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A Generic Framework for 
 Soft Subspace Pattern Recognition 

Dat Tran, Wanli Ma, Dharmendra Sharma, Len Bui and Trung Le  
University of Canberra, Faculty of Information Sciences and Engineering 

Australia 

1. Introduction     

In statistical pattern recognition, hidden Markov model (HMM) is the most important 
technique for modelling patterns that include temporal information such as speech and 
handwriting. If the temporal information is not taken into account, Gaussian mixture model 
(GMM) is used. This GMM technique uses a mixture of Gaussian densities to model the 
distribution of feature vectors extracted from training data. When little training data are 
available, vector quantisation (VQ) technique is also effective (Tran & Wagner 2002). In 
fuzzy set theory-based pattern recognition, fuzzy clustering techniques such as fuzzy c-
means and fuzzy entropy are used to design re-estimation techniques for fuzzy HMM, 
fuzzy GMM, and fuzzy VQ (Tran & Wagner 2000).  
The first stage in pattern recognition is data feature selection. A number of features that best 

characterises the considering pattern is extracted and the selection of features is dependent 

on the pattern to be recognised and has direct impact on the recognition results. The above-

mentioned pattern recognition methods cannot select features automatically because they 

treat all features equally. We propose that the contribution of a feature to pattern 

recognition should be measured by a weight that is assigned to the feature in the modelling 

process. This method is called soft subspace pattern recognition. There have been some 

algorithms proposed to calculate weights for soft subspace clustering (Huang et al. 2005, 

Jing et al. 2007). However a generic framework for the above-mentioned modelling methods 

has not been built. 

A generic framework for soft subspace pattern recognition will be proposed in this chapter. 

A generic objective function will be designed for HMM and maximizing this function will 

provide an algorithm for calculating weights. Other weight calculation algorithms for GMM 

and VQ will also be determined from the algorithm for HMM.  

The proposed soft subspace pattern recognition methods will be evaluated in network 

intrusion detection. Some preliminary experiments have been done and experimental results 

showed that the proposed algorithms could improve the recognition rates. 

2. Continuous hidden Markov model     

The underlying assumption of the HMM is that the speech signal can be well characterised 
as a parametric random process, and that the parameters of the stochastic process can be O
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estimated in a precise, well-defined manner. The HMM method provides a reliable way of 
recognizing speech for a wide range of applications (Juang 1998, Furui 1997, Rabiner et al. 
1996). 
There are two assumptions in the first-order HMM. The first is the Markov assumption, i.e. 

a new state is entered at each time t based on the transition probability, which only depends 

on the previous state. It is used to characterise the sequence of the time frames of a speech 

pattern. The second is the output-independence assumption, i.e. the output probability 

depends only on the state at that time regardless of when and how the state is entered 

(Huang et al. 1990). A process satisfying the Markov assumption is called a Markov model 

(Kulkarni 1995). An observable Markov model is a process where the output is a set of states 

at each instant of time and each state corresponds to an observable event. The hidden 

Markov model is a doubly stochastic process with an underlying Markov process which is 

not directly observable (hidden) but which can be observed through another set of stochastic 

processes that produce observable events in each of the states (Rabiner & Juang 1993). 

Let },...,,{ 21 TsssS =  and },...,,{ 21 TxxxX = be a sequence of states and a sequence of 

continuous feature vectors, respectively. The compact notation },,{ BAπ=Λ  indicates the 

complete parameter set of the HMM where   

• }{ iππ = , )|( 1 Λ== isPiπ : the initial state distribution 

• }{ ijaA = , ),|( 1 Λ=== − isjsPa ttij : the state transition probability distribution, and 

• )}({ tjbB x= , ),|()( Λ== jsPb tttj xx : the output probability distribution of feature 

vector tx  in state j. 

The following constraints are applied: 

 1
1

=∑
=

N

i
iπ ,    1

1

=∑
=

N

j
ija ,   and   1)( =∫ tt db xx   (1) 

The HMM parameters are estimated such that in some sense, they best match the 

distribution of the feature vectors in X . The most widely used training method is the 

maximum likelihood (ML) estimation. For a sequence of feature vectors X , the likelihood 

of the HMM is 

 ∏
=

Λ=Λ
T

t
tPP

1

)|()|( xX   (2) 

The aim of ML estimation is to find a new parameter model Λ  such that 

)|()|( Λ≥Λ XX PP . Since the expression in (2) is a nonlinear function of parameters in Λ, 
its direct maximisation is not possible. However, parameters can be obtained iteratively 

using the expectation-maximisation (EM) algorithm (Dempster 1977). An auxiliary function 

