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1. Introduction     

The research on underwater systems has gained an immense interest during the last decades 

with applications taken place in many fields such as exploration, investigation, repair, 

construction, etc. Hereby, control of underwater systems has emerged as a growing field of 

research. Underwater vehicles, in fact, accounted for 21% of the total number of service 

robots by the end of 2004, and are the most expensive class of service robots (UNECE/IFR, 

2005). Typically, underwater vehicles can be divided into three underwater systems, 

namely, the manned submersibles, remotely operated vehicles (ROV) and autonomous 

underwater vehicles (AUV). ROVs and AUVs are mostly utilized in the oil and gas 

industries, and for scientific and military applications. AUVs, especially are of great 

importance due to their ability to navigate in abyssal zones without necessitating a tether 

that limits the range and maneuverability of the vehicle. However, their autonomy property 

directly affects the design of the control system. This requires advanced controllers and 

specific control schemes for given tasks. 

Almost all AUVs are six degrees-of-freedom (DOF) systems, and various types of actuator 
configurations are available in the industry for the vehicles ranging from fully-actuated 
vehicles to underactuated ones. The vehicle of interest here falls into the class of 
underactuated AUVs. Any mechanical system having fewer actuators than its degrees of 
freedom is defined as an underactuated system. Some examples of underactuated systems 
include manipulators; (Arai et al., 1998), (Oriolo & Nakamura, 1991), (Yabuno et al., 2003), 
marine vehicles; (Reyhanoglu, 1997), (Pettersen & Egeland, 1996), space robots; (Tsiotras & 
Luo, 1997), and the examples given in (Fantoni & Lozano, 2002). 
Controlling all of the DOF of underactuated mechanical systems is an arduous task 
compared to the fully actuated systems since the mathematical analysis of the system 
renders it difficult. Determining whether an underactuated system is controllable is one of 
these difficulties encountered. Control synthesis is also another challenge in this field and is 
still accepted as an open problem. The techniques used for fully actuated systems cannot be 
used directly for underactuated systems. However, there are some potential benefits over 
fully actuated systems depending on the efficiency of control and the task. In case of 
actuator failures, a fully actuated mechanical system falls into the class of underactuated 
systems and might still be controlled if a successful control scheme can be designed.  Besides 
that, reduction of the weight and cost, and the increase of reliability can be considered as O
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advantages of underactuated systems. On the other hand, underactuation may take place by 
design as in helicopters, ships, underwater vehicles, satellites, hovercrafts, etc. 
Control problem of underactuated systems has been generally studied as a control problem 
of a class of nonholonomic systems, although the relation between underactuated systems 
and nonholonomic systems has not been clear yet (Kolmanovsky & McClamroch, 1995). 
Nonholonomic systems are known as the mechanical systems of nonholonomic constraints 
which cannot be integrated to obtain the equations describing the position of the system. 
Control of nonholonomic systems poses a difficult problem requiring a special control 
approach depending on the nature of the mechanical system, and the modelling of 
nonholonomic systems as state equations is another difficulty (Sampei et al., 1999). 
In spite of having six effective DOF, the vehicle has one controllable DOF since it has just 

one actuator (the propeller). The vehicle does not have any other control element save for 

the thrust provided by the propeller. The propeller produces the main thrust. Consequently, 

the reaction of the body to the load torque of the propeller produces a moment with respect 

to its rotational axis. Thus, the vehicle is considered underactuated because it has fewer 

actuators than the degrees of freedom of the system. The vehicle is a nonlinear system: all 

equations of motion of the system include coupled terms. Some equations of the motion of 

the system appear as second-order nonholonomic constraints, and they cannot be integrated 

to obtain position. Therefore, such underwater vehicle is pertained as a nonholonomic 

system. 

In control of underactuated autonomous underwater vehicles (UUVs), optimal control 

approach has not been widely applied. Jeon et al. (Jeon  et al., 2003) proposed an optimal 

linear quadratic controller for a 6-DOF underwater vehicle with four thrusters to distribute 

the thrust optimally. Additionally, some motion planning approaches were discussed in 

(Bøerhaug et al., 2006) and (Bullo & Lynch, 2001). 

