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1. Introduction      

 Optimization problems are frequently encountered in many engineering, economic or 
scientific fields that engineers or researchers are seeking to minimize cost or time, or to 
maximize profit, quality or efficiency, of a specific problem. For example, economic dispatch 
of power generation, optimal allocation of resources for manufacture, design optimal plant 
to maximize production, and so many which are unable to enumerate completely. In 
addition, many optimization problems are very complex and hard to solve by conventional 
gradient-based techniques, particularly the objective function and constraint are not in 
closed forms. Thus, the development of a good optimization strategy or algorithm is of great 
value. 
In the past decade, particle swarm optimization (PSO) algorithm [Eberhart & Kennedy 1995, 
Kennedy and Eberhart 1995] attracts many sights around the world due to its powerful 
searching ability and simplicity. PSO simulates the swarm behavior of birds flocking and 
fish schooling that swarms work in a collaborative manner to search for foods as efficient 
and quick as possible. There are three different types of PSO which are frequently 
encountered in literature. They are constriction type PSO, constant inertia weight PSO and 
linearly decreasing inertia weight PSO. Each of them has been successfully applied to many 
optimization problems. 
While empirical studies have proven PSO’s usefulness as an optimization algorithm, it does 
not always fit all problems. Sometimes, it may also get stuck on local optimal. In order to 
improve the performance, many variants of PSO have been proposed. Some of the proposed 
algorithms adopted new operations and some of the modifications hybridized with other 
algorithm. Although they are claimed better than original PSO algorithm, most of them will 
introduce extra mathematical or logical operations, which, in turn, making algorithm more 
complicate and spending more computing time. Especially, they, in general, did not present 
any theoretical models to describe its behavior and support such modifications. 
Many researchers have devoted to study how PSO works. They intended to discover the 
implicit properties of PSO and its weakness and strength via theoretical analysis. The first 
attempt to analysis PSO is made by Kenndey [Kennedy, 1998]. Meanwhile, Ozcan and 
Mohan showed that a particle in a simple one-dimensional PSO system follows a path 
defined by a sinusoidal wave with random amplitude and frequency. However, the effects 
of inertia weight are not addressed in that paper [Ozcan & Mohan, 1999]. In order to analyze 
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the dynamics of PSO, Yasuda proposed a generalized reduced model of PSO accounting for 
the inertia weight. The stability analysis is carried out on the basis of both the eigenvalue 
analysis and numerical simulation [Yasuda et al., 2003]. Trelea has carried out a convergence 
analysis of PSO and then derived a graphical parameter selection guideline to facilitate 
choosing parameters [Trelea, 2003]. 
A formal analysis of the PSO is carried out by Clerc and Kennedy [Clerc & Kennedy, 2002]. 
By treating the random coefficients as constants, the analysis started from converting the 
standard stochastic PSO to a deterministic dynamical system. The resulting system was a 
second-order linear dynamic system whose stability depended on the system’s eigenvalues. 
The parameter space that guarantees stability is also identified. A similar analysis based on 
deterministic model of the PSO was also carried out in identifying regions in the parameter 
space that guarantee stability [van den Berg, 2002]. Recently, stochastic convergence analysis 
of the standard PSO is reported in [Jian, 2007], where a parameter selection guide is also 
provided to ensure the convergence. 
Similar to genetic algorithm or evolutionary algorithm,  PSO is also a population-based 
optimization technique. PSO searches for optimal solution via collaborating with 
individuals within a swarm of population. Each individual, called particle, is made of two 
parts, the position and velocity, and proceeds according to two major operations, velocity 
and position updating rules. Position and velocity represent the candidate solution and step 
size, a particle will advance in the next iteration, respectively. For an n-dimensional problem 
and a swarm of m particles, the i-th particle’s position and velocity, in general, are denoted 
as xi=[xi1, xi2, …, xin]T and vi=[vi1, vi2, …, vin]T, for i=1, 2, …, m, respectively, where m is the 
number of particles, and superscript T stands for the transpose operator. Considering on the 
inertia weight  PSO, the operations of position and velocity are expressed as: 

 (t))x(prnd(1)c(t))x(prnd(1)c(t)vω1)(tv idid2idgd1idid −⋅⋅+−⋅⋅+⋅=+  (1) 

 1)(tv(t)x1)(tx ididid ++=+  (2) 

where ω is the inertia weight; c1 and c2 are two positive constants called acceleration 
constants; rnd(1) is a uniform random number in (0,1); d is the index of dimension; pg and pi 
are the best position ever found by all particles and the best position a particle ever found so 
far, respectively;  t is the iteration count. Hereafter, pg and pi will be called the global best 
and personal best particle of the swarm, respectively, in this chapter. 
Personal best oriented particle swarm optimizer (PPSO), also a varient of particle swarm 
optimization, is a newly developed optimization solver [Chen & Yeh, 2006a ]. PPSO uses the 
same velocity updating rule as PSO. However, the position updating rule is replaced by (3). 

