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1. Introduction 

The majority of machine learning research has focused on the single task learning (STL) 
approach where an hypothesis for a single task is induced from a set of supervised training 
examples. In contrast, one of the key aspects of human learning is that individuals face a 
sequence of learning problems over a lifetime. Humans take advantage of this by 
transferring knowledge from previously learned tasks to facilitate the learning of a new 
task. Life-long learning, a relatively new area of machine learning research, is concerned with 
the persistent and cumulative nature of learning (Thrun, 1997). Life-long learning considers 
situations in which a learner faces a series of different tasks and develops methods of 
retaining and using prior knowledge to improve the effectiveness (more accurate 
hypotheses) and efficiency (shorter training times) of learning. Related names for life-long 
learning in the literature are learning to learn and meta-learning. 
A challenge often faced by a life-long learning agent is a deficiency of training examples 

from which to develop accurate hypotheses. Machine learning theory tells us that this 

problem can be overcome with an appropriate inductive bias (Mitchell, 1997), one source 

being prior task knowledge (Baxter, 1995). Lacking a theory of knowledge transfer (Caruana, 

1997, Thrun, 1997) that distinguishes knowledge from related and unrelated tasks, we have 

developed one and applied it to life-long learning problems, such as learning a more 

accurate medical diagnostic model from a small sample of patient data (Silver, 2000). The 

approach requires (1) a method of selectively transferring previously learned knowledge to 

a new task based on a measure of task relatedness and (2) a method of retaining learned task 

knowledge and its recall when learning a new task. 

In (Silver & Mercer, 1996) we introduced ηMTL, a modified version of the multiple task 
learning (MTL) method of functional transfer to provide a solution to the first problem of 
selective transfer. Using a measure of previously learned secondary task to primary task 
relatedness, an ηMTL network can favourably bias the induction of a hypothesis for a 
primary task. Section 3 reviews the necessary aspects of ηMTL. 
This paper focuses on the Task Rehearsal Method (TRM) to solve the second problem of 
retention and recall of learned task knowledge. TRM uses either the standard MTL or the 
ηMTL learning algorithms as the method of knowledge transfer and inductive bias. Task 
rehearsal is so named because previously learned tasks are relearned or rehearsed in parallel O
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with the learning of each new task. It is through the rehearsal of previously learned tasks 
that the inductive bias of prior knowledge influences the hypothesis for the new task. 
The contributions of this work is the demonstration that task knowledge can be effectively 
and efficiently retained within a neural network representation, that this knowledge can be 
selectively and accurately transferred using the TRM and ηMTL approach, and that a life-
long sequential learning system can be developed based on the approach. 
The following section provides appropriate background on knowledge based inductive 
learning, inductive bias, knowledge transfer with MTL neural networks and the origins of task 
rehearsal. Section 3 reviews selective knowledge transfer with ηMTL using a measure of task 
relatedness. Section 4 develops the TRM of life-long learning and discusses a prototype 
software system. Section 5 discusses the results of empirical studies using TRM and ηMTL on 
four domains of tasks. Section 6 presents the important findings made while implementing 
and testing the prototype system, reviews closely related work by other researchers and 
suggests future work in this area. Finally, Section 7 concludes with a summary of the paper. 

2. Background 

2.1 Knowledge based inductive learning 
The constraint on a learning system’s hypothesis space, beyond the criterion of consistency 
with the training examples, is called inductive bias (Mitchell, 1980). An inductive bias of a 
learning system can be expressed as the system’s preference for one hypothesis over 
another, for example Occam’s Razor suggests a bias for simple over more complex 
hypotheses. Inductive bias is essential for the development of a hypothesis with good 
generalization from a practical number of examples (Mitchell, 1997). Ideally, a life-long 
learning system can select its inductive bias to tailor the preference for hypotheses according 
to the task being learned (Utgoff, 1986). One type of inductive bias is knowledge of the task 
domain. The retention and use of domain knowledge as a source of inductive bias remains 
an unsolved problem in machine learning. 
We define knowledge based inductive learning as a learning method which relies on prior 
knowledge of the problem domain to reduce the hypothesis space which must be searched. 
Figure 1 provides the framework for knowledge based inductive learning. Domain knowledge 
is a database of accumulated information which has been acquired from previously learned 
tasks. The intent is that this knowledge will bias a pure inductive learning system in a 
positive manner such that it trains in a shorter period of time and produces a more accurate 
hypothesis with a fewer number of training examples. In turn, new information is added to, 
or consolidated within the domain knowledge database following its discovery. Michalski 
refers to this as constructive inductive learning (Michalski, 1993). In the extreme, where the 
new classification task to be learned is exactly the same as one learned at some earlier time, 
the inductive bias should provide rapid convergence on the optimal hypothesis with very 
few examples. Formally, given a learning algorithm L and a domain knowledge inductive 
bias BD, the problem becomes one of finding a hypothesis h, based on a set of examples S = 
(xi, ti) from a concept space X, such that: 

 

where h(xi) = ti for all (xi, ti) in X and Z means inductive inference. The relation is not one of 

deductive inference because it is possible that BD forms only a portion of all assumptions 
required to logically deduce h given S. 
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Fig. 1. The framework for knowledge based inductive learning. 

When task domain knowledge is used to bias an inductive learner, a transfer of knowledge 
occurs from one or more source or secondary tasks to a target or primary task. Thus, the 
problem of selecting an appropriate bias is transformed into the problem of selecting the 
appropriate task knowledge for transfer. 
The problem of knowledge transfer is an important aspect of life-long learning. For a good 
survey of knowledge transfer methods see (Pratt & Jennings, 1996), for a related survey on 
learning to learn read (Thrun & Pratt, 1997), and for a recent survey on metalearning see 
(Vilatlta & Drissi, 2002). Each of these surveys conclude that a significant problem in using 
prior knowledge is the selection of appropriate related knowledge when learning a new 
task. 

