L=

. L . -
View metadata, citation and similar papers at core.ac.uk brought to you by ,i CORE

provided by IntechOpen

We are IntechUpen,

the world’s leading publisher of

Open Access books
Built by scientists, for scientists

4,800 122,000 135M

Open access books available International authors and editors Downloads

Our authors are among the

154 TOP 1% 12.2%

Countries delivered to most cited scientists Contributors from top 500 universities

pTE AN
Q)Q ¢, ;,))

G

“ BOOK
CITATION
INDEX

NDEXE®

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

https://core.ac.uk/display/322387772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Open Access Database www.intechweb.org

12

TempUnit: A Bio-Inspired
Spiking Neural Network

Olivier F. L. Manette
Unité de Neurosciences Intégrative et Computationnelle (UUNIC), CNRS
France

1. Introduction

Formal neural networks have many applications. Applications of control of tasks (motor
control) as well as speech generation have a certain number of common constraints. We are
going to see seven main constraints that a system based on a neural network should follow
in order to be able to produce that kind of control. Afterwards we will present the TempUnit
model which is able to give some answers for all these seven criteria.

1.1 Learning

Neural networks show usually a certain level of learning abilities, (Hornik, 1991). In the case
of systems of motor control or of speech generation those learning skills are particularly
important. Indeed they enable the system to establish the link between the motor command
and the act as it has been achieved. In real systems (not simulated), biological or machines,
the effector could evolve for all sort of reasons such as limb growth or injury for biological
systems; For artificial systems, the reason could be some breakage or a subsystem
malfunction. It has also been demonstrated that the motor command is directly related to
the characteristics of the effector (Bernstein, 1967; Hogan & Flash, 1987; Gribble & Ostry,
1996). Thus learning capabilities should be permanently maintained: it is necessary that the
neural network is able to evolve its transfer function. In this case, because the aim is to learn
the link between a desired output (the effector activity) and a given input (the motor
command), it is called supervised learning.

1.2 Inverse model

Several models of motor control exist but we can globally group them into two categories:
reactive (Sherrington, 1906/1947) and predictive (Beevor, 1904). Reactive models usually
work as a closed loop, in which a very imprecise motor command is sent and is then
updated using sensory feedbacks. For most movements, for instance, the basket ball throw
(Seashore, 1938; Keele, 1968; Bossom, 1974; Taub, 1976), sensory feedback is simply too slow
to enable efficient motor control. In this chapter, we will focus particularly on predictive
models. Predictive models imply the calculation of a forward function which gives, from a
given motor command, a prediction of the effector activity (Desmurget & Grafton, 2000).
This type of function can be very useful because it enables the result of a given command to
be simulated without the need to effectively carry it out. However, the inverse function is

Source: Theory and Novel Applications of Machine Learning, Book edited by: Meng Joo Er and Yi Zhou,
ISBN 978-3-902613-55-4, pp. 376, February 2009, |-Tech, Vienna, Austria

www.intechopen.com

168 Theory and Novel Applications of Machine Learning

much more useful because it enables determination of the motor command from a desired
motor output. Theory of motor control predicted the need for an inverse model (Berthoz,
1996) in the brain to enable calculation of the motor command (Shadmehr & Mussa-ivaldi,
1994; Wolpert et al., 1995; Kawato, 1999). The use of an inverse function enables the system
to calculate by itself the motor command that leads to a specific desired result, which is a
great advantage.

1.3 Syntax

In linguistics, syntax is the group of rules that defines the chain of words to form sentences.
In control of speech production, it is easy to understand why the system needs to be able to
respect those syntax rules. But it should also be the case in control of movements and it is
even more important than in speech generation. Indeed, while a limb is in a particular
position, it is simply impossible to immediately reach any other arbitrary position. From a
given position of a limb, only a few other positions are accessible, otherwise some bad
command could possibly damage the system if those rules are not respected. The neural
network in charge of the overall control of the system should therefore necessarily respect
scrupulously those chaining rules from one state to another state of the system.