Fukushima (Fukushima, 2006) proposes a novel control method of solving optimal control 

problems including nonlinear systems. In this study, this control method is used. His 

method proposes a wide range of applicability and simplicity. It can be applied to both 

linear systems and nonlinear systems including the systems to be controlled in real-time. 

Although this method has similarities with the classical optimal control theory, it can be 

seen as a radical contribution in the control engineering field, rather than the extension of 

the existing optimal control theory. 

Fukushima's method is fundamentally based on the employment of the energy generation, 

storage and dissipation of the controlled system. The total system energy stored in the 

system boundary is the sum of each energy. The criteria function consists of the control-

performance, which is determined for a given task, the input energy, and the energy 

equation. First derivatives of the energy equation and the performance measures constitute 

a scalar function. The minimization of the scalar function yields the optimal control law. The 

necessary condition for the minimization is the Euler equation. The use of energy equation 

in the criteria function enables the optimal control law to have efficient dissipation 

characteristics. Obtaining the control law is a simple process and is not much 

mathematically involved. As one of the important properties of his control method, the 

control-performance can be of any form. There is no restriction in determining it, whereas 

the classical optimal control theory works well with performance measures of quadratic 

form.  
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2. Mathematical modelling of the UUV 

The mathematical model of the UUV is derived in this section. The kinematics and dynamics 
of the UUV are studied assuming it as a rigid body. The kinematic equations, dynamic 
equations for the rigid body, and fluid-body dynamics are needed in the discussion of the 
UUV's motion. Combining those equations, the nonlinear model of the UUV as 6-DOF 
equations of motion is obtained. In this study, derivation of the mathematical model is not 
discussed in full detail. The reader is referred to (Meirovitch, 1970) and (Fossen, 1994) for a 
detailed treatment. 

2.1 Description of the system 

To obtain the mathematical model, the specifications and the assumptions which enable the 
formulation of kinematic and dynamic equations are needed. The simple model of the UUV 
holds the essential dynamical properties. A hull having a scalene ellipsoidal shape is shown 
in Fig.1. As illustrated in Fig.1, the UUV has a flat type of hull. For simulations, the UUV is 
assumed as neutrally buoyant and completely rigid. The fluid, which the vehicle interacts 
with, is considered as an ideal fluid (unbounded, irrotational, inviscid, and incompressible) 
and is chosen as sea water in simulations. Additionally, added mass related contributions in 
the equations of motion are neglected.  
 

 

Fig. 1. Inertial and body-fixed coordinate systems and motion representations 

2.2 Nonlinear model representation of the dynamic equations of motion 

The motion of the UUV in space needs to be defined with respect to some certain coordinate 

frames. One of the coordinate frames can be chosen to be fixed to the vehicle and is called 

the body-fixed reference frame.  The advantage of defining the motion of the UUV in terms 

of the linear and angular motion components about the orthogonal body axes leads to define 

the body-fixed frame, xyz. The body-fixed frame is chosen so as to coincide with the center 

of buoyancy (CB), which is the volumetric center of the fluid displaced. It implies that the 

CB vector is zero vector, rb= [xb,yb,zb]T=[0,0,0]T. Another orthogonal coordinate system is 

defined to describe the motion of the moving body-fixed frame relative to an inertial frame. 
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The earth-fixed reference frame, x0y0z0, is assumed as fixed in Earth and accepted as inertial. 

These right-handed frames are shown in Fig.1. 

The rotation of a rigid-body can be represented in many ways. The well-known and mostly 
used representation is Euler angles. This representation is practical, popular and has 
intuitive physical meaning. However, Euler angle parameterization causes some 
singularities (Ang & Tourassis, 1987) and inaccuracies in calculations, e.g. discontinuous 
changes may occur in the attitude when the rotation is changed incrementally. A 
singularity-free and well-suited quaternion parameterization is preferred for accurate 
calculations. 
The transformation between the body-fixed frame and the earth-fixed frame is given by 
(Fossen, 1994): 

 $η = E(η )νE E ,  (1) 

where E is the transformation matrix and ηE=[x,y,z,ε1, ε2, ε3,η]T. Here, e=[ε1, ε2, ε3,η] is a unit 

quaternion vector. The unit quaternion vector represents the rotation with respect to an axis 

of rotation, ε=[ε1, ε2, ε3,η] T, and a rotation of angle, η, about that axis. The linear and angular 

velocities of the vehicle are described as ν = [u,v,w,p,q,r]T. 