 1)(tvp1)(tx ididid ++=+   (3) 

The modification came from the observation that since pid is the best particle ever found so 
far, it may locate around the vinicity of the optimal solution. Fotunately, previous studies 
showed that PPSO performs well both in testing on a suite of benchmark functions  and 
applying to economic dispatch  problems of the power system and others [Chen & Yeh, 
2006a, 2006b, 2007, 2008]. However, all the results were obtained from emperical studies. 
The main drawback of PPSO may lie in a fragile theory basis at first galance. No theoretical 
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analysis has been found in literature, although it not only can help reveal the behavior of 
particles but also the convergent property of the proposed approach. 
This chapter presents a therotical analysis of PPSO. Based on the analysis, the implicit 
behavior of PPSO will be revealed. Meanwhile, it also provide a guideline for parameters 
selection. It is well-known that the particle’s trajectory of PSO is characterized by a second-
order difference equation. However, it will be clear later that a first order difference 
equation is sufficient to characterize the particle’s behavior of PPSO. A simple mathematical 
model can help one easily grasp the features of PPSO and convergent tendency. 

2. Analysis of PPSO 

This section intends to construct the mathematical model of PPSO and, based on the 
developed model, study the property of PPSO. The analysis is started from a simplified 
deterministic model, a single particle and one dimension case, keeping all the parameters  
constants. After that, assuming some parameters be uniformly distributed random numbers, 
a stochastic model is then built to simulate the nature of PPSO in the next section.  

2.1 Simple PPSO: one particle and one dimension case 

Each particle in PPSO represents a candidate solution of a specific problem. In other words, 
a particle is a position in a multidimensional search space in which each particle attempts to 
explore for an optimal solution with respect to a fitness function or objective function. In this 
section, a simple PPSO is first derived on which the following analysis is based.  
The canonical form of PPSO is represented as . 

 ( ) ( )(t)xpφ(t)xpφ(t)vω1)(tv
idid2idgd1idid

−⋅+−⋅+⋅=+  (4) 

 ididid p1)(tv1)(tx ++=+   (5) 

where ϕ1 = c1⋅rnd(1) and ϕ2 = c2⋅rnd(1) are two random numbers drawn uniformly from (0, 
c1) and (0, c2), respectively.  
Since (4) and (5) operate on each dimension exclusively, for notation simplicity, one can 
omit the subscript i and d of xid and vid, and retain subscript g and i of pg and pi to 
emphasize the difference between them. The analysis given below considers only one 
particle and one dimensional case. However, the results can easily be extended to 
multidimensional case without losing generality. 
Eqations (4) and (5) can now be rewritten as: 

 ( ) ( )x(t)pφx(t)pφv(t)ω1)v(t i2g1 −⋅+−⋅+⋅=+  (6) 

 ip1)v(t1)x(t ++=+   (7) 

Substituting (6) into (7), one has: 

 ( ) ( ) ii2g1 px(t)pφx(t)pφv(t)ω1)x(t +−⋅+−⋅+⋅=+  (8) 

Since 

 ipv(t)x(t) +=   (9) 
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It has 

 ipx(t)v(t) −=   (10) 

and 

 ( ) ( ) ( ) ii2g1i px(t)pφx(t)pφpx(t)ω1)x(t +−⋅+−⋅+−⋅=+  (11) 

Rearranging (11), it becomes 

 i2g1 pω)φ(1pφφ)x(t)(ω1)x(t ⋅−++⋅=−−+  (12) 

where ϕ = ϕ1 + ϕ2. Obviously, a first-order linear difference equation is sufficient to 
characterize the dynamic behaviors of the simple PPSO.  

2.2 Deterministic model of PPSO 

Now assume that both pi and pg are constants. Also assume that ϕ1  and ϕ2  are two 
constants. It turns out that the PPSO becomes a deterministic model described by a first-
order linear difference equation with constant coefficients. If the right-hand side of (12) is 
nonzero, it is a nonhomogeneous linear difference equation. The total solution of a 
nonhomogeneous linear difference equation with constant coefficients is the sum of two 
parts, the homogeneous solution, which satisfies the difference equation when the right-
hand side of the equation is zero, and the particular solution, which satisfies the difference 
equation with a nonzero function F(t) on the right-hand side. 
The homogeneous solution of a difference equation with constant coefficient is of the form 