Q is used  
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where  js =1
π  is denoted by jsisa == 10

 for simplicity. Setting derivatives of the Q function 

with respect to Λ  to zero, the following reestimation formulas are found 
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where 
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=
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N

j
tt jii

1

),()( ξγ ,    ),|,(),( 1 Λ=== + XjsisPji tttξ   (5) 

The most general representation of the output probability distribution is a mixture of 
Gaussians  

∑
=

Λ=Λ==Λ==
K

k
ttttttj jskPjskPjsPb

1

),,|(),|(),|()( xxx  
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=
K
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where ),|( Λ== jskPc tjk , j = 1,…, N, k = 1,…, K are mixture coefficients, and 

),,( jkjktN Σμx  is a Gaussian with mean vector jkμ and covariance matrix jkΣ  for the kth 

mixture component in state j. The following constraints are satisfied 
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The mixture coefficients, mean vectors and covariance matrices are calculated as follows 
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where the prime denotes vector transposition, and  

 

∑
=

=Λ=
K

n
jnjntjn

jkjktjk
tt

Nc

Nc
jskP

1

),,(

),,(
),,|(

Σμx

Σμx
x   (9) 

In the M-dimensional feature space, the Guassian function can be written as follows 

 ∏
=
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M

m
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1
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where 
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2. Fuzzy subspace continuous hidden Markov model     

It can be observed in (10) that features are treated equally in the HMM. In order to 
differentiate the contribution of features, we propose to assign a weight to each feature as 
follows 

 [ ]∏
=

Λ==
M

m

jkm
w

ttmjkjkt jskxPN
1

),,|(),,(
α

Σμx   (12) 

where α
jkmw , m = 1, 2, …, M are components of an M-dimensional weight vector α

jmw , and 

α is a parameter weight for α
jkmw .  Weight values satisfy the following conditions: 

 mw jkm ∀≤≤ 10 , ∑
=

=
M

m
jkmw

1

1   (13) 

The weight values can be determined by considering the following function which is part of 
the Q function in (3): 

 ∑∑
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The basic idea of this approach is to maximize the function ),( ΛΛjQ  over the variable 

α
jkmw  on the assumption that the weight vector α

jmw identifies a good contribution of the 

features. Maximizing the function ),( ΛΛjQ  in (14) using (13) and (15) gives 

 

∑
=

−
=
M

n
jknjkm

jkm

DD

w

1

)1/(1)/(

1

α
  (16) 

where 1≠α and ∑
=

Λ=Λ=−=
T

t
ttmttjkm jskxPjskPD

1

),,|(log),,|( x  

The advantage of this approach is that it does not change the structure of the HMM listed in 

(4) through (11). This means that these equations are still applied in fuzzy subspace HMM. 

Therefore, this approach can be considered as a generic framework and can extend to other 

models that relate to the HMM such as Gaussian mixture model (GMM) and Vector 

Quantization (VQ). Fuzzy subspace GMM can be obtained by setting the number of states in 

fuzzy subspace continuous HMM to one. The VQ will be considered in the next section.  

3. Fuzzy subspace vector quantization 

3.1 Vector quantization  

The VQ modelling is an efficient data reduction method, which is used to convert a feature 
vector set into a small set of distinct vectors using a clustering technique. Advantages of this 
reduction are reduced storage and computation. The distinct vectors are called code vectors 
and the set of code vectors that best represents the training set is called the codebook. Since 
there is only a finite number of code vectors, the process of choosing the best representation 
of a given feature vector is equivalent to quantizing the vector and leads to a certain level of 
quantization error. This error decreases as the size of the codebook increases, however the 
storage required for a large codebook is non-trivial. The VQ codebook can be used as a 
model in pattern recognition. The key point of VQ modelling is to derive an optimal 
codebook which is commonly achieved by using a clustering technique. 

In VQ modeling, the model Λ is a set of cluster centers },...,,{ 21 Kccc=Λ  where 

),...,,( 21 kMkkk ccc=c , k = 1, 2, …, K are code vectors. Each code vector kc  is assigned to an 

encoding region kR  in the partition }{ 21 K,...,R,RR=Ω .  Then the source vector tx  can be 

represented by the encoding region kR  and expressed by 

 ktV cx =)(    if   kt R∈x   (17) 

Let ][ ktuU = be a matrix whose elements are memberships of tx  in the nth cluster, k = 1, 2, 

…, K, t = 1, 2, …, T. A K-partition space for X is the set of matrices U such that 

 kTututku
T

t
kt

K

k
ktkt ∀<<∀=∀∈ ∑∑

== 11

0,1,,}1,0{   (18) 
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where )( tkkt uu x= is 1 or 0, according to whether tx  is or is not in the kth cluster, 

tu
K

k
kt ∀=∑

=1

1  means each tx  is in exactly one of the K clusters, and kTu
T

t
kt ∀<< ∑

=1

0  

means that no cluster is empty and no cluster is all of X because of 1 < K < T. 