1.4 Decision node

The lack of flexibility is generally the main problem in a feed-forward system: a system
should be able to interrupt the execution of a motor program to change direction in order to,
for example, ward off an unexpected disruption. Hence, a process able to manage decision
nodes at every single time step, with the aim of enabling the system to evolve in different
directions, should be integrated.

1.5 Respect of the range limits

Keeping the system in the range of possible values is another important constraint for a task
control system. Also, some mechanism able to handle aberrant values has to be integrated in
order to avoid damage to the system.

1.6 Complexity

The choice of the neural network architecture is also an important issue since it is absolutely
necessary to use an architecture adapted to the problem to be solved. An under-sized
network will not be able to obtain the expected results with the desired level of
performance. Conversely, an over-sized network can show problems such as over-learning,
i.e. an inability to correctly generalize the data, possibly even to the point of learning the
noise. It is therefore important to obtain a system adapted to the desired task and a clear
way to find the best fit architecture.

1.7 Parsimony

In a predictive model, the system includes a feed-forward module that gives the predicted
motor activity from a motor command. It is then equivalent to encoding the motor activity
in the command domain. A well designed system should limit the command size at its
maximum. It does mean maximize the information compression rate.

www.intechopen.com

TempUnit: A Bio-Inspired Spiking Neural Network 169

1.8 Suggested solution

The choice of a transfer function is generally a problem for formal neural networks, because
they should be determined “by hand” after several trials. After having been chosen, the
transfer function does not evolve anymore and limits the future neural network abilities in a
decisive behavior. Furthermore, there exist only empirical solutions to determination of the
number of neurons or the size of the hidden layer (Wierenga & Kluytmans, 1994; Venugopal
& Baets, 1994; Shepard, 1990).

The behavior of the TempUnit model presented below enables us to give some solutions to
these problems found in common formal neural network models. TempUnit does not have a
fixed transfer function but is able to learn the best adapted one to fit the desired signal. The
basic principle is quite simple because it is only based on the principle of temporal
summation such as has been observed in biological neurons. In order to keep thinking at a
biologically inspired level, the input of each TempUnit neuron is a spikes train: only binary
values. We will now develop in the following the reasons why TempUnit is a particularly
well-adapted model for satisfying all the constraints previously discussed.

2. The tempUnit model

2.1 Temporal summation and straight forward function

The TempUnit model is based on the mechanism of the temporal summation of post-
synaptic potentials as observed in biological neurons (e.g. Rieke et al, 1996). TempUnit
means simply “Temporal summation unit’. When a spike arrives at a synaptic bouton it
triggers a local potential in the soma of the post-synaptic neuron. If many spikes arrive at a
fast enough rate, the triggered potentials are summed in the post-synaptic neuron to shape a
global membrane activity. This new global temporal activity of the post-synaptic neuron
depends only on the structure of the input spikes train from the pre-synaptic neurons. In
fact, this principle, as noticed in biological neurons, can be generalized to any serial system
where the output is only correlated to the input. A TempUnit network can be considered in
this form as a binary-analog converter whose output is totally deterministic, as we shall see
later. Furthermore, biological neurons have, in common with TempUnit, a deterministic
behavior, as shown by empirical (Mainen & Sejnowski, 1995).

In the simplest case, a TempUnit network is composed of only a single pre-synaptic neuron
which is the input and a post-synaptic neuron which is the location of the temporal
summation. r is the result of the temporal summation, the membrane activity, x is the
spiking activity of the pre-synaptic neuron and v is the post-synaptic potential or basis
function. To simplify we will work on a discrete time level. The potential v lasts p time
steps. p will define for the rest of this article the size of the vector v. It is then possible from
those parameters to write the membrane potential r of the post-synaptic neuron as a
function of time ¢:

14

T(t) = z Xt—p+iVi (1)

i=1

The u® vector can define the sequence of values from x,_, to x,, which means the sequence
of the input activity x from time step t — p to time step t. It implies that the u vector is also
of size p like the v vector. We can hence simplify equation 1 in this manner:

www.intechopen.com

170 Theory and Novel Applications of Machine Learning

p

r(t) = z ufv; = utv)

i=1

2.2 Supervised learning

The learning skills of the TempUnit neurons have been already demonstrated in Manette
and Maier, 2006 but the learning equations have not been explicitly published. Let f(t) be a
temporal function that we wish to learn with TempUnit. The learning algorithm should
make r(t) reach f(t) by modifying the weights v; of the basis function vector. For every i
from 1 to p, it is possible to follow this rule:

dv;(t
Videlap: i(8)

= V(f(t) - T(t))xt—p+i 3)

This equation gives very good results and a very good convergence; see Manette & Maier,
2006, for more details.

