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1. Introduction    

If the values of a function, f(x), are known for a finite set of x values in a given interval, then 
a polynomial which takes on the same values at these x values offers a particularly simple 
analytic approximation to f(x) throughout the interval. This approximating technique is 
called polynomial interpolation. Its effectiveness depends on the smoothness of the function 
being sampled (if the function is unknown, some hypothetical smoothness must be chosen), 
on the number and choice of points at which the function is sampled.  
In practice interpolating polynomials with degrees greater than about 10 are rarely used. 
One of the major problems with polynomials of high degree is that they tend to oscillate 
wildly. This is clear if they have many roots in the interpolation interval. For example, a 
degree 10 polynomial with 10 real roots must cross the x-axis 10 times. Thus, it would not be 
suitable for interpolating a monotone decreasing or increasing function on such an interval.  
In this chapter we explore the advantage of using the Particle Swarm Optimization (PSO) 
interpolation nodes. Our goal is to show that the PSO nodes can approximate functions with 
much less error than Chebyshev nodes.  
This chapter is organized as follows. In Section 2, we shall present the interpolation 
polynomial in the Lagrange form. Section 3 examines the Runge's phenomenon; which 
illustrates the error that can occur when constructing a polynomial interpolant of high 
degree. Section 4 gives an overview of modern heuristic optimization techniques, including 
fundamentals of computational intelligence for PSO. We calculate in Subsection 4.2 the best 
interpolating points generated by PSO algorithm. We make in section 5, a comparison of 
interpolation methods. The comments and conclusion are made in Section 6. 

2. Introduction to the Lagrange interpolation 

If x0, x1, ....xn are distinct real numbers, then for arbitrary values y0, y1, ....yn, there is a unique 

polynomial pn of degree at most n such that pn(xi) = yi (0 i n≤ ≤ )  ( David Kincaid & 

Ward Cheney, 2002). 
The Lagrange form looks as follows: 
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(David Kincaid & Ward Cheney, 2002), (Roland E. et al 1994). 
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The Lagrange form gives an error term of the form 
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If we examine the error formula for polynomial interpolation over an interval [a, b] we see 
that as we change the interpolation points, we change also the locations c where the   
derivative is evaluated; thus that part in the error also changes, and that change is a "black 
hole" to us: we never know what the correct value of c is, but only that c is somewhere in the 
interval [a, b]. Since we wish to use the interpolating polynomial to approximate the 
Equation (4) cannot be used, of course, to calculate the exact value of the error f – Pn, since c, 
as a function of x is, in general, not known.  (An exception occurs when the (n + 1)st 
derivative off is constant). And so we are likely to reduce the error by selecting interpolation 

points      x0, x1,...,xn so as to minimize the maximum value of product ( )n xφ  

The most natural idea is to choose them regularly distribute in [a, b]. 

3. Introduction to the Runge phenomenon and to Chebyshev approximations 

3.1 Runge phenomenon  

If xk are chosen to be the points ( )k

b a
x a k k n

n
 0,...,

−
= + =   (means that 

are equally spaced at a distance 2n + 1 apart), then the interpolating polynomial pn(x) need 
not to converge uniformly on [a, b] as n →∞  for the function f(x). 
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This phenomenon is known as the Runge phenomenon (RP) and it can be illustrated with 
the Runge's "bell" function on the interval [-5, 5] (Fig.1). 
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Figure 1. solid blue line: present Runge’s “bell” function. dots red line: present the 
polynomial approximation based on equally 11 spaced nodes 

3.2 Chebyshev Nodes 

The standard remedy against the RP is Chebyshev -type clustering of nodes towards the end 
of the interval (Fig.3).  

 

Figure 2. Chebyshev Point Distribution. 