3.2 Fuzzy subspace VQ     

The fuzzy subspace VQ method is based on minimization of the ),( ΛΛjQ  function in (14) 

considered as the following sum-of-squared-errors function (the index j for state is omitted) 

 ∑∑ ∑
= = =

=Λ
K

k

T

t

M

m
ktmkmkt dwuWUJ

1 1 1

),,( α   (19) 

where Λ  is included in ktmd , which is the Euclidean norm of )( kt cx − . Applying the 

equations (8) through (16), we obtain the following equations for fuzzy subspace VQ 
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where 

 2)( tmkmktm xcd −= ,  ∑
=

=
M

m
ktmkmkt dwd

1

2α   (23) 

The fuzzy subspace VQ modeling algorithm is summarized as follows: 

1. Given a training data set },...,,{ 21 TxxxX = , where ),...,,( 21 tMttt xxx=x , t = 1, 2,…, T. 

2. Initialize memberships ktu , 1 < t < T , 1 < k < K, at random satisfying (18) 

3. Initialize weight values kmw , 1 < k < K , 1 < m < M at random satisfying (13) 

4. Given α ≠ 1 and ε > 0 (small real number) 

5. Set i = 0 and 0),,(
)( =ΛWUJ
i

. Iteration: 

a. Compute cluster centers using (20) 

b. Compute distance components ktmd and distances ktd  using  (23)  

c. Update weight values using (22) 
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d. Update membership values using (21) 

e. Compute ),,(
)1( Λ+

WUJ
i

 using (19) 

f. If 

 ε>
Λ

Λ−Λ
+

+

),,(

),,(),,(

)1(

)()1(

WUJ

WUJWUJ

i

ii

  (24) 

set ),,(),,(
)1()( Λ=Λ +

WUJWUJ
ii

,    i = i + 1 and go to step (a). 

4. Network anomaly detection  

Assuming Λ is the normal model. Given an unknown network feature vector x, the task is to 

determine x is normal or intrusive. The following algorithm is proposed 

1. Given an unknown network feature vector x and the normal model Λ  

2. Set a threshold value θ 

3. Calculate the minimum distance between x and Λ  

 ),(minmin k
k
dd cx=   (25) 

where d(.) is defined in (23) and kc is the kth code vector in Λ. 

4. If θ<mind  then x is normal else x is intrusive  

It can be seen that when the threshold value increases, the anomaly detection rate and the 

false alarm rate also increase. If the false alarm rate is fixed, we can determine the 

corresponding values for the threshold value and the anomaly detection rate. 

5. Experimental results 

5.1 Network data and attack types 

We consider a sample dataset which is the KDD CUP 1999 dataset. This dataset was based 

on MIT Lincoln Lab intrusion detection dataset, also known as DARPA dataset (DARPA, 

KDD CUP 1999). The data was produced for “The Third International Knowledge Discovery 

and Data Mining Tools Competition”, which was held in conjunction with the Fifth 

International Conference on Knowledge Discovery and Data Mining. The raw network 

traffic records have already been converted into vector format. Each feature vector consists 

of 41 features. The meanings of these features can be found in (Tran et al. 2007). In this 

paper, we ignore features with symbolic values.  

The attacks listed in feature vectors of KDD CUP 1999 dataset come from MIT Lincoln 

intrusion detection dataset web site (KDD CUP 1999). The labels are mostly the same except 

a few discrepancies. The MIT Lincoln lab web site lists 2 types of buffer overflow attack: eject 

and ffb. The former explores the buffer overflow problem of eject program of Solaris, and the 

later explores the buffer overflow problem of ffb config program. Guessing user logon 

names and passwords through remote logon via telnet session is labeled as guess_passwd in 

www.intechopen.com
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the KDD CUP 1999 dataset, but listed as dict on the MIT Lincoln lab web site. Finally, we 

cannot find the counterparts of syslog and warez in the KDD CUP 1999 dataset. In addition to 

the attack labels, the KDD CUP 1999 dataset has also the label normal, which means that the 

traffic is normal and free from any attack.  