2.2 Representational vs. functional transfer 
In (Silver & Mercer, 1996) we define the difference between two forms of task knowledge 
transfer: representational and functional. The representational form of transfer involves the 
direct or indirect assignment of known task representation (weight values) to a new task. 
We consider this to be an explicit form of knowledge transfer from a source task to a target 
task. Since 1990 numerous authors have discussed methods of representational transfer 
(Fahlman & Lebiere, 1990, Pratt, 1993, Ring, 1993, Sharkey & Sharkey, 1992, Shavlik & 
Towell, 1990, Singh, 1992, Towell et al., 1990) which often results in substantially reduced 
training time with no loss in generalization performance. 
In contrast to representational transfer is a form we define as functional. Functional transfer 
does not involve the explicit assignment of prior task representation to a new task, rather it 
employs the use of implicit pressures from supplemental training examples (Abu-Mostafa, 
1995, Suddarth & Kergoisien, 1990), the parallel learning of related tasks constrained to use a 
common internal representation (Baxter, 1995, Caruana, 1997), or the use of historical 
training information (most commonly the learning rate or gradient of the error surface) to 
augment the standard weight update equations (Mitchell & Thrun, 1993, Naik & Mammone, 
1993, Thrun, 1995). These pressures serve to reduce the effective hypothesis space in which 
the learning system performs its search. This form of transfer has its greatest value from the 
perspective of increased generalization performance. Certain methods of functional transfer 
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have also been found to reduce training time (measured in number of training iterations). 
Chief among these methods is the parallel multiple task learning (MTL) paradigm which is 
discussed in the next subsection. 
The form of knowledge transfer can be independent of the form of knowledge retention. For 
example, functional knowledge of a task can be retained in the form of training examples 
and later used to transfer knowledge when learning a new task. Alternatively, the 
representation of a task model can be retained and later used to generate training examples 
that can then be used for functional transfer. 

2.3 Multiple Task Learning (MTL) 
Psychological studies of human and animal learning conclude that besides the development 
of a specific discriminant function which satisfies the task at hand, there is the acquisition of 
general knowledge of the task domain. This general knowledge remains available for use in 
subsequent learning (Kehoe, 1988). This concept has been formalized by Baxter’s work on 
learning internal representations (Baxter, 1995) and demonstrated by Caruana (Caruana, 
1997) through a method called multiple task learning (MTL). We classify MTL as a 
functional form of knowledge transfer. 
An MTL network uses a feed-forward multi-layer network with an output for each task to 
be learned. Figure 2 shows a simple MTL network containing a hidden layer of nodes, 
henceforth referred to as the common feature layer, that are shared by all tasks. The sharing of 
the internal representation (the weights of connections) below the common feature layer is the 
method by which inductive bias occurs within an MTL network. This is a powerful method 
of knowledge transfer. For example, a two output MTL network can learn the logical XOR 
and ¬XOR functions because they share a common internal representation. By comparison, 
it is not possible to learn these two tasks within the same single task learning (STL) network 
because their examples would conflict. 
MTL training examples are composed of a set of input attributes as well as a target output 
for each task. The standard back-propagation of error learning algorithm is used to train all 
 

 

Fig. 2. A multiple task learning (MTL) network. There is an output node for each task being 
learned in parallel. The representation formed in the lower portion of the network is 
common to all tasks. 
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tasks in parallel. The weights, wjk, affecting an output node k are adjusted according to the 

equation:
 

 where η is the learning rate parameter, Ek is the error (or cost) 

function being minimized and  is the error signal that is propagated backward through 

the network. Under the standard back-propagation algorithm η is a constant, global 
parameter for all tasks. Consequently, the back-propagated error signal from any output 
node k is considered to be of equal value to all others. At the lowest training error, the back-
propagation algorithm generates hypotheses that average the error across all of the output 
nodes. The averaging effect may not be beneficial for every task (Caruana, 1997). 
Baxter has proven that the number of examples (sample complexity) required for learning 
any one task using an MTL network decreases as a function of the total number of related 
tasks being learned in parallel (Baxter, 1995). Baxter has also proven that the common 
internal representation acquired will facilitate the learning of subsequent related tasks 
sampled from the domain. In an MTL network this translates into a common 
representational component developed within the input to hidden weights for all tasks (see 
Figure 2). For any particular task the hidden to output weights constitute the task specific 
component. Since the number of weights in this section of the network is relatively small, 
the training of a new task from the domain can be accomplished with relatively few 
examples and with a smaller amount of effort compared with single task learning. 
Functional transfer and positive inductive bias occurs in an MTL network due to the 
pressures of learning several related tasks under the constraint that the majority of the 
connection weights of each task are shared. Therefore, to ensure the functional transfer of 
knowledge from several secondary tasks to the primary task: (1) the MTL network should 
have a sufficient amount of internal representation (the sum of the hidden nodes required 
for learning each task under STL is suggested by (Caruana, 1997)), and (2) the secondary 
tasks should be as closely related to the primary task as possible. 

2.4 Rehearsal of task examples 
A fundamental problem with using back-propagation neural networks as the basis for a life-
long learning system is the phenomenon of catastrophic interference (Grossberg, 1987, 
McCloskey & Cohen, 1989). Consider the problem of learning one set of randomly chosen 
input-output examples by an STL ANN and subsequently learning another set of examples 
using the same ANN. Catastrophic interference occurs as the hypothesis for the second set 
of examples interferes with the existing hidden node representation developed for the first 
set. The result is that knowledge of the first set of examples is “forgotten”. Psychologists 
have long considered this a major failing of ANN models of long-term memory. 
Rehearsal and pseudo-rehearsal of examples is presented as solutions to catastrophic 
interference in (Robins, 1995, 1996). Robins shows that the existing hidden node 
representation within an STL network can be maintained by relearning or rehearsing a 
subset of the previously learned examples while concurrently learning the new set of 
examples. Given sufficient internal representation (hidden nodes), an appropriate model 
will develop such that it satisfies the requirements of both set of examples to the extent to 
which the examples do not interfere. The rehearsal method requires that at least some 
portion of the training examples be retained indefinitely. The pseudo-rehearsal method 
overcomes this requirement by using the existing STL network to generate a random set of 
pseudoitems or virtual examples that can be rehearsed along along with the new examples. 
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Robins shows that pseudo-rehearsal is nearly as effective as rehearsal of retained examples. 
Although the work focuses on the integration of new examples into an STL network, Robins 
goes on to suggest that pseudo-rehearsal is a potential model for long-term memory 
consolidation in the mammalian neocortex. He relates this to a seminal neuroscience paper 
(McClelland et al., 1994) which discusses the complimentary roles of the hippocampus and 
the neocortex in human learning. 