Aλt, where λ is called the characteristic root of the difference equation and A is a constant to 
be determined by the boundary (initial) condition.  
The homogeneous solution and particlar solution of (12) can be obtained readily 

 t
h φ)A(ω(t)x −=   (13) 

and  

 ω)φ]/(1pω)φ(1p[φ(t)x i2g1p −+⋅−++⋅=  (14) 

 
Here, subscript h and p are used to denote the homogeneous solution and particular 
solution. The total solution of (12) become  

 
w

t pφ)A(ωx(t) +−=   (15) 

where 

 ω)φ]/(1pω)φ(1p[φp i2g1w −+⋅−++⋅=   (16) 

is called the weighted mean of pg and pi. Given the initial condition x(0)=x0, the dynamic 
property of a particle is completely characterized by 

 w
t

w0 pφ))(ωp(xx(t) +−−=   (17) 
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where x0 is the initial vale of x(t) and A = (x0 - pw). Equation (12) and (17) represent the 
position or trajectory that a particle may explore in implicit and explicit form. 

2.2.1 Convergence property of the deterministic PPSO 

Apparently, if (ω - φ) satisfies the following condition 

 1φ)(ω <−   (18) 

or 

 1φ)(ω1 <−<−   (19) 

Then 

 ( ) w
t

px(t)lim =
∞→

  (20) 

The limit does exist whenever pw is an arbitrary point in the search space, i.e., pw is finite. It 

is obvious that if 0 < ω < 1, it leads to (1 + ϕ - ω) > 0 since ϕ = ϕ1 + ϕ2 > 0, and the weighted 
mean pw is finite. 

Hereafter, finite pw and 0 < ω < 1 are assumed, unless stated explicitly. The feasible region in 

which x(t) is strictly converges for 0<ω<1 and -1<ϕ< 2 is plotted in Fig.1, where the gray 
area is the feasible region if stability is concerned, and the dark line on the center 

corresponds to ω = ϕ. 

 

Figure 1. The gray region is the feasible region which particle strictly converges for 0 < ω < 1 

and -1< ϕ < 2. The centered dark-line on the gray area corresponds to ω = ϕ 

2.2.2 Step size 

The span the particle advances in the next step is calculated using the successive positions at 
t and (t+1), 
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 w
t

w0 pφ))(ωp(xx(t) +−−=
  (21) 

and 

 w
1t

w0 pφ))(ωp(x1)x(t +−−=+ +

  (22) 

Define the step size as 

 
t

w0 φ))(ωp1)(xφ(ω

x(t)1)x(tΔx(t)

−−−−=

−+≡
  (23) 

Since 

 x(t))(pφ))(ωp(x w
t

w0 −−=−−   (24) 

It has 

 dx1)φ(ωΔx(t) ⋅−−−=  (25) 

where  

 x(t))(pdx w −≡   (26) 

is the distance between the current position x(t) and the weighted mean, pw. Equation (26) 

tells that the step size is a multiple, defined by –(ω - ϕ - 1), of the distance between x(t) and 

pw. If –(ω - ϕ - 1) is positive, x(t) moves in aligning with the direction from current position 

to pw and, if –(ω - ϕ - 1) is negative, x(t) moves on the opposite side. The former make 
particles moving close to pw and the latter make particles get far way from pw. 

Now, define a step size control factor, δ, as: 

 1)φ(ωδ −−−≡   (27) 

Then 

 dxδΔx(t) ⋅=   (28) 

Obviously, how long a particle will advance in next turn is controlled by the step size 

control factor δ. A large δ makes a particle to move far away from current position and a 

small value of δ makes a particle moving to nearby area.  

Meanwhile, it is interesting to note that if 0 < δ < 2, (27) becomes to 

 21)φ(ω0 <−−−<   (29) 

or 

 1φ)(ω1 <−<−  (30) 

This agrees with (19). In other words, if the step size control factor satisfies 0 < δ < 2, the 
deterministic PPSO converges to pw. Otherwise, it diverges. 
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Clearly, under condition 0 < δ < 2, the deterministic PPSO is stable, otherwise, it is unstable. 

Since δ is a function of ω and ϕ, the choices of ω and ϕ affect the magnitude of the step size 
control factor, or, in other words, affect the stability of PPSO. 
Returning to (30), there are two cases are especially worthy to pay attention: 

(a) 0< (ω - ϕ) < 1 
This case corresponds to 

 1δ011)φ(ω0 <<⇒<−−−<  (31) 

In such situation, x(t+1) moves to the region to the left of pw whenever pw is greater than 
x(t), or the region to the right of pw whenever pw is less then x(t). 