The dynamic equations of motion for the UUV can be written as follows (Fossen, 1994): 

 Mν C(ν)ν D(ν)ν τ+ + =$ ,  (2) 

where ν$  is the time derivative of the velocity vector, and τ is propulsion forces and 

moments vector. The simplified inertia matrix, M, is written as 

 { }M = diag m,m,m,I ,I ,Ix y z ,  (3) 

where m is the mass of the UUV, and Ix, Iy, and Iz are the moments of inertia. Coriolis and 

centripetal matrix, C(ν), is given as 

 

0 0 0 0 mw -mv

0 0 0 -mw 0 mu

0 0 0 mv -mu 0
C(ν) = 0 mw -mv 0 I r -I qz y

-mw 0 mu -I r 0 I pz x
mv -mu 0 I q -I p 0y x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  (4) 

D(ν) is the damping matrix which includes only terms of quadratic drag: 

 { }D(ν) = -diag X u , Y v , Z w , K p , M q , N ru u v v w w r rp p q q
,  (5) 

where, -Xuu is the coefficient of the drag which the vehicle experience due to the motion 

along the x-axis, and -Nrr is the coefficient of the hydrodynamic torque due to the rotational 

motion of the vehicle with respect to the z-axis. Other coefficients can be described similarly. 
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The effect of environmental disturbances such as waves and ocean currents are neglected in 
this study. As a result, following six differential equations describing the 6-DOF equations 
of motion in surge, sway, heave, roll, pitch, and yaw, respectively, are obtained: 

( )m u + q w -rv - X u u = Fuu x$  

( )m v + r u -pw - Y v v = 0vv$  

( )m w + p v-q u - Z w w = 0ww$  

( )I p+ - I - I qr - K p p = k Fx z y pp x1$  

( )zI q I - I rp - M q q = 0y x qq+$  

 ( )$I p+ I - I qr - K p p = k Fx z y pp x1 .  (6) 

The main thrust is denoted by Fx, thus, the propulsion forces and moments vector can be 

written as τ=[Fx,0,0,k1Fx,0,0]T, where k1 is a coefficient relating the ratio of the thrust to the 

rolling moment of the body. The load torque of the propeller causes the body to react with 

an equal torque and to rotate in opposite direction. The reaction torque is another control 

input to the system, but, obviously, it is dependent on the thrust. Since the mechanical 

model does not have control fins, (6) does not include any input for control surface forces 

and moments. In (6), except for the equations in surge and roll, four equations can be 

identified as second-order nonholonomic constraints which expose the non-integrable 

velocity relationships. These constraints imply that possible displacements of the body in 

each direction are not independent, but are mutually connected. 

3. Control method 

Fukushima proposed a control method of solving optimal control problems including 
nonlinear systems. Although, in Fukushima's method, there are similarities with the 
classical optimal control theory, it introduces a new optimal control approach which is 
fundamentally based on the employment of the energy generation, storage and dissipation 
of the controlled system. The total system energy stored in the system boundary is the sum 
of each energy. The rate of change of the instantaneous energy yields the net power flow of 
the dynamical system. Hence, the general power balance equation for a controlled system 
can be represented as follows: 

 
T T T T T

P=u q + v q - q  M(q)q - d  (q, q)q - e  (q, z)q = 0,$ $ $$ $ $ $ $   (7) 

where u is the input force vector, v is the input disturbance force vector, M(q) ∈ Rn×n is the 

symmetric positive-definite inertia matrix with n, the number of the DOF of the controlled 

system, d is combination of the damping force vector, and Coriolis and centrifugal force 
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vector, e is the potential force vector, z is the input disturbance displacement vector, and q is 

the generalized coordinates vector. The power equation of the system has dynamic 

characteristics of the controlled system. It is unique to the system and has an important role 

in the design of the optimal control system. 