3. Selective knowledge transfer with ηMTL 
The above background material has led to a theory of selective knowledge transfer in the 

context of back-propagation ANNs that can be used to develop a life-long learning system 

(Silver, 2000). The theory proposes (1) a method of retaining learned task knowledge and 

recalling it when learning a new task and (2) a method of selectively transferring previously 

learned knowledge to a new task based on a measure of task relatedness. This section 

summarizes those aspects of the theory that are concerned with selective transfer using a 

measure of task relatedness. In the following section we detail those aspects that cover the 

retention and recall of task knowledge; the major focus of this paper. 

3.1 ηMTL: framework for a measure of task relatedness 
To optimize the transfer of knowledge within an MTL network, the secondary tasks should 

be as closely related to the primary task as possible, else negative inductive bias can resultin 

a less accurate hypothesis. This suggests that tasks have degrees of relatedness to one 

another and that a measure of relatedness might be used to control the parallel learning of 

multiple tasks. 

Abu-Mostafa develops the mathematics for learning a primary task from hint examples of 

several related tasks, within a single task learning (STL) network (Abu-Mostafa, 1995). Hints 

are a form of inductive bias that characterize properties of the primary task or task domain 

such as monotonicity or symmetry of the output with respect to the inputs. The theory states 

that minimizing the error across all hint examples will contribute toward the development 

of a more accurate hypothesis for the primary task. We adapt Abu-Mostafa’s mathematics to 

an MTL network with multiple output nodes, one node for each secondary hint task. If a 

secondary task is related to the primary task, its examples act as hints for training the 

common feature layer shared by the primary task within the MTL network. If a secondary 

task is unrelated then its contribution to the MTL network for the primary task can be 

detrimental and therefore should be minimized. 

Consider an objective function to be minimized by the BP algorithm across all task outputs 
that focuses on the development of the best hypothesis for the primary task: 

 

where Ek is the error on the training examples for hint tasks k = 1, ..., t and E0 is the error on 
the primary task training examples. By gradient descent the appropriate change to a weight 

wjk at an output node k is given by  where η is the learning rate. 

Under these conditions, , the rate of change of the overall error with respect to the rate 

of change of the error for task k, can be consider the weight of importance of hint task k for 
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learning the primary task. We define this weight of importance to be the measure of 
relatedness, Rk, between the primary and each of the secondary tasks; that is 

 

Thus, an appropriate measure of relatedness, Rk, for a secondary source task, Tk, must 
regulate the impact of the task error, Ek, on the formation of shared internal representation. 
A separate learning rate, ηk, for each output node k can be considered and kept inside the 

backward propagated error signal . Thus, by varying ηk it is possible to adjust the 

amount of weight modification associated with any one task of the network1. This modified 
version of the standard back-propagation learning algorithm for MTL we have called the 
ηMTL algorithm. 
Let the learning rate η0 for the primary task, T0, be the full value of the base learning rate η, 
that is, η0 = η. Then let Rk vary 0 ≤ Rk ≤ 1 for all tasks k = 1, . . . , t, thereby constraining the 
learning rate for any parallel task to be at most η. Notice, that if Rk = 1 for all k = 0, . . . , t, we 
have standard MTL. Alternatively, if R0 = 1 and Rk = 0 for all k = 1, . . . , t, we have standard 
single task learning (STL) of the primary function. In this way, the ηMTL framework 
generalizes over STL and MTL. 

3.2 The nature of task relatedness 
Critical to the transfer of knowledge from a pool of source tasks to a primary task is some 
measure of relatedness between those tasks (Thrun, 1996, Caruana, 1997, Vilatlta & Drissi, 
2002). We define task relatedness in the context of functional transfer: Let Tk be a secondary 
task and T0 a primary task of the same domain with training examples Sk and S0, respectfully. The 
relatedness of Tk with respect to T0 in the context of learning system L, that uses functional 
knowledge transfer, is the utility of using Sk along with S0 toward the development of an effective 
hypothesis for T0. The relatedness of Tk can be expressed as a function of the efficiency and 
effectiveness of L using Sk to develop a hypothesis for T0. 
The definition promotes the view that tasks have degrees of relatedness to one and another. 
Secondary tasks can be partially ordered from most related to least related such that the 
most related secondary task results in the most effective primary hypothesis, h0, developed 
in the shortest period of time. 
The definition suggests a brute force approach to determining the relatedness between two 
tasks. The learning system could learn T0 in parallel with each secondary task and record the 
effectiveness of the resulting hypothesis. However, if combinations of secondary tasks are 
considered then the method would be impractical because of the factorial growth in time 
complexity. An a prori measure of task relatedness is needed. 
We have developed and tested several static, dynamic and hybrid measures of task 
relatedness that are based on the principals of surface and structural similarity (Silver, 2000, 
Silver & Mercer, 2001). Surface similarity is defined as shallow, easily perceived, external 
similarity which is a measure of the external functional similarity based on the training 

                                                 
1 The use of an adaptive or separate learning rate at the node or weight level is not a new 
concept. It has been used for various purposes, such as (Jacobs, 1988, Naik et al., 1992, Vogl 
et al., 1988). 
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examples available for each of the tasks. Structural similarity is defined as deep, often 
complex, internal feature similarity which is the degree to which two developing 
hypotheses utilize their shared internal representation (particularly, the common feature 
layer) to produce accurate approximations of tasks. 
For the studies presented in this paper we use a hybrid measure that is composed of a static 
component based on the linear correlation of training set target values and a dynamic 
component based on the mutual information of hidden node features with respect to 
training set target values (Silver, 2000). 