(b) -1 < (ω - ϕ) < 0 
This case corresponds to 

 2δ121)φ(ω1 <<⇒<−−−<  (32) 

This means that x(t+1) advances to the region to the right of pw whenever pw is less than x(t), 
or the region to the left of pw whenever pw is greater then x(t). 
These two cases are illustrated in Figs.2 and 3. It is apparent that the step size control factor 

affects how far the particle moves. Since the step size is proportional to δ, a large δ 

corresponds to advancing in a large step and small δ corresponds to small step. Moreover, a 

positive δ makes x(t) move along the direction from x(t) to pw ,while a negative δ causes it 

move along the opposite direction. By controlling δ, or equivalently (ω - ϕ), particles 

movement will be totally grasped. It is expected that if δ is uniformly changed in (0, 2), then 
x(t) will vibrate around the center position, pw, the weighted midpoint of pg and pi. This is a 
very important property of PPSO. Similar phenomenon has been observed [Kennedy, 2003] 
and verified theoretically in PSO [Clerc & Kennedy, 2002].  

2.2.3 Parameters selection 

Equation (27) defines the step size control factor. It provides clues for determining 

parameters. First, confine the step size control factor within (δmin, δmax), where δmin and δmax 
are the lower and upper limits of the step size control factor, respectively, it turns out that 

 maxmin δ1)φ(ωδ <−−−<  (33) 

After proper rearrangement, (33) becomes 

 1)ω(δφ1)ω(δ maxmin −+<<−+  (34) 

According to (34), once the lower and upper bounds of the step size control factor are 

specified, the range of ϕ depends on ω. The most important is that a stable PPSO requires, 

based on (29), δmin = 0 and δmax =2. Substituting these two values into into (34), it has 

 ω1φ1ω +<<−  (35) 

Equation (35) says that, if ϕ uniformly varies from (ω - 1) to (ω + 1), x(t) will explore the 
region from (pw - dx) to (pw + dx). It also implies that it is possible to use a negative value of 

ϕ while PPSO is still stable. This fact has been shown in Fig.1. 
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Figure 2. The next position, x(t+1), a particle will move to for 0 < δ < 1, (a) pw > x(t) and (b) 
pw < x(t) 

 

Figure 3. The next position, x(t+1), a particle will move to for 1 < δ < 2, (a) pw > x(t) and (b) 
pw < x(t) 

Since ϕ1 and ϕ2 are both positive numbers, so is ϕ. Fig.4  shows the case that ϕ is positive 

and is restricted to 0 < ϕ < 2. 

If ω is assigned, from (27), one also has 

 ϕmin +1 - ω < δ < ϕmax +1 - ω (36) 

where ϕmin and ϕmax are the lower and upper limits of ϕ. Thus, one can use (36) to predict 

the range the particle attempts to explore for a specific range of ϕ, if ω is given. From (36), 

one can also readily verify that ϕmin = ω - 1 and ϕmax = ω + 1 result in δ = 0 and 2, 
respectively, agreeing with (29). 

A graph of step size control factor versus φ with ω as parameter is plotted in Fig.5 for 0 < ϕ < 

2 and 0 < ω < 1. The gray area corresponds to convergent condition since 0 < δ < 2. One can 
use this graph to evaluate whether the selected parameters result in convergence or not. 

 

Figure 4. The feasible region for 0 < ω < 1 and 0 < ϕ < 2 
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Figure 5. A plot of step size control factor δ versus ϕ with ω as parameter 

2.2.4 Stability 

The stability criterion imposed upon the deterministic PPSO is directly obtained from (18), 

i.e, |(ω - ϕ)| < 1. However, based on (29), an implication of stability means that the step size 

control factor needs to meet the requirement 0 < δ < 2. Hence, stability of the deterministic 
PPSO can be described by one of the following rules: 

(a) | (ω - ϕ)| < 1 
or 

(b) 0 < -( ω - ϕ - 1) < 2 

2.2.5 Equilibrium point 

According to the above analysis, one can conclude that, for a stable deterministic PPSO, each 
particle moves in discrete time along the trajectory defined by (12) or (17), with specific step 
size, and finally settles down at an equilibrium point pw. The equilibrium point is a function 

of ϕ1 and ϕ2. Referring to (16), one can readily verify that if ϕ1 > (1 + ϕ2 - ω), the equilibrium 

point pw biases to pg, and biases to pi if ϕ1 ≤ (1 + ϕ2 - ω). However, the equilibrium point 

found in PSO is the midpoint of pg and pi since ϕ1 = ϕ2 is usually used in PSO.  