5.2 Anomaly detection and false alarm results  

The proposed method for network intrusion detection was evaluated using the KDD CUP 

1999 data set for training and the Corrected data set for testing. For training, the number of 

feature vectors for training the normal model was set to 5000. For testing, there were not 

sufficient data for all attack types, so we selected the normal network pattern and the 5 

attacks which were ipsweep, neptune, portsweep, satan, and smurf. The testing data set contains 

60593 feature vectors for the normal network pattern, and 306, 58001, 354, 1633 and 164091 

feature vectors for the five attacks, respectively.  

We also conducted a set of experiments for the network data using the normalization 

technique as follows 

 
m

mtm
tm

x
x

σ
μ−

=' , ∑
=

−=
T

t
mtmm x

T 1

||
1 μσ   (26) 

where tmx is the mth feature of the tth feature vector, mμ the mean value of all T feature 

vectors for feature m, and mσ  the mean absolute deviation.  

Anomaly detection rates versus false alarm rates are presented in Tables 1, 2, 3, and 4, 

where the codebook size is set to 4, 8, 16, and 32, respectively. The value of α was set to 4. 

All network data were normalised. We chose 5 false alarm rates (in %) which were 0.0, 0.1, 

1.0, 10.0, and 100.0 to compare the corresponding anomaly detection rates for the standard 

VQ modelling and the proposed fuzzy subspace VQ modeling method. The ideal value 

for false alarm rate is 0.0, and from the 4 tables, we can see that the fuzzy subspace VQ 

performed outperformed the standard VQ modeling even with the smallest codebook 

size. 

All the considered methods could not achieved the highest anomaly detection rate of 100% 

even though we changed the threshold value to accept all attack patterns (i.e., the false 

alarm rate is 100%). With codebook size of 32, the fuzzy subspace VQ modeling achieved 

very good results even with the lowest false alarm rate. The training data set contained 5000 

feature vectors. If all training data for the normal pattern were used to train the model, the 

result would be better. 

 
 

False Alarm Rate (in %) 
Modelling 

0.0 0.1 1.0 10.0 100.0 

VQ 45.6 46.1 46.7 48.4 77.4 

Fuzzy Subspace VQ 98.1 98.1 98.3 98.4 98.8 

Table 1. Anomaly detection results (in %). Codebook size = 4 
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False Alarm Rate (in %) 
Modelling 

0.0 0.1 1.0 10.0 100.0 

VQ 45.9 50.8 54.2 60.3 79.6 

Fuzzy Subspace VQ 98.2 98.3 98.3 98.5 98.9 

Table 2. Anomaly detection results (in %). Codebook size = 8 

 

False Alarm Rate (in %) 
Modelling 

0.0 0.1 1.0 10.0 100.0 

VQ 64.9 81.2 82.1 83.3 94.8 

Fuzzy Subspace VQ 98.8 98.9 98.9 98.9 99.2 
 

Table 3. Anomaly detection results (in %). Codebook size = 16 
 

False Alarm Rate (in %) 
Modelling 

0.0 0.1 1.0 10.0 100.0 

VQ 83.5 84.7 86.5 87.0 95.0 

Fuzzy Subspace VQ 98.9 99.0 99.0 99.0 99.3 
 

Table 4. Anomaly detection results (in %). Codebook size = 32 

5. Conclusion  

We have proposed a generic framework for soft subspace pattern recognition. The 
framework has been designed for continuous hidden Markov model. The framework for 
fuzzy subspace Gaussian mixture model has been extracted by setting the number of 
states in continuous hidden Markov model to one. With an assumption on covariance 
matrix and density, a fuzzy subspace model for vector quantization has been determined. 
The proposed methods are based on fuzzy c-means modeling to assign fuzzy weight 
values to features depending on which subspace they belong to. We have also applied the 
vector quantization model to anomaly network detection problem. We have used the 
KDD CUP 1999 dataset as the sample data to evaluate the proposed methods. The fuzzy 
subspace vector quantization method outperformed the standard vector quantization 
model.  

