off frequency has to be maximized. 
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Symbolic expressions of the objective functions are not given due to their large number of 
terms. 
PSO algorithm was programmed using C++ software. Table 1 gives the algorithm 
parameters. 
Fig. 6 shows Pareto fronts (RX vs. fci) and optimal variables (WP vs. WN) corresponding to 
the bias current I0=50µA (6.a, 6.b), 100µA (6.c, 6.d), 150µA (6.e, 6.f), 200µA (6.g, 6.h), 250µA 
(6.i, 6.j) and 300µA (6.k, 6.l). Where values of LN, LP, WN and WP are given in µm, I0 is in µA, 
RX in ohms and fci(min, Max) in GHz. 
In Fig. 6 clearly appears the high interest of the Pareto front. Indeed, amongst the set of the 
non-dominated solutions, the designer can choose, always with respect to imposed 
specifications, its best solution since he can add some other criterion choice, such as Y-port 
and/or Z-port impedance values, high voltage cut-off frequency, etc. 

Fig. 7 shows Spice simulation results performed for both points corresponding to the edge of 
the Pareto front, for I0=100µA, where RXmin=493 ohms, RXMax=787 ohms, fcimin=0.165 GHz and 
fciMax=1.696 GHz.  
 

Swarm size Number of iterations w  c1 c2 

20 1000 0.4 1 1 

Table 1. The PSO algorithm parameters 

Technology CMOS AMS 0.35 µm 

Power voltage supply VSS=-2.5V, VDD=2.5V 

Table 2. SPICE simulation conditions 

WN LN WP LP WN LN WP LP 
I0 

RXmin fcimin RXMax fciMax 

17.21 0.90 28.40 0.50 4.74 0.87 8.40 0.53 
50 

714 0.027 1376 0.866 

20.07 0.57 30.00 0.35 7.28 0.55 12.60 0.35 
100 

382 0.059 633 1.802 

17.65 0.6 28.53 0.35 10.67 0.59 17.77 0.36 
150 

336 0.078 435 1.721 

17.51 0.53 29.55 0.35 12.43 0.53 20.32 0.35 
200 

285 0.090 338 2.017 

18.60 0.54 30.00 0.35 15.78 0.55 24.92 0.35 
250 

249 0.097 272 1.940 

19.17 0.55 29.81 0.35 17.96 0.54 29.16 0.35 
300 

224 0.107 230 2.042 

Table 3. Pareto trade-off surfaces’ boundaries corresponding to some selected results 
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Figure 6. Pareto fronts and the corresponding variables for various bias currents 
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Figure 7. (RX vs. frequency) Spice simulations 

5. Conclusion 

The practical applicability and suitability of the particle swarm optimization technique 
(PSO) to optimize performances of analog circuits were shown in this chapter. An 
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application example was presented. It deals with computing the Pareto trade-off surface in 
the solution space: parasitic input resistance vs. high current cut-off frequency of a positive 
second generation current conveyor (CCII+). Optimal parameters (transistors’ widths and 
lengths, and bias current), obtained thanks to the PSO algorithm were used to simulate the 
CCII+. It was shown that no more than 1000 iterations were necessary for obtaining 
‘optimal’ solutions. Besides, it was also proven that the algorithm doesn’t require severe 
parameter tuning. Some Spice simulations were presented to show the good agreement 
between the computed (optimized) values and the simulation ones. 

6. Appendix 

In the analogue sizing process, the optimization problem usually deals with the 
minimization of several objectives simultaneously. This multi-objective optimization 
problem leads to trade-off situations where it is only possible to improve one performance 
at the cost of another. Hence, the resort to the concept of Pareto optimality is necessary. 

A vector [ ]Tnθθθ L1= is considered superior to a vector [ ]Tnψψψ L1=  if it dominatesψ , 

i.e., ψθ p ⇔
{ }

( )
{ }

( )ii
ni

ii
ni

ψθψθ <∃∧≤∀
∈∈ ,,1,,1 LL

 

Accordingly, a performance vector •f is Pareto-optimal if and only if it is non-dominated 

within the feasible solution space ℑ , i.e., 
•

ℑ∈
∃¬ ff

f
p . 
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