4. Sequential learning through task rehearsal 

4.1 The task rehearsal method. 
This section presents the Task Rehearsal Method (TRM) that extends the concept of pseudo-
rehearsal (henceforth simply referred to as rehearsal) to MTL networks for learning 
sequences of tasks. 
TRM, presented diagrammatically in Figure 3, is a knowledge based inductive learning 
system that relies on the rehearsal of previously learned tasks when learning a new task 
within an ηMTL network. After a task Tk has been successfully learned (to a specified level 
of generalization error), its hypothesis representation is saved in domain knowledge. This 
representation acts as a surrogate for the space of input-output examples that defines task 
Tk. Virtual examples of the input-output space for Tk can be produced (with the same level of 
generalization error) by passing inputs to the domain knowledge representation for Tk and 
recording the outputs. When learning a new task, T0, the domain knowledge representations 
for tasks T1...Tk...Tt are used to generate corresponding virtual output values from the T0 
training examples. The resulting set of virtual examples is used to rehearse the domain 
knowledge tasks in parallel with the learning of T0 in a new ηMTL network. The virtual 
examples can be considered hints (as discussed in Section 3.1) that are used to transfer 
knowledge (provide inductive bias) in a functional manner from T1...Tk...Tt to T0. 
 

 

Fig. 3. A model of the Task Rehearsal Method. 
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The operationalization of TRM sees two sets of feed-forward neural networks interacting 
during two phases of operation. The following describes the networks and the phases of 
operation. 
The Networks. The set of single output feed-forward networks, labelled domain knowledge, is 
the long-term storage area for the representation of tasks which have been successfully 
learned. Task representation consists of the network architecture (number of nodes in each 
layer) and the weights of the connections between the nodes. 
The ηMTL back-propagation network, labelled Inductive Learning System, can be considered 
a short-term memory area for learning the new task while being influenced by the inductive 
bias provided by the domain knowledge networks. The architecture of the ηMTL network 
must contain enough representation (number of hidden nodes) to develop a sufficiently 
accurate hypothesis for at least the primary task and potentially for all secondary tasks. 
There is no requirement that the architecture of the ηMTL network be the same for each new 
task that is learned. 
The major application of TRM is learning a new task from an impoverished training set. In 

this situation, the lack of training examples has the undesirable side effect of providing 

insufficient virtual examples for rehearsing accurate hypotheses for the domain knowledge 

tasks. Consequently, the system cannot provide appropriate inductive bias. To overcome 

this problem, additional virtual training examples are used with a special unknown target 

classification for the primary task. The back-propagation algorithm used in the Inductive 

Learning System recognizes these extra training examples and considers their contribution 

to primary task error to be zero. Consequently, for these examples, only the error of 

secondary tasks affect the development of the neural network’s internal representation. 

Phases of Operation. A new task is learned in the ηMTL network during the knowledge recall 

and training phase. Each training example for the primary task T0 provides n input attributes 

and a target class value. The target values for secondary tasks T1...Tk...Tt are, of course, not 

part of this T0 training data. These target values must be “recalled” from domain knowledge 

by feeding the n input attributes into each of the domain knowledge networks and 

appending the outputs to the original training example. The resulting virtual example is 

now acceptable to the the ηMTL network for training2. Training of the ηMTL network for all 

tasks begins from random initial weights. The error on a validation set is monitored so as to 

prevent over-fitting of the data to the network. 

The knowledge retention phase follows the successful learning of a new task. If the hypothesis 

for the primary task is able to classify an independent test set of examples with an error rate 

below a user specified level, the task is considered successfully learned and its 

representation is saved in domain knowledge. The architectures of the stored networks can 

be completely different from one another. The fundamental requirement of domain 

knowledge is an ability to store and retrieve the representations of induced hypotheses and 

to use these representations to generate accurate virtual examples of the original tasks. 

                                                 
2 The domain knowledge networks output continuous values, therefore, the virtual target 
values will range between 0 and 1. Continuous target values will more accurately convey 
the function of the domain knowledge networks and they provide the means by which 
dichotomous classification tasks may transfer knowledge from related continuous valued 
tasks in future research. 
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4.2 The prototype software. 
A prototype software system has been developed that implements the TRM shown in Figure 
3. The system uses enhanced back-propagation ANN software that is capable of single task 
learning (STL), MTL or ηMTL. The system employs a batch method of backpropagation of 
error that utilizes a momentum term in the weight update equation to speed the 
convergence of the network. A save-best weights method is used to save the representation of 
the network at minimum error on the validation set. 
The prototype system uses a sequence table to control the order in which tasks will be 
learned. For each task in the table, the software moves through the two phases of operation 
described above. Before learning a new primary task, the examples for the primary task are 
used to generate the virtual examples for all secondary tasks. A domain knowledge table 
contains the names of previously learned secondary task representations. If so desired, the 
table can be populated with names of task representations learned during previous runs of 
the system. 
After a minimum validation error hypothesis has been developed, the TRM software must 
determine if the hypothesis is sufficiently accurate to be stored within domain knowledge. If 
the accuracy criteria is met, the hypothesis representation is stored, and the task name is 
added to the domain knowledge table. If the accuracy criteria is not met, the hypothesis is 
rejected and no representation or record of the task is kept. A record of the task’s name in 
the domain knowledge table ensures that the associated hypothesis will be considered 
during the learning of future tasks. 