In optimal control theory, it is aimed to obtain a control law which satisfies the given 
constraints and extremizes the performance measure. A performance measure is mostly a 
combination of some scalar functions. The functional below is the performance measure 
used in Fukushima's control method: 

 
T

J = (g(q, q, q) + r u q)dt′∫ $ $$ $ ,  (8) 

where g is the performance criterion (control performance) to be selected for the given 

control problem. Combination of these two terms is known as the performance measure for 

a general optimal control system. In (8), g might represent the linear combination of more 

than one performance criterion. The use of multiple performance criteria depends on the 

selection of performance measures for the control objective. In (8), the integrand of the last 

term represents the power delivered to actuators; here uT is the transpose of the input force 

vector, and r' is a weighting factor. 

According to the fundamental theorem of the calculus of variations (Elsgolc, 1961), the 
necessary condition for minimizing the performance measure is that the first variation of the 
functional must be zero. In Fukushima's method, the scalar function, L, is composed of the 
power equation (7) and the differential of the performance measure (8): 

 ′$ $ $$ $ $ $ $ $ $$ $T T T T T T
L=κ(u q + v q - q  M(q)q - d  (q, q)q - e  (q, z)q) + g(q, q, q) + r u q ,   (9) 

where κ is an undecided constant. The included power balance equation is zero because it 
satisfies the energy conservation law. As the performance measure is minimized by means 
of the calculus of variations, L can be also minimized. The Euler equation is a necessary 
condition for minimization. After applying the Euler equation, the optimal control law is 
obtained. 

4. Optimal control of the UUV 

In this section, application of the introduced control method is discussed. Before 
formulating the optimal control problem, the constraints, performance criterion and the 
criteria function is given. The application of the method to the control problem yields the 
optimal control law. 

4.1 Constraints 

In this section, the constraints on the state and control values are defined. Let t0 is the initial 
time and tf is the final time, then, the state constraints are given as: 

 

x (t )x (t ) x 000 0 i f
y (t ) = y ; y (t ) = 00 0 i 0 f

0zz (t ) z (t ) i0 0 0 f

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

,  (10) 
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where xi, yi, and zi are initial positions. There are no constraints imposed on attitude and 
velocities of the UUV. Control constraints are imposed on the physical systems to be 
controlled due to the limitations of actuators. Force or torque inputs are bounded by some 
upper limit. In control of the UUV, it is assumed that there is no constraint on control, since 
the aim of this study is to show the possibility of control of such a challenging mechanical 
system. However, the simulations are also done for considering the constraints on the 
thrust: 

 -T   F   Txc c≤ ≤ ,  (11) 

where Tc is the thrust value. 

4.2 Performance criterion 

As a performance criterion, the minimum distance between two points has chosen to 
transfer the system from a point to another. The optimal control will try to minimize this 
measure. For this performance, only position of the UUV is of interest. When missions of 
underwater vehicles are considered, mostly, the positioning of the underwater vehicle is 
carried out. Thus, the performance criterion describing the minimum distance between two 
points in 3-D space can be written as a terminal-error function: 

 
2 2 2

J  = (x (t) - x ) + (y (t) - y ) + (z (t) - z )c f d f d f d .  (12) 

Jc represents the deviation of the actual path of the system from its desired path. The 
components of the final position vector, xd, yd, and zd, are chosen as constant. For the 
calculation of the functions, xf(t), yf(t), and zf(t), which give the actual position of the vehicle, 
the relation (1) is used. 