3.Stochastic PPSO 

Instead of constants, now, restore both ϕ1 and ϕ2 to be uniform random numbers in (0, c1) 

and (0, c2), respectively. The model of (12) and (17) are still applied except that ϕ1 and ϕ2 are 
now two uniform random numbers. Analysis of the dynamic behavior of this stochastic 
PPSO will be given by extending the analysis provided in the previous section, with the 

replacement of expectation value for ϕ1 and ϕ2 as well as x(t) from the probabilistic point of 
view. In the following analysis, the terms mean value, or simply mean, and expectation 
value will be used alternatively, in a looser mathematical standard, in the context. 

3.1 Convergent property 

Considering the explicit representation, Eq.(17), of the trajectory of a particle, since ϕ1 and ϕ2 
are both uniform random numbers, the averaged dynamic behavior of a particle can be 
observed by its expectation value, i.e. 
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( ) ( )

( )( )

t

0 w w

t

0 w w

E x(t) E (x p )(ω φ) p

x E(p ) ω E(φ) E(p )

= − − +

= − − +
 (37) 

where E(x(t)), E(pw), and E(ϕ) are the expectation value of x(t), pw and ϕ, respectively. Here, 

ϕ1 and ϕ2 are assumed to be two exclusive uniform random numbers; and E(ϕ) = E(ϕ1) + 

E(ϕ2). Apparently, if the condition 

 1 < ω - E(ϕ)) < 1 (38) 

is true, then  

 ( ) )E(px(t)Elim w
t

=
∞→

 (39) 

According to (39), the trajectory of each particle converges to a random weighted mean, 
E(pw), of pg and pi, where 

 

( )

ω)E(φ)E(φ1

pω))E(φ(1p)E(φ

ω)φ]/(1pω)φ(1p[φE)E(p

21

i2g1

i2g1w

−++

⋅−++⋅
=

−+⋅−++⋅=

 (40) 

Since 

 1ω0ifω)E(φ)E(φ1 21 <<>++  (41) 

E(pw) is finite for 0 < ω < 1, 0 < E(ϕ1) and 0 < E(ϕ2) as well as finite pi and pg. 

Owing to ϕ1 and ϕ2 are both uniform random numbers in (0, c1) and (0, c2), respectively, it 

has E(ϕ1) = 0.5c1, E(ϕ2) = 0.5c2 and E(ϕ) = E(ϕ1 + ϕ2) = 0.5(c1 + c2). Thus, (40) becomes 

 

ω)c0.5(c1

pω)0.5c(1p0.5c

ω)E(φ)E(φ1

pω))E(φ(1p)E(φ
)E(p

21

i2g1

21

i2g1
w

−++

⋅−++⋅
=

−++

⋅−++⋅
=

 (42) 

Obviously, for a stochastic model of PPSO, the random weighted mean pw is different from 

that obtained by deterministic model of PSO and PPSO. Meanwhile, for  0 < ω < 1, E(pw) 
bias to pi. This means that particle will cluster to pi instead of pg.   

3.2 Step size 

Similar to deterministic PPSO, the step size of the stochastic PPSO can be computed by 

( )E Δx(t) = E(x(t+1))-E(x(t))  

 = - (ω - E(ϕ) - 1)(E(pw) - E(x(t))) (43) 

 = - (ω - 0.5(c1 + c2) - 1)E(dx) 
where  

 E(x(t)))E(pE(dx) w −=  (44) 
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For a stochastic PPSO, the mean (expectant) step size a particle will move in next turn is 
computed from (43), which is a multiple of the mean distance between the random weighted 
mean E(pw) and mean current position E(x(t)). Similar to deterministic PPSO, the mean step 
size control factor is defined as 

 E(δ) = - (ω - E(ϕ) - 1) (45) 

The step size and step size control factor are no longer static values but stochastic ones. 

Furthermore, for 0 < E(δ) < 2, from (45), it also has  

 -1 < -(ω - E(ϕ) ) < 1 (46) 

Actually, (46) is the same as (38). Rearranging (46), one has 

 ω1)E(φ1ω +<<−  (47) 

Equations (46) and (47) are similar to (30) and (35), respectively, except that the constant ϕ 

(=ϕ1 + ϕ2) is replaced by sum of the expectation values of two random numbers. As 
concluded in the previous section, a stable stochastic PPSO equivalently means that the 
mean step size control factor of each particle’s movement must be within the range of 0 < 

E(δ) < 2. In other words, if E(ϕ) lies between (ω -1) and (1 + ω), the system is stable. 

3.3 Parameter selection for stochastic PPSO 

This subsection discusses how to choose proper parameters for PPSO. 