5. Empirical studies 

5.1 The domains studied. 
This section reports on the testing of TRM against four domains of tasks. The characteristics 
of an appropriate task domain for testing a life-long learning system is considered in (Silver, 
2000). The most important factors are that (1) one or more primary tasks of interest have 
impoverished sets of training examples insufficient for developing accurate hypotheses 
under STL, and (2) the domain contain a mix of secondary tasks such that the majority of 
these tasks are unrelated to the primary task(s) so as to force the life-long learning system to 
overcome negative inductive bias. 
The Band domain consists of seven synthetic tasks. Each task has a band of positive 
examples across a 2-dimensional input space. The tasks were synthesized so that the 
primary task T0 would vary in its relatedness to the other tasks based on the band 
orientation. A preliminary study showed that T4, T5 and T6 are the more related to T0 when 
individually learned in parallel with T0; they consistently resulted in the most accurate 
hypotheses for T0. 
The Logic domain consists of eight synthetic tasks. Each positive example is defined by a 

logical combination of 4 of the 11 input variables of the form, T0 : (A > 0.5 ∨ B > 0.5) ∧ (C > 

0.5 ∨ D > 0.5). Tasks T1, T2 and T3 are more related to T0 with T2 being the most related. The 
Band and Logic domains have been designed so that all tasks are non-linearly separable; 
each task requires the use of at least two hidden nodes of a neural network to form an 
accurate hypothesis. 
The coronary artery disease (CAD) domain contains three real medical diagnostic tasks and 
four synthetic tasks. Each task has five input attributes (age, gender, resting blood pressure, 
level of chest pain, resting electrocardiogram results). Data for the real tasks were extracted 
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from the heart disease database in the UCI machine learning repository (Detrano, 1989). The 
data were originally collected from three geographically different locations: the Cleveland 
Clinic Foundation, Cleveland (clev), the Hungarian Institute of Cardiology, Budapest (hung) 
and the V.A. Medical Centre, Long Beach, California (vamc). Predicting those patients with 
disease (50% stenosis of a coronary artery) from the vamc hospital is the primary task. 
Because of the relatively high degree of relatedness between these tasks, data for four 
additional tasks (A, B, C, and D) that vary in their relatedness to the real tasks were 
synthesized based on knowledge of general rules for predicting CAD. 
The forest cover type (Cover) domain consists of six real tasks for predicting the type of tree 
cover from cartography information. The data concerns the Comanche Peak Wilderness 
Area of northern Colorado and was downloaded from the UCI repository (Blackard & Dean, 
2000). Ten input variables were extracted from the original data (eg. elevation, slope, 
hillshade at noon, distance to waterway). Each task concerns the prediction of one cover 
type: Krummholtz, Douglas Fir, Aspen, Ponderosa Pine, Lodgepole Pine or Spruce/Fir. 
Each task required the use of two or more hidden nodes to produce the best STL models. 
The challenge is to develop models for Lodgepole Pine and Spruce/Fir from impoverished 
data sets after having developed models for the first four tasks. 
Table 1 summarizes the size of the data sets used for training, validating, and testing each 
task of each domain under study. The tasks are presented in the order in which they are 
sequentially learned using TRM. Note that each training set is augmented with additional 
examples with unknown target values for the primary task. The number of additional 
examples varies for each task so as to ensure there are at least 50, 50, 100 and 126 training 
examples for the Band, Logic, CAD and Cover domain, respectfully. These additional 
examples are used by TRM to generate virtual examples for rehearsing the secondary tasks 
that have been previously learned (see Section 4.1). 
 

 

Table 1. Training, validation, and test set sizes for each task for the four domains. 

5.2 Method. 
The tasks for each domain are learned in the left-to-right order presented in Table 1 using 
the TRM system with each of the inductive learning methods: STL, MTL, and ηMTL. The 
neural networks used are all 3-layer architectures composed of an input layer of as many 
nodes as input attributes, a hidden layer of sufficient representation for all tasks in the 
domain and an output layer of as many nodes as there are tasks in the domain. A standard 
back-propagation learning approach is taken using validation sets to prevent over-fit of the 
network to the training data. Test sets are used to determine if the hypotheses that are 
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learned are sufficiently accurate to be saved in domain knowledge. We consider an accuracy 
of 65% to be a minimum level of performance for the domains under study. Therefore, the 
maximum misclassification rate allowed on a test data set is 35%. 
Analysis of the experimental results focuses on the performance of hypotheses developed for 
each task, particularly those at the end of the learning sequence for each domain. Table 1 
shows that training sets for later tasks of each learning sequence have fewer examples than 
earlier ones. Our goal is to show that the TRM with ηMTL can overcome the impoverished 
training sets by selectively transferring knowledge from related tasks learned earlier in the 
sequence and saved in domain knowledge. The performance of the TRM system under each 
learning method is based on the accuracy of hypotheses against their respective test sets. The 
mean number of misclassifications from repeated experiments is the measure of performance. 
We also consider the true positive and true negative proportion statistics for those tasks where 
the ratio of positive and negative examples are unbalanced. The results shown below are 
based on 20 repetitions of sequential learning on each domain in which the random initial 
weights of the networks as well as the training, validation and test examples are resampled. 

5.3 Results 
Figures 4 and 5 and Table 2 present the test results for hypotheses developed for each task 
for each domain in the order in which they were learned. The STL results can be used as a 
baseline for comparison with the TRM results that used either MTL or ηMTL learning. In 
Table 2 hypotheses developed under MTL and ηMTL with mean percent misclassifications 
significantly less than STL hypotheses are indicated in bold (95% confidence based on 
difference of means t-test). Hypotheses developed under ηMTL with mean percent 
misclassifications significantly less than MTL hypotheses are shown in parentheses. The 
very best results are, therefore, in both bold and parentheses. 
 

 

Table 2. The mean percentage of misclassifications of test set examples by the hypotheses 
generated by the learning methods under TRM. 
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(a) Band Domain 

(Mean Percentage of Misclassifications). 

 
(b) Logic Domain 

(Mean Percentage of Misclassifications). 

Fig. 4. Performance results from sequential learning on the two synthetic task domains. 
Shown is the mean percentage of misclassifications by hypotheses generated by each 
learning method for each task. The results are presented in the order that the tasks were 
learned. 

