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1. Introduction     

Reinforcement Learning (RL) is the problem faced by an agent that must learn behavior 
through trial-and-error interactions with a dynamic environment (Kaelbling et al., 1996). At 
any time step, the environment is assumed to be at one state.  In Markov Decision Processes 
(MPDs), all states are fully observable in which the agent can choose a good action based 
only on the current sensory observation. In Partially Observable Markov Decision Processes 
(POMDPs), any state can be a hidden state in which the agent doesn’t have sufficient 
sensory observation and the agent must remember the past sensations to select a good 
action. Q-learning is the most popular algorithm for learning from delayed reinforcement in 
MDPs, and RL with Recurrent Neural Network (RNN) can solve deep POMDPs. 
Several methods have been proposed to speed up learning performance in MDPs by 

creating useful subgoals (Girgin et al., 2006), (McGovern & Barto, 2001), (Menache et al., 

2002), (Simsek & Barto, 2005). Subgoals are actually states that have a high reward gradient 

or that are visited frequently on successful trajectories but not on unsuccessful ones, or that 

lie between densely-connected regions of the state space. In MDPs, to attaint a subgoal, we 

can use a plain table based policy, named a skill. Then these useful skills are treated as 

options or macro actions in RL (Barto & Mahadevan, 2003), (McGovern & Barto, 2001), 

(Menache et al., 2002), (Girgin et al., 2006), (Simsek & Barto, 2005), (Sutton et al., 1999). For 

example, an option named “going to the door” helps a robot to move from any random 

position in the hall to one of two doors. However, it is difficult to apply directly this 

approach to RL when a RNN is used to predict Q values. Simply adding one more unit into 

output layer to predict Q values for an option doesn’t work because updating any 

connection’s weight will affect all previous Q values and because it is easy to lose the Q 

values when the option can’t be executed for a long time. 

In this chapter, a method named Reinforcement Learning using Automatic Discovery of 
Subgoals is presented towards this approach but in POMDPs. We can reuse existing 
algorithms to discover subgoals. To obtain a skill, a new policy using a RNN is trained by 
experience replay. Once useful skills are obtained by RNNs, these learned RNNs are 
integrated into the main RNN as experts in RL. Results of experiment in two problems, the E 
maze problem and the virtual office problem, show that the proposed method enables an 
agent to acquire a policy, as good as the policy acquired by RL with RNN, with better 
learning performance. O
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2. Reinforcement learning and recurrent neural network 

RL is learning what to do to maximize a numerical reward signal. The learner is not told 
which actions to take, as in supervised learning, but instead must discover which actions 
yield the most reward by trying them (Sutton & Barto, 1998). RL allows a software agent to 
automatically determine its behavior within a specific context, in order to maximize its 
performance. Simple reward feedback is required for the agent to learn its behavior; this is 
known as the reinforcement signal. This automated learning scheme implies that there is 
little need for a human expert who knows about the domain of application. Much less time 
will be spent designing a solution, since there is no need for hand-crafting complex sets of 
rules as with expert systems (Champandard, 2007). Beyond the agent and the environment, 
four main sub-elements of a reinforcement learning system are a policy, a reward function, a 
value function, and, optionally, a model of the environment. 
In the general case of a reinforcement learning problem, the agent's actions determine not 
only its immediate reward, but also the next state of the environment. The agent has to be 
able to learn from delayed reinforcement: it may take a long sequence of actions, receiving 
insignificant reinforcement, and then finally arrive at a state with high reinforcement. I.e., 
the agent must be able to learn which of its actions are desirable based on reward that can 
take place arbitrarily far in the future. 