4.3 Criteria function 

As was explained above, the criteria function consists of the control-performance 
(performance criterion), the performance measure describing the control effort, and the 
energy equation of the controlled system is given by 

 ∫ ∫
T

 J = J  + r'u νdt + Pdtc ,  (13) 

where the second term on the right-hand side of the equation is the power delivered to the 
actuator, and r' is the weighting factor which is determined as equal to the number of 
actuators. This control effort term can be denoted as Je and written as: 

 ∫J = r' F udte x   (14) 

The last term in (13) is the energy equation. The total power equation, P, is the sum of all 
power flows in the system: 

 P = Pin + Pgenerated - (Pdissipated + Pstored + Pout) =0.  (15) 

Since each equation corresponding to each DOF in the equations of motion, (6), represents a 
force or moment equality, each equation can be also formulated so as to represent a power 
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equality. If each term of each equation in (6) is multiplied by the corresponding velocity, the 
power equalities are obtained. The sum of all equations yields the total power equation: 

 
F (u +k p) - m(uu+v v + w w) - I pp-I qq - I rrx x y z1

2 2 2 2 2 2
+X u | u| + Y v | v| + Z w | w| + K p | p| + M q | q| + N r |r|= 0uu vv ww pp qq rr

$ $ $ $ $$
.  (16) 

In the total power equation, the remaining terms after summation are the input, stored, and 
dissipated power terms. Among these terms, the dissipation terms are of great importance 
since they appear in the control law and have contribution on the stability of the system. 

4.4 Optimal control problem 

Consider finding an admissible control uopt which causes the system 

 x = f(x, τ)$ ,  (17) 

to follow an admissible trajectory, x*, that minimizes the criteria function 

   J = J  + J  + κPdtc e ∫ ,  (18) 

so that uopt is called the optimal control. In (18), the term κ is a weighting factor which is 
determined in search of the minimum J. 
Let criteria function be formulated as follows: 

 
∫

∫

dJc
   J = (r'F u + P + )dtx

dt

    J = L dt

,  (19) 

where the scalar function L is written as 

 $ $ $L = 2(x  x  + y  y  + z  z ) + F r'u + κ Pxf f f f f f .  (20) 

In the calculus of variations, it is well known that a necessary condition for x* to be an 
optimal of the functional given by (19) is (Naidu, 2003) 

 
L d L

- = 0
x dt x

∂ ∂⎛ ⎞
⎜ ⎟∂ ∂⎝ ⎠$

.  (21) 

This equation is called Euler equation. Application of Euler equation to (19) yields the 
optimal control law: 

 
3K p|p|3κX u| u| 2Tppuu e

  u = ρ + ρ - ρopt 1 2 1κ + r' k κ + r'1

  (22) 

with 

 
2 2

 T = x (1 - 2(ε + ε )) + y (ε ε + ε η) + z (ε ε - ε η)e 2 3 1 2 3 1 3 2f f f ,  (23) 
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where ρ1 and ρ2  are weighting factors. These weighting factors and κ are computed by 

carrying out a multivariable optimization for the minimization of the terminal error function 

(12). Choice of the best control history for different values of these weighting factors leads to 

the determination of their values. When control constraint is not imposed on the system, it is 

obtained more than one admissible control history for different values of weighting factors. 

If control constraint is imposed on the system, there might still be admissible control 

histories. 

In the optimal control law, (22), two points are of importance: the dissipation terms and the 

control-performance related terms. The terms coming from the power equation are the 

dissipation terms: 3Xuuu|u| and 3Kppp|p|. There is not any other term reflecting system 

dynamics in the control law. The input to the UUV is effective on its two DOF. The surge 

and roll motions are controlled by the thrust. Therefore, the input related dissipation terms 

appear in (22). The second important term is Te and it is dominantly effective than 

dissipation terms in positioning the vehicle. 

5. Simulation results 

Using the derived control law (22), numerical simulations of the described ellipsoidal UUV 

were performed for two cases via Matlab/SimulinkTM software tool. In the first case, the 

control input is not constrained, whereas the second case shows the simulations with the 

constrained input. In the second case, the initial position has been chosen different than the 

first case. For both cases, initial velocities of the underwater vehicle are given as: 

[u(0),v(0),w(0),p(0),q(0),r(0)]T=[0,0,0,0,0,1]T. The values of the parameters used in the 

simulations are given in Table 1.  
 