The results from the synthetic domains (Band, Logic) indicate that hypotheses developed 

under STL for tasks that have large numbers of training examples (the first four or five 

tasks) performed as well as or better than hypotheses developed under TRM. Those 

hypotheses developed under TRM using MTL as the learning method have misclassification 

rates that are, at times, significantly higher than that of STL hypotheses. The synthetic 

domains have more unrelated tasks than related ones, therefore, the arbitrary transfer of 

domain knowledge under this circumstance can have a detrimental effect on learning. This 

is most evident in the case of learning the Logic domain task T3, where 40 training examples 

convey sufficient information to develop relatively accurate hypotheses under STL. 

Negative inductive bias from unrelated secondary tasks result in MTL hypotheses for T3 

having significantly higher error as compared with STL hypotheses. Inductive bias from 

secondary hypotheses will always have an effect on the internal representation developed 
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CAD Domain 

(Mean Percentage of Misclassifications). 

 
(b) Cover Domain 

Domain (Mean Percentage of Misclassifications). 

 
(c) Cover Domain 

Domain (True Positive Proportion). 

Fig. 5. Performance results from sequential learning on the two real task domains. Shown is 
the mean percentage of misclassifications by hypotheses generated by each learning method 
for each task. Also shown in graph (c) is the average true positive proportion for each task of 
the Cover domain. The results are presented in the order that the tasks were learned. 
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within the network. The challenge for a knowledge based inductive learning system is to 

filter out negative bias for the primary task. As shown in Table 2, TRM using ηMTL makes a 

significant improvement upon the MTL results for the synthetic tasks. The effect of negative 

inductive bias from unrelated tasks is mitigated by control over the individual learning rates 

for each of the secondary tasks. The error rate for the first four or five tasks under ηMTL are 

therefore closer to that of STL. 

The results from the real domains (CAD, Cover) indicate that hypotheses developed using 
TRM with MTL and TRM with ηMTL consistently perform as well as or better than STL 
hypotheses for the first four or five tasks of each domain. Unlike the synthetic domains, the 
tasks of the real domains are more closely related to each other. Therefore, the knowledge 
transferred under MTL from prior tasks is almost always positive. Selective transfer under 
ηMTL produces only marginally better hypotheses. In interpreting the results of the Cover 
domain, it should be noted that the mean misclassification percentages for STL hypotheses 
for the last two tasks of the Cover domain are misleading. As shown by the True Positive 
Proportion graph of Figure 5, the low misclassification rates on LodgePole Pine and 
Spruce/Fir are because most of the STL hypotheses developed are naïve, that is, they 
classify all examples as negative. 
The training data for the final two or three tasks of each synthetic and real domain are 
dramatically impoverished as compared to that of the first task in each learning sequence 
(see Table 1). STL has difficulty developing accurate hypotheses because the training data 
for these tasks provides so little information. The TRM with ηMTL augments the 
impoverished data with positive inductive bias from domain knowledge, resulting in better 
hypotheses for the last two tasks of all domains. The measure of relatedness reflected in 
each ηk is able to affect a selective transfer of knowledge from previously learned tasks. The 
TRM with MTL does not fare as well, particularly on the synthetic domains, because a mix 
of positive and negative inductive bias occurs from the domain knowledge tasks. 

6. Discussion 

The following summarizes the key observations that have been made while developing the 
TRM with ηMTL prototype system and conducting the experiments presented in this paper. 
A number of avenues for future work are suggested. 

6.1 Retention and generation of task knowledge. 
The experimental results demonstrate that TRM has the ability to retain accurate task 
knowledge in the form of neural network representations. The experiments also show that 
the TRM can generate virtual examples with the same level of accuracy as the retained 
network hypotheses. 
Selective Retention of Accurate Task Knowledge. The TRM prototype system has demonstrated 
the ability to selectively retain only hypotheses which have met a pre-defined level of 
generalization accuracy based on the hypotheses classifying independent test sets of 
examples. This ensures that a level of domain knowledge accuracy is upheld. 
Efficiency and Scalability of Task Knowledge Retention. The experiments demonstrated that 
TRM provides an efficient storage of task knowledge. The hypothesis representations saved 
in domain knowledge implicitly retain the information from the training examples in a 
compressed form. In the case of the Logic domain the 8 tasks have a total of 325 actual 
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training examples composed of 12 values each. The total requirement is 3900 units of 
storage. This same information is retained within eight 11-6-1 network representations 
composed of 79 weights each. The total storage requirement in this case is 632 units. In 
general, the number of weights, W, in a 3-layer network can be computed as follows W = 
(i+1)h+(h+1)o; where i, h and o are the number of input, hidden and output nodes, 
respectfully. When learning a sequence of t tasks, the space requirement for saving all 
representations within domain knowledge is of O(t(3+W)); where 3 is the number of values 
(i, h, o) required to describe the network architecture. Therefore, the space requirements 
increase linearly with the number of tasks. 
Accuracy and Value of Virtual Examples. The generation of accurate virtual examples from 
domain knowledge is essential to TRM because they are the means by which accurate 
knowledge is transferred from a secondary task to the primary hypothesis. The value of a 
virtual example can be measured by the difference in the mean performance of primary 
hypotheses developed with and without that example. Supplemental experiments have 
shown the value of more accurate virtual examples and the incremental value of additional 
virtual examples when developing hypotheses for related tasks (Silver, 2000). The more 
accurate the domain knowledge hypotheses (as recorded at the time of learning) the more 
accurate the virtual examples. This agrees with the reasonable expectation that the effort 
spent on accurately learning tasks early in life will benefit the learner later in life. 
Importance of Input Attribute Range and Resolution. Supplemental experiments have also 
shown that the TRM can generate virtual examples with the same level of accuracy as the 
retained hypotheses, provided the input attributes of the virtual examples are within the 
same range and resolution of values as the examples used to develop the the domain 
knowledge hypotheses (Silver, 2000). One approach is to record the distribution of the 
original training and validation examples over the input space. For example the mean value 
and standard deviation of the original attributes could be computed and saved. These 
statistics could then be used to generate minimum and maximum boundaries for the input 
attribute values of virtual examples. Further research is needed into the best choice of 
attribute values for each new task. 
Freedom to use Available Training Examples. TRM provides considerable freedom in the choice 

of training examples for a new task. Although an MTL method of knowledge transfer is 

used, there is no need to match specific examples of previously learned tasks. TRM will 

automatically generate matching virtual target values for the secondary tasks from the input 

attributes of new task examples. The ability to utilize all available training examples for a 

new task is a benefit for any life-long learning system. 

