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1. Introduction 

This chapter describes the development of a humanoid robotic language and the creation of 
a virtual reality system for the simulation of humanoid robots. In this chapter we propose a 
description language for specifying motions for humanoid robots and for allowing 
humanoid robots to acquire motor skills. Locomotion greatly increases our ability to interact 
with our environments, which in turn increases our mental abilities. This principle also 
applies to humanoid robots. However, there are great difficulties to specify humanoid 
motions and to represent motor skills, which in most cases require four-dimensional space 
representations. We propose a representation framework that includes the following 
attributes: motion description layers, egocentric reference system, progressive quantized 
refinement, and automatic constraint satisfaction. We also outline strategies for acquiring 
new motor skills by learning from trial and error, macro approach, and programming.  

Then, we use our new humanoid motion description language and framework as the base to 
build a virtual reality system to simulate humanoid robots. Currently most humanoid 
simulation systems require manual manipulations of body parts or require capturing 
movements enacted by a person. We aim to describe humanoid motions using our high-
level humanoid motion description language. We defined new motion primitives and new 
syntax that allows programmers to easily describe complex humanoid motions. To make the 
motion specification possible, we defined a humanoid framework that models humanoid 
robots by specifying their capacities and limitations. Furthermore, we developed a 
simulation system that can execute the humanoid motion description language and can 
automatically handle conflicting motion statements and can ensure that the described 
motions are within the limitations of humanoid robots. Our simulation results show that the 
proposed system has great future potentials. 

The remaining of this chapter is organized as follows. Section 2 outlines the related research 
on high-level language approaches to describe and to simulate humanoid motions. Section 3 
describes the motives for defining a humanoid motion description framework, which 
includes methods for specifying humanoid motions and methods for acquiring new motor 
skills. Section 4 outlines the methods for specifying humanoid motions, which include the 
concepts of motion description layers, egocentric reference system, progressive quantized 
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refinement, and automatic constraint satisfaction. Section 5 outlines two methods for 
acquiring new motor skills: learning from trial and error and learning by macro approach. 
Section 6 describes the motives for developing a system to simulate humanoid robots in 
virtual reality environments. Section 7 defines a new humanoid motion description 
language called Cybele. It focuses on the syntactic aspects of the language, while Section 8 
focuses on the semantic aspects of the language and defines the framework on which the 
language can be interpreted. Section 9 provides the implementation details of the humanoid 
simulation system. And, Section 10 gives the conclusion and outlines the future research. 

2. Related Research 

Research in describing humanoid motions begins with the works for describing human 
dances. Popular dance notation systems include Benesh (Causley, 1980), Labanotation 
(Hutchinson & Balanchine, 1987), and EW (Eshkol-Wachman, 2008). Benesh is the simplest 
one and is designed particularly for dance description. Labanotation is more comprehensive 
for describing human motion in general. EW can be applied on linkage systems other than 
human body. Computers are now used to aid the interpretation and visualization of these 
notations (Ryman et al., 1984; Adamson, 1987; Calvert et al., 1993; Schiphorst, 1992). 
Researchers used Labanotation as a basis to represent human motion, proposed to extract 
key motion primitives, and proposed architectures for digital representation of human 
movements (Badler et al., 1979). Another approach uses natural language; such as “Improv” 
system used natural language to script human behaviour interacting in virtual 
environments (Perlin & Gikdberg, 1996). Motion sequences can be generated by system that 
employs human biomechanical logic (Badler et al., 1994). This section outlines related work 
on the high-level language approaches to humanoid simulation (Nozawa et al., 2004; 
Nishimura et al., 2005). Several systems will be discussed, which including, Poser Python, 
VRML (Virtual Reality Modelling Language), Improv, STEP, and others. It focuses on high-
level language approaches to humanoid simulation and omits other general concurrent 
languages such as OCCAM.  

Poser Python (Python, 2008; Schrand, 2001) is an implementation of the Python interpreter 
that includes many commands that have been extended to recognize and execute commands 
not included in the standard Python language. Poser Python script language is a language 
combination that uses syntax and basic logic of Python and special commands tailored 
especially for Poser scene, manipulate them, and finally send them back to Poser. The 
language-controlled animation is a significant advantage of Poser-Python system. 