To do this, conceptually, we would like to take many points near the endpoints of the 
interval and few near the middle.  The point distribution that minimizes the maximum 

value of product ( )n xφ  is called the Chebyshev distribution, as shown in (Fig. 2). In the 

Chebyshev distribution, we proceed as follows: 
1. Draw the semicircle on [a, b]. 
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2. To sample n + 1 points, place n equidistant partitions on the arc. 
3. Project each partition onto the x-axis: for j =0, 1… n 

 j

a b b a
x j

n
cos

2 2

π⎛ ⎞+ − ⎟⎜ ⎟= + ⎜ ⎟⎜ ⎟⎜⎝ ⎠
 for j=0,1…n     (6) 

The nodes xi that will be used in our approximation are: 

Chebyshev nodes  
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Figure 3. solid blue line: present Runge’s “bell” function. dots red line: present the 
polynomial approximation based on 11 Chebyshev nodes 

In this study, we have made some numerical computations using the particle swarm 
optimization to investigate the best interpolating points and we are showing that PSO nodes 
provide smaller approximation error than Chebyshev nodes. 

4. Particle swarm optimization 

4.1 Overview and strategy of particle swarm optimization 

Recently, a new stochastic algorithm has appeared, namely ‘particle swarm optimization’ 
PSO. The term ‘particle’ means any natural agent that describes the `swarm' behavior. The 
PSO model is a particle simulation concept, and was first proposed by Eberhart and 
Kennedy (Eberhart,  R.C. et al. 1995). Based upon a mathematical description of the social 
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behavior of swarms, it has been shown that this algorithm can be efficiently generated to 
find good solutions to a certain number of complicated situations such as, for instance, the 
static optimization problems, the topological optimization and others (Parsopoulos, K.E. et 
al., 2001a); (Parsopoulos, K.E.et al. 2001b); (Fourie, P.C. et al., 2000); ( Fourie, P.C. et al., 
2001). Since then, several variants of the PSO have been developed (Eberhart,R.C. et al 1996); 
(Kennedy, J. et al., 1998); (Kennedy, J. et al., 2001); ( Shi, Y.H. et al. 2001); ( Shi, Y. et al. 1998a. 
); (Shi, Y.H. et al., 1998b); (Clerc, M. 1999 ). It has been shown that the question of 
convergence of the PSO algorithm is implicitly guaranteed if the parameters are adequately 
selected (Eberhart, R.C. et al.1998); (Cristian, T.I. 2003). Several kinds of problems solving 
start with computer simulations in order to find and analyze the solutions which do not 
exist analytically or specifically have been proven to be theoretically intractable. 
The particle swarm treatment supposes a population of individuals designed as real valued 
vectors - particles, and some iterative sequences of their domain of adaptation must be 
established. It is assumed that these individuals have a social behavior, which implies that 
the ability of social conditions, for instance, the interaction with the neighborhood, is an 
important process in successfully finding good solutions to a given problem. 
The strategy of the PSO algorithm is summarized as follows: We assume that each agent 
(particle) i can be represented in a N dimension space by its current position 

( )i i i iNx x x x1 2, ,...,=  and its corresponding velocity.      Also a memory of its 

personal (previous) best position is represented by, ( )i i iNp p p p1 2, ,...,=  called 

(pbest), the subscript i range from 1 to s, where s indicates the size of the swarm. 
Commonly, each particle localizes its best value so far (pbest) and its position and 
consequently identifies its best value in the group (swarm), called also (sbest) among the set 
of values (pbest).  
The velocity and position are updated as 

 
[ ] [ ]kijk

ij
kk

ij
k
ij

kk
ijj

k
ij xsbestrcxpbestrcvwv −+−+=+ )()( 2211
1

  (7) 

 
k
ij

k
ij

k
ij xvx += ++ 11

  (8) 

where are the position and the velocity vector of particle i respectively at iteration k + 1, c1  

et c2  are acceleration coefficients for each term exclusively situated in the range of 2--4, 

i jw is the inertia weight with its value that ranges from 0.9 to 1.2, whereas r1 , r2 are 

uniform random numbers between zero and one. For more details, the double subscript in 
the relations (7) and (8) means that the first subscript is for the particle i and the second one 

is for the dimension j. The role of a suitable choice of the inertia weight i jw  is important in 

the success of the PSO. In the general case, it can be initially set equal to its maximum value, 
and progressively we decrease it if the better solution is not reached. Too often, in the 

relation (7), ijw  is replaced by i jw / σ , where σ  denotes the constriction factor that 
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controls the velocity of the particles. This algorithm is successively accomplished with the 
following steps (Zerarka, A. et al., 2006): 

1. Set the values of the dimension space N and the size s of the swarm (s can be taken 
randomly). 

2. Initialize the iteration number k (in the general case is set equal to zero). 
3. Evaluate for each agent, the velocity vector using its memory and equation (7), 

where pbest and sbest can be modified.  
4. Each agent must be updated by applying its velocity vector and its previous 

position using equation [8]. 
5. Repeat the above step (3, 4 and 5) until a convergence criterion is reached. 