3.3.1 Inertia weight 

Recall that E(ϕ) is a positive number since ϕ is the sum of two uniformly random numbers 
varying between (0, c1) and (0, c2), where c1 and c2 are two positive numbers. Now, consider 

the step size control factor governed by (45) for ω chosen from the following ranges: 

(a) 1 < ω, it has 

 E(δ) < E(ϕ) (48) 

(b) 0 < ω < 1, it has  

 ( )φE1)E(δ)E(φ +<<  (49) 

(c) -1 < ω < 0, it has  

 1 + E(ϕ) < E(δ) < 2 + E(ϕ) (50) 

(d) ω < -1, it has  

 2 + E(ϕ) < E(δ) (51) 

If E(ϕ) is assigned, Eqs.(48)-(51) specify the average possible value of step size control factor 

for different choosing ranges of inertia weight ω. For example, if E(ϕ) =1.5, E(δ) are 1.25,  

1.75, 2.75 and 3.75 for ω = 1.25, 0.75, -0.25 and -1.25, respectively. Clearly, it is improper to 

have a minus value of ω since it will make particle violate the stability rule, i.e., the 
trajectory of particle diverges.  

To have a better vision of parameter selection for ω > 1 and 0 < ω < 1,  it is better to explain 
with figure as illustrated in Figs.6 and 7 where the dotted lines represent the domain a 
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particle may visit in next turn for the cases ω = 1.25 and 0.75 under the condition of E(ϕ) 
=1.5. The cross sign in the midpoint of two ellipses is the center of the search range. Here, 
only the case that E(pw) located to the right of E(x(t)) is shown. However, similar aspects can 
be observed for E(pw) located to the left of E(x(t)).  

Since E(ϕ) =1.5, the uniform random number ϕ varies from 0 to 3. The lower and upper step 

size control factors are -0.25 and 2.75, respectively, for ω = 1.25. These values are calculated 
using Eq.(27) . It is seen then in Fig.6 that the search area extends from -0.25E(dx) to 

2.75E(dx). Although the upper value of E(δ) is greater than the upper limit of the step size 
control factor, the expectation value of the step size control factor is 1.25, which obeys the 

stability rule given in Eq.(38). From Fig.6, one can also find that if ω is greater than unity, 

particle is possible to search the region to the left of E(x(t)). Meanwhile, the greater  ω is, the 
more the search area shift to left of E(x(t)), which will reduce diversity of particle because 

particles move to the vinicity of E(x(t)).  Now, refer to Fig.7, for ω = 0.75 and E(ϕ) =1.5,the 
searach domain are in 0.25E(dx) and 3.25E(dx) with  mean of 1.75E(dx). This parameter 
setting also obeys the stability criterion. It seems both cases of parameter choice is proper. 

However, refer to Eq.(37), the trajectory of a particle is mainly governed by the term (ω - 

E(ϕ))t. If (ω - E(ϕ)) is too small, E(x(t)) will vanish quickly and particle may get stuck on local 

optimum. In other words, the value of (ω - E(ϕ)) represents an index for evaluation of the 

prematurity of particles. Therefore, it is better to have 0 < ω < 1, and empirical studies have 

shown that it is proper to choice of inertia weight in 0.7 < ω < 0.8. 

 

Figure 6. The area the particle will explore for ω = 1.25 and E(ϕ) = 1.5 

 

Figure 7. The area the particle will explore for ω = 0.75 and E(ϕ) = 1.5 

3.3.2 Acceleration coefficient  

Recall that c1 and c2 are referred to acceleration coefficients, and ϕ is the sum of two uniform 

random numbers in (0, c1) and (0, c2). The lower and upper limits of ϕ are then 0 and (c1+c2), 
respectively. To determine c1 and c2, it has to consider from three aspects: prematurity, 
population diversity and particle stability.  
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If ϕ varies from 0 to (c1+c2) uniformly, from Eq.(27), the lower bound of the step size control 

factor is determined by the choice of ω, i.e., 

 1ωδmin +−=  (52) 

while the upper bound is set by ω, c1 and c2, which is 

 1)c(cωδ 21max +++−=  (53) 

For simplicity, it usually has c1=c2=c, Eq.(53) becomes 

 1c2ωδmax ++−=  (54) 

Accounting for stability, in terms of step size control factor, staibility criterion is descibed as 

 ( ) 2δE0 <<  (55) 

Approximate the expectation value E(δ) by the average value of δmin and δmax, it has 

 ( ) 1c-ωδE ++=  (56) 

Based on (56), one can determine the acceleration coefficients once ω and E(δ) is assigned. 