VRML (Virtual Reality Modelling Language) is a scene-description language used widely on 
the internet. VRML uses TimeSensor to initiate and synchronize all the motions in the scene. 
It is possible that asynchronously generated events arrive at the identical time as one or 
more sensor-generated event. In such cases, all events generated are part of the same initial 
event cascade, and each event has the same timestamp. Based on this mechanism, VRML is 
quite suitable to visual presentations with user interactions. However, there is no direct way 
to describe complex motions with time overlapping. 

Improv (Perlin & Goldberg 1996) is a system for the creation of real-time behaviour based 
on animated actors. Improv consists of two subsystems. The first subsystem is an animation 
engine that uses procedural techniques to enable authors to create layered, continuous, non-
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repetitive motions and smooth transitions between them. The system uses an English-style 
scripting language so that creative experts who are not primarily programmers can create 
powerful interactive applications. 

STEP (Huang et al., 2002) is a distributed logic program being used to define and control the 
hand gestures of embodied agents in virtual worlds. It works as an interface between the 
constructs of logic programming and the humanoid model defined in VRML. Using the 
STEP framework, different gesture dictionaries can be defined, and variants of a hand 
gesture, according to dynamically changing factors, can be generated on the fly. STEP also 
has two kinds of control logic definitions. One is parallel and the other is sequential. But 
different kinds of program blocks cannot be mixed together and must be executed one by 
one. 

There are also other systems for animations such as Alice (Conway, 1997), Maya, Lightwave, 
and 3D Studio Max. They each have a beautiful user interface and have easy drag and drop 
functionality for the animation design and customization. However, most of them lack 
underlining programming languages that programmer can program to control various 
motions. Meanwhile, current motion description languages do not have motion 
synchronization at the language level. The details of the motion control make the simulation 
difficult to implement and debug at the language level. This also makes the motions non-
reusable. 

 
3. Humanoid Motion Description Framework 

Locomotion greatly increases our ability to interact with our environments, which in turn 
increases our mental abilities. The principle that mental abilities can be improved by 
interacting with the environments is the basis for MIT Cog’s project (Brooks et al., 1998; 
Arsenio, 2004). However, Cog robot currently lacks locomotion. On the other hand, Honda 
humanoid robots (Honda, 2008) possess the state of the art locomotion system, but lack the 
autonomy and the learning abilities. We envision the union of these two types of robots, 
such as Albert HUBO (Oh et al., 2006), as the basis of our investigation.  

The humanoid robots of the near future will possess the abilities for locomotion, autonomy, 
and learning (Brooks, 2002; Arsenic, 2004; Burghart et al., 2005; Yokoi, 2007). Much research 
remains to be done on such autonomous humanoid robots (Brooks 1996; Scassellati 2001). In 
this chapter, we will focus on issues of developing a common framework for both specifying 
motions and for autonomously acquiring motor skills for such robots.  

A unified framework to address both specifying motions and acquiring motor skills will 
facilitate the developments of autonomous humanoid robots. Neural Network, for example, 
may be a good medium for capturing and classifying motor skills. However, the resultant 
representation in terms of matrix of weights of connectivity is difficult to be interpreted and 
modified. Thus, in this investigation we choose to use symbolic approach by developing a 
description language.  

Our humanoid motion description language, like any other languages, consists of syntactic 
and semantic aspects. Syntactic aspect specifies rules for combining words while semantic 
aspect specifies structures for interpretation and such provides the meaning. We propose 
different set of words and rules for different level of abstraction, such as using joint angles at 
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the low level and using “walk” and “jump” at the high level of abstraction. The 
interpretation and the meaning are based on our framework that includes egocentric 
reference system, progressive quantized refinement, and automatic constraint satisfaction. 