2.3 Evolution of r analysis
Let us see how the output signal evolves as a function of the time and as a function of the
basis function v:

p
dr(t) B . .
- Yerp + u; (Viog —v) | —uivg 4)

i=2

We observe in equation 4 that dr(t)/dt shows an evolution depending only on the new
input value: x,,,, which indicates that this is a decision node depending on the new binary
value x;.,. Thus the next spike is able to define if the following time activity of the
TempUnit will follow one direction or another.

2.4 The graph of the neural activity
Equation 4 shows that the output of the TempUnit neuron can at every time step takes two
different directions depending on the new binary input, i.e. whether a new spike arrives at
instant t+1 or not. According to this principle, it is thus possible to build a graph that
represents the entire neuron activity. We can define, F as a vector space and (cy,*,¢,) a
basis of F. In the current case with only one input (pre-synaptic neuron) and only one
TempUnit (post-synaptic neuron), n = 2. We can, using this vector space, project the entire
set of input vector u® by calculating the coordinates c; and ¢, as follows:

(

| c1

llt

®)

t

AM“HM“’

www.intechopen.com

TempUnit: A Bio-Inspired Spiking Neural Network 171

Given that every u vector is of size p, as defined earlier, and contains only binary data, there
exist exactly 2P different input vectors. Our vector space contains thus this exact amount of
nodes. Every vector u' is thus represented in the vector space by a point with coordinates
(ct, ¢}). According to equation (4), every single point in this vector space is a decision node
from where it is possible to follow two different paths on the graph through two different
nodes. We can calculate the coordinates of the vertices that connect the nodes to each other:

t —

p
-1 i-1,,t t
Zp xt+1 - Z 2 ul - u1
i=2
4/= p

lxtﬂ + 2 2P~ iyt — 2P~ 1yt
i=2

The coordinates of vertices a depend only on uf, i.e. directly from the previous node in the
vector space, and on the presence or absence of a spike at the next time step t+ 1. As a
consequence, at every node in the space F as defined by the basis (c;, c;), there exist only
two vertices reaching two other nodes of this space. Thus there exist 2P*! vertices in the
space F.

(c1, ¢;) makes a basis because every vector u’ can be associated with only a unique pair of
coordinates in space F. It is therefore easy to move from a vector u’ to the coordinates of a
particular node of the graph and vice versa. In reality, c; and ¢, are both a basis and it is
unnecessary to know both coordinates of a specific node to be able to identify the related
vector u'. Let us take the case of the calculation of vector u* using only c,:

(6)

fori=1: {ui =1sici>2p1

ul = 0else

i-1
t -t -1 —ja.,t
u; =1sic; = (2P + E 2P~y
Vi from2top : ' 2 (j=1 1)

uf = 0else

Example:

To illustrate this, we will calculate the coordinates of the node in F of the vector ut = [0010].
In this case, u§ = 1 while u{ = u} = u} = 0, so that, taking into account equation (5), we can
calculate the coordinates ¢; and ¢, which are: ut = (2371,2%73) = (4,2). From equation (6),
we can calculate also the two vertices at and a} from this node: a} = [-2,2] and a& = [6,3].
We know then that from the original node u® it is possible to reach the next node of
coordinates u‘*! = (2,4) or the other node u‘*! =(10,5). Using equation (7) we can
determine the corresponding input vectors ut*! = [0100] and u**! = [0101] respectively.
Graphical representation:

In the case of only one TempUnit with only one binary input, it is still possible to make a
graphical representation of the graph of the neural activity. It is then easier to understand
how information is organized on the graph. Figure 1 presents in a schematic fashion a very
small graph of neuronal activity containing only 16 nodes.