2.1 Q learning 

When a model of fully observable environment is not available, the most widely used RL is 
Q-learning (Sutton & Barto, 1998), (Watkins, 1989). Q-learning iteratively approximates the 
state-action value function by updating its plain table based Q values as 

 
'

( , ) ( , ) [ max ( ', ') ( , )]
a

Q s a Q s a r Q s a Q s aα γ= + + −  (1) 

where ( , )Q s a  is the state-action value for action a  in state s , α  is learning rate, and γ  is 

the factor of discount.  
Based on Q values, the agent selects an action to execute using a standard exploration 
method. A simple selection rule, ε-greedy method, is to behave greedily most of the time. 
The agent selects the action with highest estimated action value with a big probability. But 
sometimes, the agent selects an action at random with small probability. An alternative 
solution, softmax selection rule, is to vary the action probabilities as a graded function of 
estimated value (Sutton & Barto, 1998). 

2.2 Perceptual aliasing  

In a real world environment, not all states are fully observable, named hidden states. I.e., in 

some world states, the observation is same, but the optimal actions are different. These 

problems are called POMDPs. Fig. 1 shows an example of POMDPs (Ohta et al., 2003). If the 

agent selects the same action at a hidden state, it may not reach the goal. To solve this kind 

of problems, some researchers propose memory-less approach. This method is simply to 

avoid passing through hidden states or uses stochastic action selection rule at hidden states 

(Littman, 1994), (Ohta et al., 2003). However, this approach doesn’t fit well when there are 

many perceptual aliasing states in the optimal policy. Memory based approach uses past 

sensations to predict optimal actions (McCallum, 1995), (Whitehead, 1995). 
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Fig. 1. A maze including perceptual aliasing. 

2.3 RL with RNN 

A number of researchers use a RNN to predict Q values to solve POMDPs (Bakker, 2002), 
(Ballini, 2001), (Gomez et al., 2005), (Gomez & Schmidhuber, 2006), (Le et al., 2007), (Le et al., 
2008), (Lin & Mitchell, 1993), (Lin, 1993), (Ho & Kamel, 1994), (Onat et al., 1998), (Schafer & 
Udluft, 2005). The number of input unit is equal to the dimension of the sensory inputs from 
the environment. The number of output units is equal to the number of possible actions. 
Each output represents the Q-value of the associated action. For the output units, a linear 
activation function is used to cope with the required range of Q values. At a time step, RNN 
inputs are the sensations of the current state and RNN outputs are approximated Q values 
for that state. Similar as plain table based Q learning, the agent selects an action based on Q 
values and observes new Q values. However, the agent doesn’t update the Q values as in 
(1). It updates the RNN connections’ weights to predict the Q values.  
RNN architecture can be Time-Delayed Neural Network, Elman Network, Recurrent 
Neurofuzzy Network, or Long Short Term Memory Network (LSTM). The RNN used in this 
chapter is LSTM which has been proved to have a strong ability to solve many difficult tasks 
(Gers et al., 2000), (Gers et al., 2002), (Hochreiter & Schmidhuber, 1997), (Schmidhuber et al., 
2007). The basic element in LSTM is memory cell (Fig. 2), which contains a recurrently self-
connected liner unit called the “Constant Error Carousel” or CEC (Hochreiter & 
Schmidhuber, 1997). A multiplicative input gate unit is employed to protect the memory 
contents from perturbation by irrelevant inputs. Likewise, a multiplicative output gate unit 
is used to protect other units from perturbation by currently irrelevant memory contents. F. 
A. Gers improves the limitation of traditional LSTM by adding a forget gate to memory cell 
(Gers et al., 2000). Standard LSTM (or LSTM for short) with forget gates can learn to reset 
the memory contents that are out of date.  
The activations are computed as follows:  

For each unit i   in hidden layer at time t , the net input is 

 ( ) ( 1)i im m

m

net t w y t= −∑  (2) 

where imw is the weights of the connection from unit m  to unit i .  