Our language and our framework (Choi & Chen, 2002) are unique in many ways comparing 
to other related research (Kanehiro et al. 2004). Our reference system simplifies specification 
of locomotion and allows motions to be described by uniform and deterministic expressions. 
Our concept of Progressive Quantized Refinement allows a humanoid robot to interact with 
its environments using different level of granularity. Our Automatic Constraint Satisfaction 
system reduces the complexity of specifying humanoid motions. Moreover, our underlining 
model using non-deterministic finite state machines allows humanoid robots to learn new 
motor skills.  

 
4. Specifying Humanoid Motions 

The proposed language and framework for specifying humanoid motions includes the 
following attributes: motion description layers, egocentric reference system, progressive 
quantized refinement, and automatic constraint satisfaction, each of which is described as 
follows. 

4.1 Motion Description Layers 

Table 1 outlines the concept of motion description layers. Each description layer is a level of 
abstraction. Joint Angle layer describes a motion in terms of changes in the joint angles, such 
as knee joint rotate to 30 degree or elbow joint rotate to 45 degree. This layer provides detail 
and precise information that can readily be used to control various actuators of a robot. Path 
layer describes a motion in terms of a connected line that is specified by points. A simple 
path can be specified using two points, such as Hand (v1) that moves hand from current 
position to point v1. More points provide more detail specification of the path; for example, 
Foot (v1, v2) denoted that foot moves from current position through v1 to v2.  

Motion primitive (Nakaoka et al., 2004) layer describes a motion in terms of a given set of 
essential motions that can be combined to form more complex motions. The set of essential 
motions must first be identified. It must be complete so that we can describe all possible 
motions of a humanoid robot. We must also provide a set of rules for specifying how one 
motion primitive can be combined with another. In effect, we are creating a formal language 
and insuring that the language is both complete and consistent. This is an axiomatic 
approach to describe humanoid motions.  

Motion sequence layer describes a sequence of motions in terms of motion blocks such as 
walk, run, jump, and turn. Using this high-level description, we can describe a complex task 
 

Description Layer Example 

Motion Sequence Walk, Run, Jump, Turn 

Motion Primitive Raise, Lower, Forward, Backward 

Path Hand (v1), Foot (v1, v2) 

Joint Angle Knee Joint 30, Elbow Joint 45 

Table 1. Motion Description Layers 
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Fig. 1. Egocentric Space Reference System 

 
with ease without having to specify the angle of each joint. However, this high-level 
description is not as precise as low-level description and thus leaves must room for 
interpretation that is addressed in this investigation by using Progress Quantized 
Refinement discuss in Section 4.3.  

4.2 Egocentric Reference System 

We proposed an egocentric reference system for specifying space-time in discrete finite four-
dimensional hyperspace. Each point in our reference system is represented by a quintuple 
(x, y, z, t). Each of the variables, x, y, z, and t, is an integer ranging from –128 to +127. The 
origin of the reference system locates at (0, 0, 0, 0). In short, each point in our reference 
system can be stored using four bytes or 32 bits.  
 
Our reference system is egocentric in that the origin of space is located at the center of the 
torso of a humanoid robot, as denoted in Figure 1. The origin of time is located at the 
beginning of a state transition.  

In our system, a motion is defined by a sequence of state transitions. Each state transition 
begins at time 0 and must be completed in 127 time units or less. Negative time units 
represent the time units used during the last state transition. Each state transition begins 
with the origin of space located at the center of the torso. In short, a state transition begins at 
(0, 0, 0, 0). All changes during a state transition are specified within the egocentric reference 
system.  
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Translation between the egocentric reference system and its world reference system is done 
at the end of each state transition. For example, beginning at a standing position as shown in  

Fig. 2. Concept of Progressive Quantized Refinement 

 
Figure 1, the robot moved three units forward in positive y-axis direction and completed at 
a standing position, and the whole transition takes 9 units of time. Now, the center of the 
torso is located at (0, 3, 0, 9). Assuming at the beginning of the transition R(0, 0, 0, 0) in the 
robot’s egocentric reference system is located at W(3, 2, 4, 2) in its world reference system. 
Also assume that y-axes of both systems are parallel and have the same direction, and each 
unit in the egocentric reference system represents 2 units in the world reference system. To 
reset R(0, 3, 0, 9) back to R(0, 0, 0, 0), we makes R(0, 0, 0, 0) now to corresponding to W(3, 
2+3*2, 4, 2+9*2).  