Figure 2, by contrast, is drawn using the exact coordinates ¢; and c, as calculated from
equation (5), with vertices as calculated from equation (6).

www.intechopen.com

172 Theory and Novel Applications of Machine Learning

Fig. 1. This diagram illustrates the organization of a graph of neural activity for a TempUnit
which has a basis function of four time steps in length. This makes, therefore sixteen
different combinations of the inputs which are represented by a colored circle, red or blue as
a function of the presence or absence of a spike in the bin at the extreme left respectively.
Absence of a spike in a bin is represented with a ‘0" in the 4-element code in every circle.
Presence of a spike is symbolized with one of the letters w, x, y or z depending on the
position of this specific spike within the train of four time steps. Vertices are drawn with a
colored arrow. Red arrows indicate an increase in the global number of spikes in the input
train u* ; blue arrows indicate the decrease of one spike in the input vector; black color
typify that there is no global modification in the amount of spike but there are no spikes in
the next time step t+1. Pink arrows indicate that there is no modification of the global
number of spikes but a spike will arrive at the next time step.

250 o T e T
Frma, —H
00 P *‘h*"‘*‘x\’&“ N A I
Fa P
BOES P 0N L N)
P T P T e
Y
mn-;fww Vvvvvv A \3\;

A0 &

51
Fig. 2. Graph of the neural activity calculated with Matlab® for 256 nodes. Each node is
represented by an ‘x” and the beginning of each vertex by an arrow. We clearly observe
trends in orientation related to the localization of the vertices.

www.intechopen.com

TempUnit: A Bio-Inspired Spiking Neural Network 173

2.5 Inverse function

It is possible to draw on the same graph of neural activity both the input and the output of
the TempUnit neuron with a particular color code. As well as in figure 2 where we can see
trends in the vertex directions and positions, in figure 3 & 4 we can observe that outputs
values are not organized on a randomly but on contrary as a function of their intensity. Of
course, the organization of the outputs on the graph is directly based on the basis function v.
Nevertheless, in spite of great difference that can be observed from one basis function v (e.g.
fig. 3) to another (e.g. fig. 4), it is still possible to establish some similarities which enable us
to calculate an inverse function.

An inverse function enables calcultation of the input corresponding to a desired output. The
inverse of the function in equation (2) is a surjective function for the most of the sets of
weights in the basis function v and this is the main problem. Because a surjective function
means that for a specified value there can exists more than one possible answer and it is
difficult to determine which of all those possible answers is the one that is needed. Indeed in
figure 3 there are areas of the same color including many input nodes, which means of the
same output values. The graph of neural activity gives a way to determine which of those
possible values is the good one.

2000
1800
1600 & &
1400 b
1200

Cy 1000

800

600

400

200

200 400 GO0 800 1000 1200 1400 1600 1800 2000
1

Fig. 3. Graph of neural activity showing all the possible outputs of a TempUnit neuron using
the same system of coordinates of the input from equation (5). The input u and the basis
function v are in this case of size p = 11 time steps, thus there are 2048 nodes in the graph.

i—(P/Z)Z/Z(p/S)i//
pV2m/5

The basis function v is an inverted Gaussian function: v; = 0.2 — €

The color code represents the intensity of the output value. Red indicates higher values
while blue indicates lower values.

www.intechopen.com

174

Theory and Novel Applications of Machine Learning

2000

: 0.9
1800

0.8
1600
1400
1200

1000

800

600 0.3

400 0.2

200 0.1

200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 4. Graph of neural activity showing the output using a color code. The basis function v

is a Gaussian function: v; = 0.2 —

P 2 2
ei=(/2)2/2(p/5) /p /5 which is compatible with the

“value” type of neural coding (Salinas & Abbott, 1995, Baraduc & Guigon, 2002).

In brief, the inverse function algorithm which from a sequence of temporal desired output
values gives back the path on the graph of the neural activity and then the temporal
sequence of the related input, is composed of five steps:

1.

2.
3.

4.

5.