6. References 

Anderson R. and Khattak A. (1998). The use of Information Retrieval Techniques for 

Intrusion Detection, in First International Workshop on Recent Advances in 

Intrusion Detection (RAID'98), Louvain-la-Neuve, Belgium 

www.intechopen.com



 Theory and Novel Applications of Machine Learning 

 

206 

Balasubramaniyan, J. S., Garcia-Fernandez, J. O. et al. (1998). An Architecture for Intrusion 

Detection using Autonomous Agents, in Proceedings of the 14th IEEE ACSAC, 

Scottsdale, AZ, USA, pp. 13-24 

Caruso C. and Malerba D. (2004). Clustering as an add-on for firewalls, Data Mining, WIT 

Press 

Chan, P. K., Mahoney, M. V., and Arshad, M. H. (2003). A Machine Learning Approach to 

Anomaly Detection, Technical Report CS-2003-06 

DARPA Intrusion Detection Evaluation Data Sets 1999, available at 

http://www.ll.mit.edu/IST/ideval/data/data\_ index.html 

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1997). Maximum Likelihood from 

Incomplete Data via the EM algorithm, Journal of the Royal Statistical Society, Ser. B, 

39: pp. 1-38 

Eskin, E. (2000). Anomaly Detection over Noisy Data Using Learned Probability 

Distributions, in the 17th International Conference on Machine Learning, Morgan 

Kaufmann, San Francisco, USA, pp. 255-262 

Furui, S. (1997). Recent advances in speaker recognition, Patter Recognition Lett., vol. 18, pp. 

859-872 

Huang, J.Z., Ng, M.K., Rong, H., and Li, Z. (2005). Automated Variable Weighting in k-

means Type Clustering, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 

27, no. 5, pp. 657-668 

Huang, X., Acero, A., Alleva, F., Huang, M., Jiang, L., and Mahajan, M. (1996). From 

SPHINX-II to WHISPER: Making speech recognition usable, chapter 20 in 

Automatic Speech and Speaker Recognition, Advanced Topics, edited by Chin-Hui Lee, 

Frank K. Soong, and Kuldip K. Paliwal, Kluwer Academic Publishers, USA, pp. 

481-508 

Jing, L., Ng., M. K., Huang, J. Z., (2007). An entropy weighting k-means algorithm for 

subspace clustering of high-dimensional sparse data, IEEE Transactions on 

Knowledge and Data Engineering, vol. 19, no. 6, pp. 1026-1041 

Juang, B.-H. (1998). The Past, Present, and Future of Speech Processing, IEEE Signal 

Processing Magazine, vol. 15, no. 3, pp. 24-48 

KDD CUP 1999 Data Set, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 

Stanifor, Hoagland and McAlerney (2002). Practical Automated Detection of Stealthy 

PortScans, Journal of Computer Security, vol. 10, no. 1, pp. 105-136 

Kulkarni. V. G. (1995). Modeling and analysis of stochastic systems, Chapman & Hall, UK 

Li X. and Ye N. (2004). Mining Normal and Intrusive Activity Patterns for Computer 

Intrusion Detection, in Intelligence and Security Informatics: Second Symposium 

on Intelligence and Security Informatics, Tucson, USA, Springer-Verlag, vol. 3073, 

pp. 1611-3349 

Lee W. and Xiang D. (2001). Information theoretic measures for anomaly detection, in IEEE 

Synposium on Security and Privacy, pp. 130-143 

Mahoney, M. V. and Chan, P.K. (2001). PHAD: Packet Header Anomaly Detection for 

Identifying Hostile Network Traffic, Technical report, Florida Tech., CS-2001-4 

Mahoney, M. (2003). Network Traffic Anomaly Detection Based on Packet Bytes, Proc. 

ACM. Symposium on Applied Computing, pp. 346-350 

www.intechopen.com



A Generic Framework for Soft Subspace Pattern Recognition 

 

207 

Ourston, D., Matzner, S., et al. (2004). Coordinated Internet attacks: responding to attack 

complexity, Journal of Computer Security, vol. 12, pp. 165-190 

Paxson, V. (1998). Bro: A system for detecting network intruders in real-time, in Proceedings 

of the 7th USENIX Security Symposium, Texas, USA, pp. 3-7 

Portnoy, L., Eskin, E., and Stolfo, S. (2001). Intrusion detection with unlabeled data using 

clustering, in Proceedings of ACM CSS Workshop on Data Mining Applied to 

Security (DMSA-2001), Philadelphia, USA, pp. 333-342 

Rabiner, L. R., Juang B. H., and Lee, C. H., (1996). An Overview of Automatic Speech 

Recognition, chapter 1 in Automatic Speech and Speaker Recognition, Advanced Topics, 

edited by Chin-Hui Lee, Frank K. Soong, and Kuldip K. Paliwal, Kluwer Academic 

Publishers, USA, pp. 1-30 

Rabiner, L. R. and Juang, B. H. (1993). Fundamentals of speech recognition, Prentice Hall PTR, 

USA 

Sherif, J.S., Ayers, R. and Dearmond, T. G. (2003). Intrusion Detection: the art and the 

practice, Part 1. Information Management and Computer Security, vol. 11, no. 4, pp. 