 
4.3 Progressive Quantized Refinement   

We proposed a concept called Progressive Quantized Refinement for a humanoid robot to 
interact with its environments using different level of granularity. Figure 2 illustrates the 
concept; on the left picture a 9x9 unit squares is used to display a room while on the right 
picture the same sized 9x9 unit squares is used to display part of a table. For a robot to put 
an object on the table, the robot can first use the left picture to move toward the table. Then, 
it can use the right picture to put the object on the table.  

At different states a robot can change its unit scale factor as needed. For example, a unit 
length in the robot’s egocentric space reference system can be scaled to 1 cm, 1 inch, or 1 
meter in its world reference system. A unit time can be scaled, for example, to 1 second, 1 
minute, or 5 minutes. 
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4.4 Automatic Constraint Satisfaction 

We proposed to use Automatic Constraint Satisfaction to reduce the complexity of 
specifying humanoid motions. There are many implicit requirements for locomotion, such 
as maintaining balance and structural integrity. Automatic constraint satisfaction system 
will provide additional changes to meet the implicit requirements.  
 
A system for providing automatic constraint satisfaction for locomotion is very complex and 
much research is being done on areas such as motion planning and constraint satisfaction. 
For example, we can simply specify that the robot must move its right hand from current 
position (3, 6, 2, 0) to new position (3, 50, 2, 6). The simpler the specification, in most cases, 
requires the more complex constraint satisfaction. In our example, the hand must reach the 
new position using 6 units of time, so that speeds for various actuators must be adjusted to 
meet this requirement. If the hand cannot reach the new position by simply raising it and 
reaching out, then the robot must move the whole body toward the new position.  

5. Acquiring New Motor Skills 

The ability for acquiring new motor skills is essential for mental developments. The trivial 
approach is to simply program a humanoid robot for new required motor skills (Ude et al., 
2004), which can easily be done by an experienced programmer using our proposed 
language and framework. Thus, in the following we will focus on strategies for acquiring 
motor skills through learning from trial and error and learning by macro approach.  

Learning motor skills has not yet been a central focus of Machine Learning researchers. 
Thus, much research remains to be done on automatic acquiring new motor skills. We 
briefly outline strategies for creating such a system, which in part is based on the author’s 
work on automata for learning sequential tasks (Choi, 1998; 2003).  

5.1 Learning from Trial and Error 

One way for acquiring new motor skills is by trial and error. This approach requires first 
identifying an objective and then selecting actions or motions to achieve the objective. In 
particularly, using our proposed framework, identifying an objective can be described as 
identifying a goal state, while selecting actions or motions can be described as selecting a 
sequence of transitions from the current state to the goal state.  

Using our proposed framework, the underlining model is a non-deterministic finite state 
machine (Choi 2002). From one state, there may be several transitions to follow to other 
states. Choosing one transitions or the other is why we call this a trial and error approach 
and is why it is non-deterministic. To achieve the objective is to find a sequence of 
transitions from the current state to the goal state. As soon as a sequence of transitions is 
found, it can be stored for future use.   

5.2 Learning by Macro Approach 

Macro approach can be used in a supervised learning environment (Bentivegna & Atkeson, 
2001; Arsenic, 2004; Calinon et al. 2007). After a humanoid robot is repeatedly instructed to 
perform certain task, the robot can store the sequence of motions to associate with a name of 
the task. After which, the robot can be commanded to perform the sequence by simply 
specifying the name of the task. This is a simple record and play back approach.  
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A more sophisticated approach is provided by the author (Choi, 2002; 2003), in which a 
robot can build a non-deterministic finite state machine based on the repeated instructions 
to perform certain task. The resulting non-deterministic finite state machine can then be 
used for other purposes such as for learning from trial and error as discussed above.  