Determine the set of coordinates on the graph associated with a given output at
time t.

From the set of the selected nodes in 1), calculate the set of nodes for time step t+1.

In the set of nodes for time step t+1 delete all the nodes which do not correspond to the
desired output value at time t+1 and delete as well all the nodes in the subset
corresponding to time step t which are not reaching any of the remaining nodes of the
subset t+1.

Start again from step 1 while in the subset t there is more than one possible solution.
Instant t+1 becomes instant t and instant t+2 becomes instant t+1.

From the sequence of coordinates on the graph, calculate the corresponding binary
input using equation (7).

Why to try to determine on the graph the set of nodes leading to a particular output value?
Simply because on the graph the output values are organized as a function of their intensity,
we will see in the following that only a simple calculation is necessary to find out all the
researched nodes. Another important point is that it is also possible to use the links between
the nodes in order to reduce the indeterminacy of the multiple possible results.

www.intechopen.com

TempUnit: A Bio-Inspired Spiking Neural Network 175

How are the output values organized on the graph?

Studying the relationship between the coordinates of the nodes on the graph r = g(c;), one
observes that it is a periodic function containing multiple imbricated periods and generally
growing especially if v is growing. Periods of g are always the same and are completely
independent of the function v but only depend on p: Ty = 2P~1, T, = 2P~2 etc. ... It is hence
easy from a small amount of data to deduce the complete set of possible output values
because of this known property of periodic functions:

Vil<i<p-—-1: glci +T;) = g(cy) + my 8)

For instance, if p=5, the graph contain 25=32 nodes. The function r = g(c;) has hence 5-1=4
imbricated periods: T; = 2571 =16,T, = 8,T; = 4,T, = 2. To infer all the 32 possible output
values on the graph, one should first calculate r = g(1), r = g(2) then r = g(3) which
following equation (8), allow one to calculate m, = g(3) — g(1). m3 = g(5) — g(1), m, =
g(9) — g(1) and my; = g(17) — g(1). Thus, from only these six values we can deduce the
complete set of the 32 values of the graph. The search algorithm in the output values could
be similar to already known algorithm of search in an ordered list.

Figure 5 shows an example of the function r = g(c;) for a basis function v; = i3. Of course,
the function r = g(c;) varies as a function of v. But, as in figure 4, it is always a periodic
function. Drawing a horizontal line at the level of the desired output value on the y-axis
gives a graphical solution of the point 1) in the inverse function algorithm. The set of
searched-for nodes corresponds to all the coordinates on the x-axis every time the horizontal
line crosses the function r = g(c;). In the case of the example shown in figure 4, one can see
that a specified output value (r) is observed only a few times (maybe 3 or 4 times at
maximum), but depending on the shape of the function v it could be much more.

4500

4000 i

3500 - -
! 1 /

2000 / i f\f

r

2000

500 14
1000

soof [

| | |
] G000 1000 1500 2000 2600

1

Fig. 5. Example of function r = g(c;) with p=11 giving 2048 nodes in the graph of neural
activity. The basis function is v; = i3. The red vector indicates the vector m, while the black
one indicates the vector ms.

www.intechopen.com

176 Theory and Novel Applications of Machine Learning

Once all the nodes have been selected according to a desired output value, one can search
the connected nodes at the next time step. Equation 6 enables us to calculate these connected
nodes at the next time step. All the nodes of the subset selected for time t+1 which are not
associated with the next desired output value at time t+1 are deleted. In addition, all the
nodes from the subset for time t which are after this no longer linked with any other node of
the subset t+1 are also deleted. It is possible to continue with the same principle of deleting
independent nodes which are not linked with any other node of a following subset. The
algorithm finishes when it obtains only one possible pathway on the graph, which should
represent the searched-for input command. Obviously this algorithm gives the exact inverse
function. If there could be some imprecision on the desired output value, this method
should not change except that nodes associated with close values should also be selected
and not only nodes with the exact desired value.