Abundance of Virtual Examples. The source of inductive bias under TRM is the set of virtual 

examples generated from domain knowledge for relearning the secondary tasks. The larger 

the set of virtual examples, the richer the set of functional knowledge from each secondary 

task. When the number of primary task training examples is small, TRM can generate 

additional virtual examples for the secondary tasks through the use of primary examples 

that are marked with the unknown target value. These additional virtual examples should be 

selected bearing in mind the input attribute concerns expressed above. One must also be 

careful not to overwhelm the information provided in the actual training examples for the 

primary task with knowledge transferred from the virtual examples of the secondary tasks. 

Induction must be driven by a fair mix of information from the real examples and bias from 

the virtual examples. Further research is needed in this area. 
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Scalability of Virtual Example Generation. Generating virtual examples for TRM requires 
computational time and space resources. Two options are available. The target values for the 
secondary tasks can be computed on-line during learning at the cost of increased learning 
time. Alternatively, the target values can be generated in batch before learning begins at the 
cost of additional memory. Our current implementation uses the latter approach. The reader 
may consider that this conflicts with the benefit of efficient storage of training examples. 
However, because each training example has matching input attribute values, the additional 
memory cost is only for the storage of the target values of the secondary tasks. As the 
number of tasks within domain knowledge increases, one solution to this scaling problem is 
to only generate virtual examples for those domain knowledge tasks that are above a 
specified threshold of relatedness to the primary task. In this way the space or time 
complexity for generating the virtual examples would be held constant. 

6.2 Selective transfer of task knowledge. 
The experimental results show that the TRM with ηMTL can successfully transfer retained 
task knowledge to the benefit of tasks with impoverished training sets. The results on the 
last two tasks of each domain are particularly impressive with significantly lower mean 
number of misclassifications per task than hypotheses produced by either STL or the TRM 
with MTL. 
Tasks having sufficient training examples. STL is able to produce comparatively accurate 
hypotheses for tasks that have sufficient training examples without needing additional 
inductive bias. Under MTL a negative transfer of knowledge occurs because of the 
interference at the common feature layer among unrelated tasks. ηMTL attempts to mitigate 
this interference but is not able to do so entirely. We are currently working on better 
measures of task relatedness to reduce the negative bias from unrelated tasks. 
Scalability of ηMTL. Because the MTL and ηMTL methods uses the back-propagation 
algorithm, its time complexity is O(W3), where W is the number of weights in the ηMTL 
network (Mitchell, 1997). Naturally, W grows as a function of the number of tasks being 
learned in parallel. As suggested for the problem of generating virtual examples, a practical 
solution to lengthy training times is to reduce the number of weights in the network by 
eliminating secondary tasks that do not meet a predefined level of task relatedness to the 
primary task. In this way W and the time complexity can be kept constant. 

6.3 An alternative explanation for the success of TRM 
It could be argued that the reason for the development of more accurate hypotheses under 
TRM with ηMTL is due to the generation of stochastic noise either by the variation in ηk 
values during training or because of small errors introduced by the virtual examples for the 
secondary tasks. A number of authors have shown that stochastic noise can assist the 
backpropagation algorithm in escaping local minimum to find better hypotheses (Hanson, 
1990, Heskes & Kappen, 1993, Wang & Principe, 1999). We have investigated this argument 
(Silver, 2000) and shown empirically using the Band and Logic domains that stochastic noise 
in the absence of related tasks cannot produce the same level of positive inductive bias. 