6. Virtual Reality Simulation of Humanoid Robots  

We developed a humanoid motion description language, called Cybele, based on the above 
proposed framework. Our development process in turn enhances the strength of our 
framework. We also developed a virtual reality system to simulate humanoid robots (Zhou 
& Choi, 2007). Virtual reality simulation of humanoids has been an important subject due to 
its wide range of applications such as motion picture production and robotics (Kanehiro et 
al., 2001). To achieve realistic motions, programmers currently must be highly experienced 
to define all control factors for the movements of individual body parts on each time 
instance. Since it is far too difficulty to control the detail moments of each individual body 
parts, currently motion capture systems are widely used to record motions enacted by a 
person and then to use the captured motions to animate humanoids (Riley & Atkeson 2000; 
Safonova et al., 2002; Nakaoka et al., 2003; Ude et al., 2004).  
We attempted a high-level and goal-oriented approach. As shown in Figure 3, there are two 
extremes on the approaches to humanoid simulations, the goal-oriented and the motion-
oriented. The goal-oriented approach specifies the objectives using high-level languages, 
that are easy to write, and that use Artificial Intelligent methods to generated detailed 
motions, but that are much more difficulty in terms of building the system. On the other 
hand, the motion-oriented approach can specify detail motion using degree of freedom 
(DOF) of each join. However, it is more complicated to write such specifications and 
programmers need to provide all the details, but such a system is earlier to be built.  

In this chapter we present a new high-level goal-oriented language named Cybele. The 
language is designed for humanoid motion description (Choi & Chen, 2002) and is 
independent of virtual reality simulation systems. Our new language provides simple 
syntax for expressing parallel and sequential processing as well as the combination of these 
two. We also introduce syntax for expressing motions. In particular, to solve the motion 
mixing problem in parallel and complex blocks, we present an approach to synthesizing 
motions with combination of partial states. We define key poses as states or partial states 
and create primitives between two key states. We also extract a relatively small set of 
parameterized motions from infinite complex motion sequences and make them reusable as 
primitive motions. Our simulator interprets the programs, breaks down motions into 
primitives with time, scope, and priority. Final motion sequences are then generated using a 
synchronization approach.  

To achieve constraints satisfaction, we define the scope and priority for each joint in the 
humanoid. This system checks constraints on the joints affected by the motion and 
determines which motion is in conflict with some others. In addition, to create a multi-
platform system, we implement a prototype system with two parts following the same 
paradigm as the Java virtual machine. The first part interprets the program and generates 
motion sequences. The second part translates motion primitives to interface with systems 
such as virtual reality simulation systems, animation systems, or robotic systems (Kanayama 
& Wu, 2000; Hirai et al., 1998; Sony, 2008).  
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Fig. 3. Two extremes of motion languages 

 
7. Humanoid Robotic Language Specification 

Our new humanoid motion description language is called Cybele (Choi & Chen 2002). The 
features of Cybele language are object-oriented and scripting motion description language. 
Besides the conventional variable declaration, functions, and control flow, we create a new 
syntax for describing parallel actions. We also create a new complex motion statement and 
expand the use of the conventional motion control concepts using new parallel blocks. 

7.1 Motion Statements 

To describe humanoid motions, we abstracted a collection of predefined motions for the 
whole body and body parts. We decompose the humanoid in a standard way as specified in 
humanoid animation specification (Harris et al., 1999). Figure 4 shows the BNF of motion 
statements. In general, a motion statement is composed of a main part, parameter part, 
followed by a colon ‘:’, a description part, and ends with a semicolon. A main part includes 
the object name and the motion name. An object name can be optional. If there is no object 
name, the system will take the current default object. 

A parameter part takes motion parameters that provide additional detail to specify the 
motion. Each expression is separated by comma ‘,’. The description part can be provided 
right after the motion function or at the end of a block. It provides a set of attributes to 
change the scale of the motion. We currently define two attributes namely starttime and 
speed. We can adapt approaches (Pollard, 1999) to retarget and change the scale of motion.  