Partial inverse function

In some cases of motor control, it may be better to only ask for the final desired position and
let the system determine by itself all the intermediate steps. On the graph it is easy to
determine all the intermediate values. It is particularly simple to determine all the
intermediate values with the help of the graph. Indeed, the initial state as well as the final
state should be defined by nodes on the graph and the path between those nodes is an
already well known problem because it is equivalent to an algorithm for finding the shortest
path on a graph, about which it is unnecessary to give more details.

2.6 Complexity

Since so far we have only investigated the capacity of a single TempUnit with a single input,
we will next investigate the capacities of other TempUnit network architectures. We will see
in the following that the signal generator abilities of a specified TempUnit network depends
directly on its architecture. Each type of TempUnit network architecture corresponds to a
particular kind of graph with very precise characteristics. The complexity of the neural
network can be calculated based on the complexity of the emergent graph because the graph
represents exactly the way the TempUnit network behaves. This gives a means of
determining in a very precise fashion the kind of neural network architecture needed for a
given type of generated temporal function characteristics.

One TempUnit with many inputs

Taking account all the Sk binary inputs of the TempUnit, equations 1 and 2 become:

P Sk Sk
r(t) = Z 2 Xst-p+iVi = Z Ut Vi (9)
i=1s=1 s=1

Figure 6 gives in a schematic fashion the architecture of equation 9.

Fig. 6. Schema of one TempUnit with several binary inputs.

www.intechopen.com

TempUnit: A Bio-Inspired Spiking Neural Network 177

All the inputs can be summed equally to create a new global u vector and a new global x
vector that contain all the summed input. This architecture is still biologically compatible; in
particular, the resulting potential is much larger for near coincident arrival of spikes
(Abeles, 1991; Abeles et al 1995). The evolution of the output r is then equivalent as what has
been written in equation 4 but encoded with more than 1 bit of information. In this case
every decision node can be connected with more than two other nodes. The global number

of nodes in the graph is: (Sk + 1)

Fig. 7. Because all the inputs are equivalent, the degree of the graph is equal at Sk + 1. In this
example is represented a node at time t with its previous and following connected nodes at
times t - 1 and t + 1 respectively. In the case of one TempUnit with two different binary
inputs, the graph becomes of vertex degree 3.

Many TempUnits with one input
In this case inputs are not equivalent because every input connects to different TempUnit. In
a network of N TempUnits, there are 2V vertices going from and to every node and the

graph contains 2" nodes. Equation 10 shows the calculation of the output in this TempUnit

architecture.
t-1 t t+1

5 \ \ 5
fiy \ £

Fig. 8. Example of a node with its connected nodes at time t - 1 and at time ¢ + 1 fora
network of N =2 TempUnits. In this case the graph of the global neural activity is of vertex

degree 22 = 4,

N
r(t) = Z Z Xje—p+iVij =

i=1j=1

p N
Uz, jVij (10)

= =1

We have seen in this section that the evolution of the graph of neural activity depends

directly on the TempUnit network architecture. The complexity of the graph could be

defined by the number of elementary vertices that it contains, in other word, the number of

nodes that multiply the vertex degree of the graph.

www.intechopen.com

178 Theory and Novel Applications of Machine Learning

3. Conclusion

We have seen in this chapter the central role played by the graph of neural activity helping
to understand the behavior of the TempUnit model. The graph gives the possibility of
calculating the inverse function as well; it is also because of the graph that we can better
understand the relationship between the TempUnit network architecture and its signal
generator abilities. The graph of neural activity represents very clearly the behavior of the
entire TempUnit network. The graph is not really implemented, only the TempUnit model is
as defined on equation 1 or 9. Additionally, the graph of neural activity can be seen as the
“software” while the TempUnit network would be the “hardware”. In any case, a great
advantage of the graph is that all the already-known algorithms in graph theory can then be
applied to TempUnits.

A first use of the graph has been to solve the inverse function problem. Relationship
between the nodes give us a mean to avoid any ambiguity produced by this surjective
function.