175-186 

Sherif J.S. and Ayers R. (2003). Intrusion detection: methods and systems, Part II. Information 

Management and Computer Security, vol. 11, no. 5, pp. 222-229 

Stolfo, S.J. , Fan, W., Lee, W., Prodromidis, A. and Chan, P.K. (2000). Cost-based Modeling 

and Evaluation for Data Mining With Application to Fraud and Intrusion 

Detection: Results from the JAM Project, in Proceedings of DARPA Information 

Survivability Conference and Exposition, 2000, pp. 1130-1144 

Taylor C. and Alves-Foss, J. (2002). An Empirical Analysis of NATE: Network Analysis of 

Anomalous Traffic Events, in 10th New Security Paradigms Workshop, Virginia 

Beach, Virginia, USA, pp. 18-26 

Taylor C. and Alves-Foss J. (2001). NATE: Network Analysis of Anomalous Traffic Events, a 

low-cost approach, in Proceedings of New Security Paradigms Workshop, 

Cloudcroft, New Mexico, USA, pp. 89-96 

Tran D., Ma W., Sharma D. and Nguyen T. (2007). Fuzzy Vector Quantization for Network 

Intrusion Detection, IEEE International Conference on Granular Computing, Silicon 

Valley, USA 

Tran D., Ma W., and Sharma D. (2008). Automated Feature Weighting for Network 

Anomaly Detection, IJCSNS International Journal of Computer Science and Network 

Security, Vol. 8  No. 2  pp. 173-178 

Tran D. and Wagner M. (2002). Generalised Fuzzy Hidden Markov Models for Speech 

Recognition, Lecture Notes in Computer Science: Advances in Soft Computing - AFSS 

2002, N.R. Pal, M. Sugeno (Eds.), pp. 345-351, Springer-Verlag. 

Tran D. and Wagner M. (2000). A General Approach to Hard, Fuzzy, and  

Probabilistic Models for Pattern Recognition, Advances in Intelligent Systems: Theory 

and Applications, M. Mohammadian (ed.), pp. 244-251, IOS Press, Netherlands 

Yasami, Y., Farahmand, M., Zargari, V. (2007). An ARP-based Anomaly Detection 

Algorithm Using Hidden Markov Model in Enterprise Networks, Second 

International Conference on Systems and Networks Communications, pp. 69 - 

75  

www.intechopen.com



 Theory and Novel Applications of Machine Learning 

 

208 

Yang, H., Xie,  F. and Lu, Y. (2006). Clustering and Classification Based Anomaly Detection, 

Lecture Notes in Computer Science, vol. 4223, pp. 1611-3349 

www.intechopen.com



Theory and Novel Applications of Machine Learning

Edited by Meng Joo Er and Yi Zhou

ISBN 978-953-7619-55-4

Hard cover, 376 pages

Publisher InTech

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Even since computers were invented, many researchers have been trying to understand how human beings

learn and many interesting paradigms and approaches towards emulating human learning abilities have been

proposed. The ability of learning is one of the central features of human intelligence, which makes it an

important ingredient in both traditional Artificial Intelligence (AI) and emerging Cognitive Science. Machine

Learning (ML) draws upon ideas from a diverse set of disciplines, including AI, Probability and Statistics,

Computational Complexity, Information Theory, Psychology and Neurobiology, Control Theory and Philosophy.

ML involves broad topics including Fuzzy Logic, Neural Networks (NNs), Evolutionary Algorithms (EAs),

Probability and Statistics, Decision Trees, etc. Real-world applications of ML are widespread such as Pattern

Recognition, Data Mining, Gaming, Bio-science, Telecommunications, Control and Robotics applications. This

books reports the latest developments and futuristic trends in ML.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Dat Tran, Wanli Ma, Dharmendra Sharma, Len Bui and Trung Le (2009). A Generic Framework for Soft

Subspace Pattern Recognition, Theory and Novel Applications of Machine Learning, Meng Joo Er and Yi Zhou

(Ed.), ISBN: 978-953-7619-55-4, InTech, Available from:

http://www.intechopen.com/books/theory_and_novel_applications_of_machine_learning/a_generic_framework

_for_soft_subspace_pattern_recognition



© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