7.2 Specification of Complex Motions 

Complex motions can be specified as combinations of sequential and/or parallel sub-
motions. Sequential motions will execute one after another. Parallel motions will execute in 
parallel. The start time for parallel motions may not be the same and thus producing 
partially overlapping motions.  

For ease of specification, we defined our language such that programmers can write 
overlapping sequential and/or parallel motions in compounded program blocks. Each block 
can be sub-block of other blocks. A compound block can be sequential, parallel, or mixed of 
the two.  
 
<motion_statement> 

::= <object_serial_option.><motion>‘(’<param_list>‘)’<description_part>‘;’ 

<object_serial_option> 

::= <object> ‘.’| <object> ‘.’ <object_serial_option> | NULL 

<param_list> 

::= <parameter>| <param_list> ‘,’ <parameter> 
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<description_part> 

::= ‘:’ <description_list>|NULL 

<description_list> 

  ::= <attribute>|<description_list>‘,’<attribute> 

<attribute> 

 ::= | speed ‘=’ <float>| starttime ‘=’ <float>    //unit second 

Fig. 4. Motion statement BNF 

 

[  // begin parallel block 

  statement1;   // statement1 starts from time 0 

  statement2; // statement2 starts from time 0 

  statement3 : starttime = t1;  // statement3 starts from time t1 

]  // parallel block end 

Fig. 5. Parallel block 

 
{  // begin sequential block 

  statement1; // statement1 starts from time t0 (duration=d1) 

  statement2; // statement2 starts from (t0+d1) (duration=d2) 

}  // total duration is d1+d2 

Fig. 6. Sequential block 

 
We define the syntax of parallel block as statements enclosed within “[ ]”. Figure 5 shows an 
example. All statements inside parallel block are considered being issued concurrently. They 
all start at the same time unless otherwise specified by the “starttime” parameter. In Figure 5 
for example, the syntax “statement3 : starttime = t1” specified that statement 3 starts t1 units 
of time later than the other two statements.  
 
We define the syntax of sequential block as statements enclosed within “{ }”. Figure 6 shows 
an example, in which statement2 starts after statement1 completed. A delay can be used 
such that statement 2 does not need to starts right after the completion of statement 1.  

Sequential and parallel blocks can be combined or embedded with each other to describe 
complex motion logic. Figure 7 shows an example of the structure. The code in Figure 7 
illustrates the time specification as shown in Figure 8.  

7.3 Sample Program 

We show a sample Cybele program in Figure 9. In this program, Jack is the actor. He walks 
backward two steps. Then, he nods his head, while at the same time, he walks forward two 
steps. Then, he makes a right turn, a left turn, step right once, and step left once in a 
sequential way.  
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8. Humanoid Motion Framework in Cybele 

To specify humanoid motions, we need to define humanoid framework. Meanwhile, 
complex motions require checking the constraints and the limitations of humanoid robots. 
We use H-Anim (H-Anim 2008), an international standard, as our humanoid model. We 
adopt the hierarchy tree structure of humanoids (Lee & Shin 1999), use degree of freedom 
(DOF) (Badler et al., 1993) to describe each joint, define states of humanoid, assign priorities 
to motions, and check constraints and limitations.  

 
[ 
    {  statement1; statement2;  }     
      // a sequence begin from time 0 

    statement3;    // statement3 begins at time 0 

    [   {  statement4; statement5; }   

         // a sequence begin from time 1 

       statement6;   // statement6 begins at time 1  

    ] : starttime = 1 
] 

Fig. 7. Complex block 

 

 
Fig. 8. Complex block time slot 

8.1 Degree of Freedom and Joints 

In humanoid robots, joints connect segments through attachment frames that are called 
sites. Each segment can have several sites. Joints connect sites on different segments within 
the same figure. Each joint can have at most six degree of freedoms (DOF), including three 
for rotational and three for translational. In our system, figures have only three rotational 
DOF, which is defined by the corresponding angle around the axis. Some constraints 
include rotation axis, joint angle, and upper and lower limits of the joint angle.  
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{  