The hidden unit activation 
h
y , input gate activation iny , output gate activation outy , and the 

forget gate activation yϕ  is calculated by 

 ( ( ))i iy f net t=  (3) 
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Fig. 2. A memory cell with its gates 

where f is the standard logistic sigmoid function 

 
1

1 x
f

e−
=

+
 (4) 

The CEC activation 
jc
s  is calculated by 

 ( ) ( ) ( 1) ( ) ( ( ))
j j jc c in cs t y t s t y t g net tϕ= − +  (5) 

where g is the logistic sigmoid function scaled to [-2, 2] 

 
4

2
1 x

g
e−

= −
+

 (6) 

The memory cell output activation 
jc
y is calculated by 

 ( ) ( ) ( ( ))
j j jc out cy t y t h s t=  (7) 

where h  is the logistic sigmoid function scaled to [-1, 1] 

 
2

1
1 x

h
e−

= −
+

 (8) 

Finally, the output unit activation ky  is calculated by 

 ( ( ))k k ky f net t=  (9) 

where kf  is the standard logistic sigmoid function or the identity function. 
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Fig. 3. A typical LSTM network with 4 input units, 2 memory cells, and 3 output units. 

Several LSTM network topologies are proposed to solve some particular problems (Gers et 
al., 2000), (Gers et al., 2002), (Hochreiter & Schmidhuber, 1997), (Schmidhuber et al., 2007). 
Fig. 3 shows a typical LSTM network architecture with 4 input units, 2 memory cells, and 3 
output units. 

3. Solving POMDPs with automatic discovery of subgoals 

Reinforcement Learning using Automatic Discovery of Subgoal (RLSG) is a framework to 
accelerated learning ability in non-Markovian problems. There are two phases in RLSG. The 
first phase is to obtain online generated sub-policies. One sub-policy is a useful skill to attain 
subgoals. Each sub-policy has its own RNN which plays a role of Recurrent Neural 
SubNetwork (RSN) in RLSG. The second phase in RLSG is to integrate online generated 
RSNs into the main RNN. The new RNN will be trained to predict the Q values for the 
original problem.  

3.1 Automatic discovery of subgoal 

Several methods have been proposed to discover subgoals (Girgin et al., 2006), (McGovern 

& Barto, 2001), (Menache et al., 2002), (Simsek & Barto, 2005). Subgoals are actually states 

that have a high reward gradient or that lie between densely-connected regions of the state 

space. In our system, a state will be considered as a subgoal if it is visited frequently on 

successful trajectories but not on unsuccessful trajectories. A simple method to find a 

subgoal is to calculate the probability of being a subgoal for all states by: 

 ( ) ( )* 1 ( )P s P s B P s B+ −⎡ ⎤= ∈ − ∈⎣ ⎦  (10) 

where B+  and B−  are successful bag and unsuccessful bag. The states with high 
probability and not surrounding the starting and ending states are considered as subgoals. 
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3.2 Learning a skill 

After finding a subgoal, a new policy should be trained to attain it. Most of previous 
researchers assume that the environment is observable therefore they can use a plain table to 
store Q values for the new policy (Girgin et al., 2006), (McGovern & Barto, 2001), (Menache 
et al., 2002), (Simsek & Barto, 2005). However, it can’t be done in POMDPs. In our system, a 
policy using a RNN is trained to attain this subgoal by experience replay as described in 
(Lin, 1992) with a pseudo reward function once we can find a subgoal.  

3.3 Integration 

In full observable environments, we can use skills as options in RL by adding these options 
to the action set of the agent. These options are considered as macro actions. New elements 
are inserted into the table to predict Q values of these macro actions. Update one value in a 
table doesn’t affect the others. However, it is hard to apply directly these methods in RL 
with RNN because update a neural network connection’s weight will affect all other 
previous Q values. Furthermore, only in some parts of the whole state space, we can execute 
an option. That means if we add one more output unit for an option, it is very easy to lose 
the previous learned Q values for that option. 
In this chapter, our proposed method Reinforcement Learning using automatic discovery of 
SubGoals (RLSG) doesn’t use generated skills as options but as components of the RNN to 
predict Q value for the main policy. All elements of previous learned neural networks 
except input and output units are integrated into the main RNN. Our previous works show 
that it is possible to speed up learning performance by reuse previous policies in similar 
tasks (Le et al., 2007). Similar as in supervised learning, the new RNN is composed from all 
learned RNNs with or without new hidden units (Carroll & Peterson, 2002), (Carroll et al., 
2001), (Kirschning et al., 1995), (Jordan et al., 1994). The previous connections can be frozen 
or trainable. Our previous work (Le et al., 2007) also shows that Mixture of Experts System 
(MES) is the best among several integration methods. After integration, the agent continues 
to learn to accomplish its task using the new policy. 