Parameter Value Unit Description 

a 0.2 m Equatorial radius(X)

b 0.15 m Equatorial radius(Y)

c 0.25 m Polar radius(Z) 

m 32 kg Vehicle mass 

ρ 1030 kg/m3 Seawater density 

Ix 0.55 kgm2 Moment of inertia 

Iy 0.66 kgm2 Moment of inertia 

Iz 0.4 kgm2 Moment of inertia 

ρ1 - 1.15 n/a Weighting factor 

ρ2 - 0.007 n/a Weighting factor 

κ 0.0065 n/a Weighting factor 

k1 0.025 m Weighting factor 

r’ 1 n/a Weighting factor 

Table 1. Simulation parameters 

5.1 Case-1 

In this case, the initial position and attitude of the vehicle with respect to the earth-fixed 

frame are [x0(0),y0(0),z0(0),ε1(0),ε2(0),ε3(0),η(0)]T= [50,50,50,0,0,0,1]T at time t0=0. The target 
point is the origin, [xd,yd,zd]T=[0,0,0]T. There is no constraint on the control input. 
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Fig. 1. Time evolution of the position of the UUV 

As shown in Fig.1, the UUV achieved to reach the target point at about t=80. After reaching the 
target, the vehicle could keep its position very close to the origin as the variation of linear and 
angular velocities indicate in Fig.3. The control law, Fig.2, has oscillating and damping 
characteristics, and the frequency of the control signal is observed as f=0.5Hz at most. 

 
Fig. 2. Time evolution of the applied input 

5.2 Case-2 

In this case, the initial position and attitude of the vehicle with respect to the earth-fixed 

frame are  [x0(0),y0(0),z0(0),ε1(0),ε2(0),ε3(0),η(0)]T = [-40,25,-15, 0,0,0,1]T at time t0=0. The target 
point is the origin, [xd,yd,zd]T=[0,0,0]T. The following thrust constraint (in Newtons) has been 
imposed on the control input: 

-25  F   25x≤ ≤ , 
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Fig. 3. Time evolution of the linear and angular velocities 

 

Fig. 4. Time evolution of the position of the UUV 

 

Fig. 5. 3-D flight path of the UUV 

www.intechopen.com



 Underwater Vehicles 

 

30 

In this case, the only difference between applying an unconstrained input and constrained 
input is that the operation time is longer in the latter case. The constrained control, Fig.6, has 
a similar characteristic with that of the previous case. 
 

 

Fig. 6. Time evolution of the applied input 

6. Conclusion 

In this study, position control of the UUV as the application of a novel optimal control was 

discussed. The dynamics and control of the 6-DOF UUV are presented and the new optimal 

control method was introduced. To the best knowledge of the authors, there is no 6-DOF 

underwater vehicle that can be controlled with one actuator in literature. Based on this 

control approach, the criteria function determined included a terminal error function. The 

terminal error function plays an important role in control of the UUV. After the 

minimization of the criteria function, the terms coming from the terminal error function 

appeared in the control law. After simulations, it was observed that these terms are crucial 

in the maneuver of the vehicle. It is understood that they dominantly, with respect to the 

other terms, determine the value and direction of the force applied to the UUV. 

It has been proved that, the control of the UUV necessitates the initial conditions as either 

pitch velocity or yaw velocity at time t0=0. The roll velocity is produced by the rolling 

moment. Gyroscopic moments and centrifugal forces occur when the pitch or yaw velocity 

has an initial value. Existence of these forces and moments make the control possible. Even 

though the use of only one actuator seems to be a big challenge for a 6-DOF underwater 

vehicle, the UUV has succeeded to reach the target point by application of the energy-based 

control method. 

At present, attitude control of the UUV has not been achieved. Research for controlling the 
attitude variables is ongoing. Even the vicinity of the target state is attained, the vehicle may 
still have small velocities. The body needs forces in each direction for a necessary maneuver. 
Since the nonholonomic constraints do not allow every possible motion, motion to minimize 
the position errors needs other necessary forces to be produced by only Fx. Therefore, the 
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body moves undesired directions recurrently. If attitude control would be achieved, this 
hovering motion is thought to be prevented. 
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