      Jack.backwalk(2) : speed = 1; 

      [   

        Jack.nod(1); 

        Jack.walk(2) : speed= 1; 

       ] 

       Jack.turnright(); 

       Jack.turnleft(); 

       Jack.sidewalkright(1); 

       Jack.sidewalkleft(1);  

} 

Fig. 9. Sample program 

 

 
Fig. 10. Scope and priority 

 
8.2 States of Humanoid 

States are very important aspects of the humanoid model. Static and recognizable states 
such as stand, sit, crawl, prone, or supine is defined by the relative positioning of each body 
part, joint and DOF in our system. Programmers can create their customized states by 
creating new states, which can be a set of DOF for each affected joint. The same state can be 
applied on different humanoid models, which makes different humanoids move into certain 
posture. 

We describe a partial state of a humanoid as a body part or a set of body parts associated 
with certain predefined DOF. Partial states are assigned scope and priority (Figure 10). 
Scope defines the subset of joints that the motion affected. Priority defines the strength and 
relative importance of sub-motion with respect to all other motions that are in current or 
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different blocks. The scope and priority allows us to combine partial states to form whole 
body states or postures, and allows new motions to be generated and synchronized.   

8.3 State Transition Approach 

After we defined states of humanoid, we can define transitions between two states. 
Transitions between states (Badler et al, 1994) imply movement from one posture to a new 
posture. Some transitions are possible and some are not, based on the limitation of 
humanoid robots. Certain transitions are selected and defined as primitive motions. Some of 
the motion primitives we defined are walk, run, jump, and turn. Our system takes the 
motion primitives and automatically generates the complete motion sequence from the 
initial state to the final state. 
 

Weight Descriptions 

1=ω  This weighted motion take highest priority over other motions within the 
same scope. All other existent motions within the scope are transitioned to 
finish then this weighted motion starts.   

10 << ω  This weighted motion is combined with other weighted motions within the 
same scope, based on their relative weights.  

0=ω  This weighted motion cannot be combined with any other motion within the 
same scope. The motion is executed after existing motions finished. 

Table 2. Combination of Motions Based on Weights   

 
8.4 Motion Combination with Constraints Checking 

When two motions intersect with each other in terms of time and/or scope, we need to 
check the constraints imposed by the limitations of humanoid robots. For example, we 
cannot require an arm to move forward at the same time require the arm to move backward. 
When motions are organized in a sequential way, one after anther, and we do not need to 
check this type of conflicts.  

We automated the process of combining parallel motions and resolving possible conflicts 
between motions. The process uses the predefined scope and priority of each motion. Table 
2 shows some examples of priorities that is described here as weights. The weight ranges 
from 0 to 1 and 1 being the highest. For example, a motion with weight 0 cannot be 
combined with any other motion within the same scope, while a motion with weight 1 will 
be executed prior to any other motion within its scope. If two motions have the same 
predefined weight, then the relative position in the program block is used to determine their 
priorities. In this case, the first statement has higher priority than the second one. To reduce 
the complexity of assigned detailed weight, we predefined weight categories and grouped 
motions into the categories.  

8.5 Three Dimensions of Complex Humanoid Motions 

We defined three dimensions for complex humanoid motions. There are time, scope, and 
level. Figure 11 shows an example of their relationships. The time axis shows the beginning 
and ending time for each motion. The scope axis indicates which joints or body parts are 
affected by the motion. The level axis shows the hierarchical structure among various 
motions nested within complex sequential and parallel blocks. The level is used during 
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motion combination process, in which lowest level motions are created first then process to 
the highest level.  

9. Cybele Humanoid Simulation System 

We developed a virtual reality simulator for humanoid robots based on our new motion 
description language and humanoid framework. The simulation system interprets the 
motions specified by the language and checks the constraints based on the humanoid 
framework. The system is designed to interact with user inputs and control humanoid 
robots in real time.  