For example, let ω = 0.75 and E(δ) = 1.75  (stisfies Eq.(55)), solve Eq.(56) for c. It is obtained  
c=1.5. The acceleration coefficients are then set to c1=c2=1.5.  The lower and upper bounds of 
the step size control factor computed by Eq.(52) and Eq.(54) are 0.25 and 3.25, respectively. 
The range the particle will search is shown in Fig.7 for this example. It is seen that the search 
domain stretchs over from 0.25E(dx) to 3.25E(dx), where E(dx) = E(pw) – E(x(t)) is the 
distance between expectation values of the random weighted mean, pw, of pg and pi and 
current particle position x(t).  
Of course, this is not the unique parameters setting for PPSO. Frequently, it is required to 
compare the performances between PSO and PPSO. In such situation, the common used 

parameters for PSO (ω=0.729, c1=c2=1.494) fit to PPSO since E(ϕ) = 1.494, and E(δ) = 1.765 
which satisfies Eq.(55).  

3.4 Equilibrium point 

Both PPSO and PSO define the particles as potential solutions to a problem in a multi-
dimensional space with a memory of its ever found best solution and the best solution 
among all particles. PPSO generates a sequence of x(t) iteratively, and if x(t) is a stable 
sequence, it has 

 )E(px(t)lim w
t

=
∞→

 (57) 

where the random weighted mean E(pw) defined in (42) is the equilibrium point of the 
sequence. As an optimization solver, it is expected that E(pw) is the optimum solution. It is 
seen from (57) that if pg = pi = p, E(pw) = p. This means that particle settles down at the 
global best ever found, i.e., PPSO is expected to constantly update the personal best and 
global best solutions ever found, and finally converges to E(pw)= pg = pi, the optimum 
solution or near optimum solution of the problem at hand.  
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Note that the random weighted mean of PSO is defined as [Kennedy, 1999 and van den 
Bergs, 2003] 

 
21

i2g1
w

cc

pcpc
p

+

⋅+⋅
=  (58) 

Oviuously, the particles of PSO and PPSO will converge to different equilibrium points. 
Therefore,  in additon to the equilibrium points,  the trajectories of PSO and PPSO are also 
different since trajectories of PPSO and PSO are characterised by a first-order and second-
order difference equations [Trelea, 2003, Yasuda et al., 2003, van den Bergh, 2003], 
respectively. These are the distinctive features of PSO and PPSO. 

4. Example Trajectories 

To see the properties between PSO and PPSO, the trajectories the particle traversed are 
investigated by a primitive PSO and PPSO model, where pg and pi are set as two arbitrarily 
constants. To keep thing simple and have a better observation, trajectories of one dimension 
are considered here. Both the trajectories are generated with same initial condition, i.e., same 
initial values for position and velocity. Meanwhile, both PSO and PPSO use the same value 

for the parameters, ω, c1 and c2 that they are set as ω=0.729 and c1=c2=1.494. Each of the 
trajectories is constructed by 10000 points and, for fair comparison, each points is generated 
using the same random numbers for both PSO and PPSO at each time step.  
The pseudo-code for generating the trajectories is shown in Fig.8, where x(t) and y(t) are the 
positions of PSO and PPSO at time step t;  vx(t) and vy(t) represent the velocity of PSO and 
PPSO, respectively; x(0) and y(0) is the initial positions, vx(0) and vy(0) are the initial 
velocities of PSO and PPSO, respectively.  

1 2 g i

1 1 2 2

1 g 2 i

1 g

/* pseudo code for evaluation PSO and PPSO */
Set ω, c , c , p and p ;

Initialize x(0), y(0), vx(0) and vy(0);
For t 1 to 10000 {

c rnd(1); c rnd();
vx(t) ω vx(t 1) (p x(t 1)) (p x(t 1));

vy(t) ω vy(t 1) (p y

−

=
ϕ = ⋅ ϕ = ⋅

= ⋅ − + ϕ ⋅ − − + ϕ ⋅ − −
= ⋅ − + ϕ ⋅ − 2 i

i

(t 1)) (p y(t 1));

x(t) vx(t) x(t 1);
y(t) vy(t) p ;

}
/* End */

− + ϕ ⋅ − −
= + −
= +

 

Figure 8. Pseudo-code for evaluating the trajectories of PSO and PPSO 

Figure 9 and 10 depicted examples of the trajectories of PSO and PPSO. These plots are 
obtained with pg, pi, x(0), y(0) vx(0) and vy(0) that are arbitrarily set to -50, 10, 0, 0, 20 and 
20, respectively. The gray lines in the centre of the figures represent the mean values of x(t) 

and y(t). They are denoted as µx and µy for x(t) and y(t), respectively. It is seen obviously 
that both the trajectories of PSO and PPSO randomly vibrate, or oscillate around the mean 

values within a limited ranges. The mean values are obtained as µx = -20.009, and µy = -
15.288.  These two values very close to the theoretical random weighted mean of pg and pi, 
defined in (58) and (42) for PSO and PPSO, which are calculated to be -20 and  -15.394. 
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Furthermore, the minimum and maximum values of x(t) are -697.131 and 706.212, while the 
minimum and  maximum values of y(t) are -713.624 and 676.268. 