In the control of task context, the existence of Central Pattern Generators (CPG) in the brain
has been suggested based on work showing complex movements in deafferented animals
(Brown, 1911; Taub, 1976, Bossom, 1974, Bizzi et al, 1992). Even if couples of “motor
command” /“specific movement” are hardly credible, suggestions of motor schemes
(Turvey, 1977) able to generate sets of specific kinds of movements (Pailhous & Bonnard,
1989) are more appealing. At the same time other data show that the motor activity depends
also on sensory feedback (Adamovich et al, 1997). It would seem that instead of having two
opposite theories, one more predictive using only CPGs and another completely reactive
using mainly reflexes triggered by sensory feedback, a compromise could be found. Indeed,
in considering the neural activity graphs of TempUnit networks one can see that TempUnit
can work as a feedforward function generator. The entire graph could represent a complete
set of a kind of movement while a path in the graph could constitute a particular execution
of this movement. Furthermore, at every time step TempUnit is at a decision corner and the
new direction depends on the inputs. We can imagine a sensory input that can then
influence the TempUnit behavior to be able to adapt the movement command as a function
of the sensory parameters. The TempUnit activity cannot escape from the path defined on
the graph; hence these kinds of networks are naturally shaped to follow constrained rules
like syntax. As well, since it is impossible to reach any arbitrary node from a given specific
node, these kinds of networks are well suited for speech generation or motor control where
it should not be possible to ask the system to reach any arbitrary position of the limb from
another defined position.

4. Acknowledgements

This work was supported by research grant EC-FET-Bio-I3 (Facets FP6-2004-IST-FETPI
15879).

5. References

Abeles M., Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge: Cambridge
University Press., 1991.

www.intechopen.com

TempUnit: A Bio-Inspired Spiking Neural Network 179

Abeles M., H. Bergman, I. Gat, I. Meilijson, E. Seidenmann, N. Tishby, and E. Vaadia,
"Cortical Activity Flips among quasi-Stationary States.," Proc. Natl. Acad. Sci., vol.
92, pp. 8616-8620, 1995.

Adamovich S.V., Levin M.F, Feldman, A.G. (1997) Central modification of reflex parameters
may underlie the fastest arm movement. Journal of Neurophysiology 77: 1460-1469.

Baraduc P. and E. Guigon, "Population computation of vectorial transformations.," Neural
Computation, vol. 14, pp. 845-871, 2002.

Bernstein N.A. (1967) The Coordination and Regulation of Movements. London, Pergamon
Press.

Berthoz A. (1996) Le sens du mouvement. Paris : Odile Jacob

Beevor C.E. (1904). The croonian lectures on muscular movements and their representation in the
central nervous system. London: Adlar

Bizzi E., Hogan N., Mussa-Ivaldi F. A., Giszter S. (1992) Does the nervous system use
equilibrium-point control to guide sigle and multiple joint movements? Behavioral
and Brain Sciences 15: 603-613

Bossom J. (1974). Movement without proprioception. Brain Research 71: 285-296.

Brown T.G. (1911) The intrinsic factors in the act of progression in the mammal. Proceeding
Royal Society, London, Series B, 84: 308-319.

Desmurget M, Grafton S. Forward modeling allows feedback control for fast reaching
movements. Trends Cogn Sci. 4: 423-431, 2000.

Gribble P.L., Ostry, D. J. (1996) Origins of the power law relation between movement
velocity and curvature: modeling the effects of muscle mechanics and limb
dynamics. Journal of Neurophysiology 6: 2853-2860.

Hogan N., Flash T. (1987). Moving gracefully: quantitative theories of motor coordination.
Trends in Neuroscience 10: 170-174.

Hornik K. (1991). Approximation capabilities of multilayer feedforward networks. Neural
Networks 4(2): 251-257

Kawato, M. (1999). Internal models for motor control and trajectory planning. Current
Opinion in Neurobiology, 9, 718-727.

Keele SW. (1968). Movement control in skilled motor performance. Psychology Bulletin 70:
387-403.

Manette, O.F.; Maier, M.A. (2006). TempUnit: A bio-inspired neural network model for
signal processing. Neural Networks, 2006. I[CNN 06. International Joint Conference on.
Page(s):3144 - 3151

Mainen Z. F. and T. J. Sejnowski, "Reliability of spike timing in neocortical neurons," Science,
vol. 268, pp. 1503-1506, 1995.