 
Fig. 11. Three Dimensions of Humanoid Motions 
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Fig. 12. Humanoid Simulation System Overview 

Figure 12 shows an overview of our humanoid simulation system. The system first gets the 
Cybele program from some consoles or from other interfacing systems. It interprets the 
program by analyzing various syntax and structures. Then the language interpreter module 
passes the results to the motion generation module, which creates motion sequences. In this 
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module, all instructions will be broken down into primitives and tagged with level and 
block information. Every primitive is generated based on parameters and attributes such as 
duration, speed, and so on. It performs the following functions: 

1. Sub-motion generation. The interpreter checks the library to find the proper primitive 
sequences. 

2. Time schedule. A time scheduler schedules the duration for each sub-motion. 
 

 
Fig. 13. Humanoid Dancing in Virtual Environment 

 
After all the primitives are generated, the motion sequences (labelled S’s in the figure) are 
transferred to the interface. The interface has two functions. The first function is to transmit 
the elementary motion sequences to various real world systems, which consist of 
Python/Poser system, Virtual Reality Simulation system, and Robot system (as shown in 
Figure 12).  

The second function of the interface module is to collect the feedbacks and other system 
parameters from the real world system. These feedbacks are used be the language system to 
adapt to the current constraints imposed be the environment.  

There are two types of constraints in our system. One is an internal rules constraint which is 
defined by the system and cannot be changed after the environment is created. The other is 
a rules constraint created by programmers after the environment is created and that can be 
changed by programmers. All these constraints are resolved by the Constraints Solver 
module (shown on the right side of Figure 12).  

As can be seen from the system overview (Figure 12), this system is quite complex. 
Currently, we have completed the implementation and testing of the highlighted modules. 
Our test results show that such a system is viable. One of our tests was to describe dance 
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movements using Cybele. Figure 13 shows one of our simulations of a humanoid dancing in 
a virtual environment.  

10. Conclusion and Future Research 

In this chapter we described a description language and framework for specifying 
humanoid motions and for allowing humanoid robots to learn motor skills through 
interacting with the environments. The language and framework are unique and 
encompassing many areas of research interesting to researchers in epigenetic robots. The 
framework can also serve as an outline of strategies for future research programs in 
humanoid motion description and motor skill acquisition.  

Based on our motion description framework, we developed a new humanoid motion 
description language called Cybele. New features of the language include complex parallel 
and sequential blocks, new syntax for motion statements, and built-in constraints for motion 
combination. The motion description links tightly to the underlying models. We defined a 
humanoid motion framework to make specification of humanoid motion possible. Then we 
created a simulation system to implement the framework and to execute the motion 
descriptions. For our system, we also created a solution to generate complex parallel and 
sequential motion sequences based on the limitations and constraints of the humanoid body. 
To solve the motion mixing problem in complex blocks, we presented an approach for 
synthesizing motions with partial state combinations. In the solution, scope and priority are 
defined, and primitives are combined to produce final motions with constraints checking. 
Test results show that Cybele is an effective motion description language, and also show 
that such virtual reality simulation of humanoid robots is viable.  

The proposed simulation system is quite complex, which includes using artificial intelligent 
techniques to automatically generate detailed motion sequences based on given goal 
statements. Further work is required to develop such AI motion generation system and to 
further develop AI methods for solving various constraints imposed by the limitation of the 
humanoid robots and by the environments. Although our system is designed to interact 
directly with humanoid robots, we have yet to test the system using real robot. Although 
our virtual simulation shows such system is feasible, a real humanoid robot will encounter 
much more constraints when interacting directly with real human environments including 
interacting with human. Thus, future research would also focus on multi-agent systems in 
which robots, human, and their environments interacting with each others in real time.  

For humanoid robots to be able to effectively function in real environments and interacting 
with people, they must be able to adapt and able to learn. Most researchers realize this 
requirement and many are working on various learning methods for humanoids. However, 
much research remains to be done for humanoid robots to learn motor skills. Although this 
chapter outlined some strategies including, creating a motion description language, using 
non-deterministic finite state machine to model sequence of motion states, and using 
automatic constraint satisfaction to generation motions plausible for the underlying 
humanoid bodies, much work remains to be done in this exciting area of research.  
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