3.5 Mixture of Experts System (MES) 

In MES, we merge the original network and all learned sub-networks in order to make a 
new network as shown in Fig. 4. Learned connections are considered as experts in the new 
network to speed up learning performance (Jordan et al., 1994). All connections are 
trainable. I.e., we can change the weight of any connection. 

4. Experiment 

In order to examine the learning ability of RLSG, we performed two experiments in the E 
maze problem and in the Virtual Office problem. In the first and the second experiments, 
RLSG uses online generated RSNs with one and two useful skills respectively. 

4.1 E maze problem  
An agent must learn to move from a starting position S to a goal position G. Observation at 
each position is shown in Fig. 5. The agent can choose one of four actions: North, East, 
South, and West. Executing any action, the agent receives a reward -1. If the agent can reach 
the goal it receives a reward 10. An episode is terminated when the agent reaches the goal or 
the agent has executed 100 actions.  

www.intechopen.com



Solving POMDPs with Automatic Discovery of Subgoals 

 

235 

 

Fig. 4. Mixture of Expert System.  

 

Fig. 5. E Maze Problem: The agent must learn to move from S to G. 

We executed RLSG and RL with RNN using softmax exploration method to compare the 
learning performance. The following parameters were used:  discount factor γ = 0.98, 
exploration temperature τ = 1, RNN learning rate α = 0.1, 4 input units, 6 memory cells, 4 
output units. After every 10 episodes, the system evaluates the current RNN. Learning 
process is terminated when the agent can reach the goal in 10 moves using greedy method. 
In this experiment, only one subgoal was allowed to create after 100 first learning episodes. 
For each method, 5 runs were performed. 
Results 
In some runs, state 8 is detected as a subgoal. In the others, state 2 is considered as a 
subgoal. We found that even if the subgoal discovery process wasn’t very perfect, it didn’t 
affect the learning ability. All runs were convergent giving a good policy. Learning 
performance of two methods is shown in Fig. 6. The figure shows RLSG outperforms RL 
with RNN. 

 

Fig. 6. Learning Performance in the E Maze Problem. 
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4.2 The virtual office problem 

An agent must learn to move from the any random starting position in the hall H (the left 

room) to one of the goals in the right rooms (Fig. 7). Observations in the upper right room 

are same as observations in the lower right room except the goal positions. Four actions are 

available: North, East, South, and West. If the agent reaches the goal, it receives a reward 10. 

An episode is terminated when the agent reaches the goal or it has executed 100 actions. 

Again, we executed RLSG and RL with RNN using softmax exploration method to compare 

the learning performance. The following parameters were used:  discount factor γ = 0.98, 

exploration temperature τ = 1, RNN learning rate α = 0.1, 6 input units, 6 memory cells, 4 

output units. After every 10 episodes, the system evaluates the current RNN. Learning 

process is terminated when the agent can reach one goal from any starting position in 10 

moves using greedy method. Two subgoals were allowed to create after 30 first learning 

episodes. For each method, 10 runs were performed. 

 

 

Fig. 7. Virtual Office Problem: D1, D2 are doors between hall and rooms. 

 

 

Fig. 8. Learning Performance in the Virtual Office Problem. 

Results 

In this experiment, all the states in the rights rooms, located near the goals, weren’t 

considered as subgoals. Two doors were detected as subgoals. Again, all runs were 

convergent giving a good policy. Learning performance of two methods is shown in Fig. 8. 

The figure also shows RLSG outperforms RL with RNN. 
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5. Conclusion 

In this chapter, we have proposed Reinforcement Learning using Automatic Discovery of 
Subgoals to accelerate learning of RL with RNN by profiting useful skills. Hidden units and 
their connections of RNNs, which are used by generated skills, are integrated into the RNN 
of the main policy. Experiment results of the E maze problem and the virtual office problem 
show the potential of this method.  
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