Pailhous], Bonnard M (1989) Programmation et contréle du mouvement. In : Traité de
psychologie cognitive, C. Bonnet, R. Ghiglione, J-F Richard. (Eds) . Paris : Dunod, 129-
197

Rieke F, Warland D, De Ruyter Van SteveninkR, Bialek W,Characterizing the neural
response in: Spikes: Exploring the Neural Code . Cambridge, MA: MIT Press, 1996.

Salinas E. and L. Abbott, "Transfer of coded information from sensory to motor networks,"
Journal of Neuroscience, vol. 15, pp. 6461-6474, 1995.

Seashore C.E. (1938) Psychology of music. New York: Academic Press.

Shadmehr R, Mussa-Ivaldi F. (1994) Adaptive representation of dynamics during learning of
a motor task. Journal of Neurosciences 14: 3208-3224.

www.intechopen.com

180 Theory and Novel Applications of Machine Learning

Shepherd, G. M. (1990). The Significance of Real Neuron Architectures for Neural Network
Simulations. In: Computational Neuroscience, E. L. Schwartz, ed., chapter 8, pages 82-
-96. A Bradford book, MIT Press.

Sherrington C.S. (1906/1947) The integrative action of the nervous system. Yale University
Press.

Taub E. (1976) Movement in nonhuman primates deprived of somatosensory feedback.
Exercise and sports Science Review 4: 335-374

Turvey M.T. (1977) Preliminaries to a theory of action with reference to vision. In: Perceiving,
acting and knowing: toward an ecological psychology, R. Shaw,]J. Bransford (Eds.),.
Hillsdale, (N.J.) Lawrence Erlbaum Ass.

Venugopal, Venu, Walter R.J. Baets, (1994). "Neural networks and statistical techniques in
marketing research : a conceptual comparison." Marketing Intelligence & Planning
12.7: 30-38.

Wierenga, B. & J. Kluytmans (1994). Neural nets versus marketing models in time series
analysis: A simulation study in: Bloemer,]. e.a., Marketing: its Dynamics and
Challenges, Proceedings 23 rd. EMAC Conference, Maastricht 17-20 May, pp. 1139-
1153.

Wolpert D.M., Gharamani Z, Ardan, M.J. (1995). An internal model for sensorimotor
integration. Science 269: 1179-1182

www.intechopen.com

Theory and Novel Applications of Machine Learning
Edited by Meng Joo Er and Yi Zhou

"Tﬁznf and Novel

-ﬁpplicaﬁons of
Machine Learning

ISBN 978-953-7619-55-4

Hard cover, 376 pages

Publisher InTech

Published online 01, January, 2009
Published in print edition January, 2009

Even since computers were invented, many researchers have been trying to understand how human beings
learn and many interesting paradigms and approaches towards emulating human learning abilities have been
proposed. The ability of learning is one of the central features of human intelligence, which makes it an
important ingredient in both traditional Artificial Intelligence (Al) and emerging Cognitive Science. Machine
Learning (ML) draws upon ideas from a diverse set of disciplines, including Al, Probability and Statistics,
Computational Complexity, Information Theory, Psychology and Neurobiology, Control Theory and Philosophy.
ML involves broad topics including Fuzzy Logic, Neural Networks (NNs), Evolutionary Algorithms (EAs),
Probability and Statistics, Decision Trees, etc. Real-world applications of ML are widespread such as Pattern
Recognition, Data Mining, Gaming, Bio-science, Telecommunications, Control and Robotics applications. This
books reports the latest developments and futuristic trends in ML.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Olivier F. L. Manette (2009). TempUnit: A Bio-Inspired Spiking Neural Network, Theory and Novel Applications
of Machine Learning, Meng Joo Er and Yi Zhou (Ed.), ISBN: 978-953-7619-55-4, InTech, Available from:
http://www.intechopen.com/books/theory_and_novel_applications_of _machine_learning/tempunit__a_bio-
inspired_spiking_neural_network

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE EBHIERFEK6SS iEEPrRE ARG DA E4058TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same
license.