The practical part of using PSO procedure will be examined in the following section, where 
we‘ll interpolate Runge’s “bell”, with two manners; using Chebyshev interpolation 
approach and PSO approach, all while doing a comparison. 

4.2 PSO distribution 

So the problem is the choice of the points of interpolation so that quantity 

( )n xφ deviates from zero on [a, b] the least possible. 

Particle Swarm Optimization was used to find the global minimum of the maximum value 

of product ( )n xφ  , where very x is represented as a particle in the swarm.  

The PSO parameter values that were used are given in Table 1.   

Parameter Setting 

Population size 20 

Number of iterations 500 

C1 and C2 0.5 

Inertial Weight 1.2 to 0.4 

Desired Accuracy 10-5 

Table 1. Particle Swarm Parameter Setting used in the present study 

The best interpolating points x generated by PSO algorithm for polynomial of degree 5 and 
10 respectively for example are: 

Chebyshev 
Points generated 

with PSO 

-5.0000 -5.0000 

-3.9355 -4.0451 

-2.9041 -1.5451 

0.9000 1.5451 

3.9355 4.0451 

5.0000 5.0000 

Table 2 Polynomial of degree 5 
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Chebyshev Points generated with PSO 

-5.0000 -5.0000 

-4.2900 -4.7553 

-4.0251 -4.0451 

-2.6500 -2.9389 

-1.4000 -1.5451 

0.0000 -0.0000 

1.4000 1.5451 

2.6500 2.9389 

4.0451 4.0451 

4.2900 4.7553 

5.0000 5.0000 

Table 3. Polynomial of degree 10 

5. Comparison of interpolation methods 

How big an effect can the selection of points have? Fig. 4 and Fig. 5 shows Runge's "bell" 
function interpolated over [-5, 5] using equidistant points, points selected from the 
Chebyshev distribution, and a new method called PSO. The polynomial interpolation using 
Chebyshev points does a much better job than the interpolation using equidistant points, 
but neither does as well as the PSO method. 
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Figure 4. Comparison of interpolation polynomials for equidistant and Chebyshev sample 
points 
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Comparing Fig. 4, we see that the maximum deviation of the Chebyshev polynomial from 
the true function is considerably less than that of Lagrange polynomial with equidistant 
nodes. It can also be seen that increasing the number of the Chebyshev nodes—or, 
equivalently, increasing the degree of Chebyshev polynomial—makes a substantial 
contribution towards reducing the approximation error. 
Comparing Fig. 5, we see that the maximum deviation of the PSO polynomial from the true 
function is considerably less than that of Chebyshev polynomial nodes. It can also be seen 
that increasing the number of the PSO nodes—or, equivalently, increasing the degree of PSO 
polynomial—makes a substantial contribution towards reducing the approximation error. 
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Figure 5. Comparison of interpolation polynomials for PSO and Chebyshev sample points  

In this study we take as measure of the error of approximation the greatest vertical distance 
between the graph of the function and that of the interpolating polynomial over the entire 
interval under consideration (Fig. 4 and Fig. 5). 
The calculation of error gives 

Degree 
Error points 
equidistant 

Error points 
Chebychev 

Error points 
PSO 

5 0.4327 0.6386 0.5025 

10 1.9156 0.1320 0.1076 

15 2.0990 0.0993 0.0704 

20 58.5855 0.0177 0.0131 

Table 2. The error 
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6. Conclusion 

The particle swarm optimization is used to investigate the best interpolating points. Some 
good results are obtained by using the specific PSO approach. It is now known that the PSO 
scheme is powerful, and easier to apply specially for this type of problems. Also, the PSO 
method can be used directly and in a straightforward manner. The performance of the 
scheme shows that the method is reliable and effective. 
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