6.4 Related work 
Task Clustering (TC) Algorithm. Sequential learning, task relatedness and functional 
knowledge transfer in the context of a memory-based K-nearest neighbour learning system 
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is discussed in (Thrun & O’Sullivan, 1995). The method partitions domain knowledge into 
clusters of related tasks based on a mutually beneficial Euclidean distance metric used by all 
tasks within each cluster. When a new task is to be learned, the system estimates the degree 
of relatedness between the primary task and each task cluster by using that cluster’s 
distance metric to bias the nearest neighbour algorithm. The distance metric that produces 
the best generalization on the primary task’s training examples selects the most related task 
cluster. The algorithm uses the chosen distance metric to classify future examples of the 
primary task. Based on experiments using object recognition data, the TC algorithm is 
shown to construct a meaningful hierarchy of related task clusters based on the distance 
metric. 
In comparison to the TC algorithm, TRM with ηMTL has the advantage of being able to 
combine inductive bias from one or all domain knowledge tasks and not a predetermined 
cluster of tasks. The measure of task relatedness allows each new task to select an inductive 
bias unique to the training examples that are available and the domain knowledge that 
exists. The TC algorithm also has problems scaling up to a large number of tasks. TRM can 
overcome this problem by selecting a priori only those tasks most closely related to the 
primary task. 
Life-Long Reinforcement Learning. Life-long learning and selective representation transfer 
is examined in the context of reinforcement learning in (Carroll et al., 2003). Knowledge 
transfer is recognized as being beneficial only when a source task is sufficiently related to 
the target task and that a measure of task relatedness is therefore necessary in the presence 
of multiple source tasks. The research focuses on more efficient learning and does not 
discuss generalization accuracy. 
The TC algorithm, explained above, is extended to reinforcement learning and called the 
Reinforcement Learning Task Clustering (RLTC) method. RLTC uses a modified Q-learning 
algorithm that can have its state transition Q-values initialized to that of a related source 
task or the average of a cluster of related source tasks. Measures of task “similarity” are 
based on the vector of Q-values for each task. The paper explores methods of determining 
average Q-values and invariant Q-values within a cluster such that they can be used as the 
starting point for learning a new and potentially related task. Using a synthetic domain, 
experiments show that reinforcement tasks can be successfully clustered, and that the 
Qvalues of task clusters can be used to speed up the learning of a related task or slow down 
the learning of an unrelated task. The measure of task relatedness allows each new task to 
select an inductive bias unique to the training examples that are available and the domain 
knowledge that exists. The authors plan to investigate a priori measures of task similarity 
and the piecewise transfer of knowledge from various tasks in their future work. 
Toward Continual Learning. In (Ring, 1997) a neural network based reinforcement learning 
agent called CHILD is introduced as a first step toward a system that is capable of continual, 
hierarchical, incremental learning and development. Continual learning is defined as “the 
constant development of increasingly complex behaviours; the process of building more 
complicated skills on top of those already developed”. The system is capable of learning 
incrementally at each time step and hierarchically using what has been learned in the past to 
facilitate learning in the future. CHILD can only learn in restricted domains of finite 
automata tasks but exhibits the seven major characteristics of a continual learner defined in 
the paper. The system combines Q-learning and temporal transition hierarchies learning and 
utilizes a novel learning rule to create higher-order network units and associated connection 
weights when needed to overcome network error. Representational knowledge transfer 
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occurs through the use of the weights of previously learned tasks. This can make for rapid 
learning of related tasks that increase in complexity. Test results on a domain of maze 
problems demonstrates CHILD’s ability to accumulate and use knowledge from related 
tasks. However, the system shows some difficulty overcoming negative inductive bias from 
recently learned and unrelated tasks. Catastrophic interference reduces the system’s ability 
to develop an accurate model of a previously learned task. 
Knowledge-Based Cascade-Correlation. The Cascade Correlation algorithm (Fahlman and 
Lebiere, 1990) is extended to the Knowledge Based Cascade Correlation (KBCC) method in 
(Rivest, 2003, Shultz and Rivest, 2003). KBCC allows previously-learned source networks to 
compete with each other and with single hidden nodes for recruitment into a target network 
when learning a new task. The representation of source networks are temporarily connected 
to the target network and the new connection weights are trained so as to increase the 
correlation of the source networks’ output with the target network’s error. The best 
correlating source network is installed permanently into the target network and its 
surrounding weights trained to produce a hypothesis for the target task. 
Experiments on families of Cartesian input tasks similar to the Band Domain demostrate 
that the KBCC is able to recruit and use prior task knowledge to quickly develop hypotheses 
for new tasks. The analysis of the experiments focuses on efficiency of learning and does not 
examine generalization accuracy. Tasks vary in their shape (rectangles, circles), orientation 
and size. Although the concept of task “relevance” is discussed and the effect of using 
different prior tasks on learning is examined the term is not formally defined. A link must 
be made between the relatedness of prior tasks and the reasons behind recruiting the best 
correlating prior task. We anticipate that the authors will address these issues in future 
work. 

7. Summary 

This paper reviews the importance of inductive bias to learning and discusses the 
relationship between inductive bias and knowledge transfer. A general model of 
knowledge-based inductive learning is presented that promotes the retention and use of 
task knowledge when learning a new task from the same domain. The difference between 
the representation and functional forms of task knowledge is defined along with the 
recognition that knowledge retention and transfer can take either form. 
An approach to life-long learning is presented in the context of back propagation neural 
networks. The approach requires (1) a method of selectively transferring previously learned 
knowledge to a new task and (2) a method of retaining learned task knowledge and its 
recall. This paper reviews our approach to selective transfer based on a measure of task 
relatedness, but focuses on the second problem of knowledge retention and recall and 
presents the Task Rehearsal Method (TRM) as a solution. 
TRM, is a knowledge-based inductive learning approach. It is able to retain task knowledge 
and use that knowledge to bias the induction of hypotheses for new tasks. TRM saves the 
representation of previously learned neural network hypotheses within a domain 
knowledge storage area. Domain knowledge is used to generate functional task knowledge 
in the form of virtual examples at the time of learning a new task. The virtual examples are 
rehearsed as secondary tasks in parallel with the learning of a new (primary) task using the 
ηMTL neural network algorithm, a variant of multiple task learning (MTL). The ηMTL 
algorithm uses a measure of task relatedness to selectively transfer knowledge from the the 
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most related secondary tasks to the hypothesis for a new task. In this way positive inductive 
bias from prior knowledge is obtained. 
The results of repeated experiments on two synthetic and two real domains of tasks 
demonstrate that TRM with ηMTL produces hypotheses of significantly greater accuracy 
than either STL or TRM with MTL for tasks with impoverished training data. The success 
can be attributed to the functional knowledge within the virtual examples generated by the 
TRM and to the effective use of that knowledge through ηMTL’s ability to select the more 
related secondary tasks. In a similar manner, the TRM with ηMTL is able to mitigate but not 
eliminate the effect of the negative inductive bias on tasks that have sufficient training 
examples. Further work on the generation and use of virtual examples as well as the 
development of better measures of task relatedness are required in order to improve upon 
selection of inductive bias. 
TRM is attractive because of the scalability of its method of task knowledge retention and 
virtual example generation. Furthermore, TRM provides the freedom to use available 
training examples for new tasks and the ability to generate additional virtual examples for 
secondary task rehearsal. 
Perhaps of greatest importance, the work on TRM has confirmed the importance and 
complexity of adding background knowledge to machine learning systems. If inductive bias 
is a function of stored domain knowledge and a measure of task relatedness, then inductive 
bias is always relative to the frame of reference created by the previously learned tasks. This 
requires that domain knowledge be carefully managed; for example, we have observed that 
redundant task knowledge and task error must be minimized. We are now of the opinion 
that a consolidated representation of domain knowledge tasks would have a number of 
benefits over the independent task representations that were used in the experiments of this 
paper. Consolidated domain knowledge would provide the potential for more efficient 
learning through representation transfer. It would also allow the use of better measures of 
task relatedness based on structural similarity of shared representation. More recent 
research has explored the consolidation of domain knowledge and its use within the TRM 
(Silver & McCracken, 2003, O’Quinn et al., 2005, Silver & Poirier, 2004). 
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