 

Figure 9. Sample trajectory of x(t) for PSO with pg=-50, pi=10, x(0)=0 and vx(0)=20 

 

Figure 10. Sample trajectory of y(t) for PPSO with pg=-50, pi=10, y(0)=0 and vy(0)=20 

Recall that PSO has bell-shaped distribution of the trajectory centred approximately at pw, 
i.e., the weighted mean which equals to the midpoint of pg and pi [Kennedy, 2003]. This 
feature also has been observed in PPSO. Refer to Figs.(11) and (12), the histogram plots of  
the distribution of x(t) and y(t) are illustrated.  In these figures, the distributions of the 
trajectories are drawn in grey lines and the vertical dash-line denoted the mean value of the 
trajectory. The horizontal and vertical axes represent the values of the trajectory and the 

occurrences a particle ever explored. The plots of the horizontal axis extend from (µx - 3σx) to 

(µx + 3σx ) and (µy - 3σy) to (µy + 3σy ) for PSO and PPSO, respectively, where σx and σy are 
the standard deviations of x(t) and y(t). Obviously, the distribution of the trajectory of the 
PPSO is also a bell-shaped centred at the random weighted mean.  For a comparison, the 

normal distribution with mean µx and standard deviation σx for PSO and mean µy and 

standard deviation σy for PPSO are drawn in thick solid lines. Clearly, although PSO and 
PPSO works based on different mathematical models, they have similar dynamic behaviour. 
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Figure 11. The histogram plot of x(t) for PSO with pg=-50, pi=10, x(0)=0 and vx(0)=20 

 

Figure 12. The histogram plot of y(t) for PPSO with pg=-50, pi=10, y(0)=0 and vy(0)=20 

 

Figure 13. Sample trajectory of x(t) for PSO with pg = 0, pi = 100, x(0) = 10 and vx(0) = -2 

 

Figure 14. Sample trajectory of y(t) for PPSO with pg = 0, pi = 100, y(0) = 10 and vy(0) = -2 
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Another samples of trajectory for different setting of pg and pi as well as initial condition are 
show in Figs.13 and 14 where pg, pi, x(0), y(0) vx(0) and vy(0) are arbitrarily chosen as 0, 100, 
10, 10, -2 and -2, respectively. With pg = 0 and pi = 100, the random weighted mean, pw, of 

PSO and PPSO are 50 and 57.677. Meanwhile, the mean values, µx and µy, are 50.588 and 

57.609 for PSO and PPSO. The minimum and maximum values are -3.249×103 and 3.550×103 

for x(t) and -1.639×103 and 2.941×103 for y(t). Apparently, both the trajectories also oscillate 
around the random weighted mean within a specific domain, which are verified further in 
the histogram plots shown in Figs.(15) and (16). 

 
Figure 15. The histogram plot of x(t) for PSO with pg = 0, pi = 100, x(0) = 10 and vx(0) = -2 

 

Figure 16. The histogram plot of y(t) for PPSO with pg = 0, pi = 100, y(0) = 10 and vy(0)= -2 

5. Conclusion 

This chapter intends to provide a theoretical analysis of PPSO to clarify the characteristics of 
PPSO. The analysis is started from a simplified deterministic model, a single particle and 
one dimension case, keeping all the parameters constants. After that, assuming the 
acceleration coefficients as uniformly distributed random numbers, a stochastic model is 
then built to describe the nature of the PPSO. With the assumption, it is shown that a first-
order difference equation is sufficient to describe the dynamic behaviour of the particles. 
Based on the models, the convergence property is studied and the guidance for parameters 
selection is provided.  
Trajectories comparison between PSO and PPSO are also presented. It is found that, similar 
to PSO, the particles of PPSO also stochastically explore for optimal solution within a region 
centered approximately equals to a random weighted mean of the best positions found by 
an individual (personal best) and its neighbours (global best). Like PSO, bell-shaped 
distribution of the particle’s trajectory is also observed in PPSO. However, the centres of the 
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distribution of PSO and PPSO are different so that leading to different equilibrium points 
and, hence, different results and performances.  
The results derived in this chapter justify the possibility of PPSO to be an optimization 
algorithm. Simulation results have been shown that PPSO performs in general better than 
PSO on a suite of benchmark functions. However, it does not imply that PPSO is a local or 
global search algorithm even the condition of stability is met. Further research is thus 
required to improve the search capability. 
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