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1. Introduction 

Reinforcement Learning (RL) is thought to be an appropriate paradigm to acquire policies 
for autonomous learning agents that work without initial knowledge because RL evaluates 
learning from simple “evaluative” or “critic” information instead of “instructive” 
information used in Supervised Learning. There are two well-known types of RL, namely 
Actor-Critic Learning and Q-Leaning. Among them, Q-Learning (Watkins & Dayan, 1992) is 
the most widely used learning paradigm because of its simplicity and solid theoretical 
background. In Q-Learning, Q-vectors are used to evaluate the performance of appropriate 
actions which are selected by choosing the highest Q-value in the Q-vectors. Unfortunately, 
the conventional Q-Learning approach can only handle discrete states and actions. In the 
real-world, the learning agent needs to deal with continuous states and actions. For instance, 
in robotic applications, the robot needs to respond to dynamically changing environmental 
states with the smoothest action possible. Furthermore, the robot’s hardware can be 
damaged as a result of inappropriate discrete actions. 
In order to handle continuous states and actions, many researchers have enhanced the Q-
learning methodology over the years. Continuous Action Q-Learning (Millan et al., 2002) is 
one of the Q-Learning methodologies which can handle continuous states and actions. 
Although this approach is better than the conventional Q-Learning technique, it is not as 
popular as the Fuzzy Q-Learning (FQL) (Jouffe, 1998) because the former is not based on 
solid theoretical background. Whereas CAQL considers neighboring actions of the highest 
Q-valued action in generating continuous actions, the FQL uses theoretically sound Fuzzy 
Inference System (FIS). On the contrary, the FQL approach is more favorable than the 
CAQL. Thus, our proposed approach is based on the FQL technique. 
The FIS identification can be carried out in two phases, namely structure identification 
phase and parameter identification phase. The structure identification phase defines how to 
generate fuzzy rules while the parameter identification phase determines premise 
parameters and consequent parts of the fuzzy rules. The FQL approach mainly focuses to 
handle parameter identification automatically while structure identification still remains an 
open issue in FQL. To circumvent the issue of structure identification, the Dynamic Fuzzy 
Q-Learning (DFQL) (Er & Deng, 2004) is proposed. The salient feature of the DFQL is that it 
can generate fuzzy rules according to the ε-completeness and Temporal Difference criteria O
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so that a FIS can be tuned automatically. From the point of view of structure identification 
and parameter identification, the DFQL is one of the promising approaches for online 
learning. The drawback of the DFQL is that the fuzzy rules cannot be adjusted according to 
the input distribution changes. Once a fuzzy rule has been generated, the rule will remain at 
its initial position and the position of the rule is no longer adjusted. As a consequence, the 
DFQL can generate inappropriate and redundant rules. To circumvent this problem, the 
authors of Dynamic Self-Generated Fuzzy Q-Learning (DSGFQL) (Er & Zhou, 2008) 
proposed to modify membership functions of each rule and delete redundant rules after a 
certain amount of training process. However, the adjustment of fuzzy rules positions is not 
discussed in (Er & Zhou, 2008). In fuzzy clustering, the position of a fuzzy rule is also 
regarded as an important factor that governs the performance of a fuzzy rule. A further 
development of the DSGFQL termed Enhanced Dynamic Self-Generated Fuzzy Q-Learning 
(EDSGFQL) (Er & Zhou) uses the Extended SOM algorithm to overcome the deficiency of 
(Er & Zhou, 2008). 
In this chapter, the Incremental-Topological-Preserving-Map-Based Fuzzy Q-Learning 
(ITPM-FQL) approach is presented. Structure identification is based on the ITPM approach 
so that fuzzy rules will relocate to their appropriate positions after rule generation. The 
ITPM approach is originally inspired by limitations of the SOM algorithm (Kohonen, 1982). 
The early development of online SOM algorithm is the Growing Neural Gas (GNG) (Fritzke, 
1995). But, GNG inserts a neuron only after some fixed training steps. Thus, it is not suitable 
for online learning. In vain of this, the ITPM is developed for online learning and is used in 
CAQL of (Millan et al., 2002). Using the convergence property of SOM, the ITPM can 
automatically generalize the fuzzy rules. In addition, an adaptive learning rate is used to 
adjust the convergence rate of each rule. In the original GNG (Fritzke, 1995), the author used 
a constant learning rate. But constant learning rate for all neurons is found to be not suitable 
in many cases. In our context, some rules might be placed initially far from their appropriate 
locations and some are placed very near to their suitable positions. The rules which are far 
from their right positions should converge with a large learning rate while the rules which 
are near to their appropriate positions should be tuned with a smaller learning rate. Thus, 
we further employ the adaptive learning rate for each rule so that all the positions of fuzzy 
rules can be adjusted adaptively. Similar to (Er & Deng, 2004), (Er & Zhou, 2008) and (Er & 
Zhou), the ε-completeness criterion is adopted in order to generate the fuzzy rules when the 
input space is not well clustered. 

2. Structure of ITPM-FQL 

Similar to the DFQL (Er & Deng, 2004) , the architecture of ITPM-FQL system is also based 
on extended EBF neural networks which are functionally equivalent to Takagi-Sugeno FIS 
system which is shown in Figure 1. 
Layer one is the input layer and it transmits the input variable xi (i=1,2,…,n) to the next layer 
and Layer two carries out fuzzification of each input variable. The membership functions 
are chosen as a Gaussian function of the following form: 

 

(1) 
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where xi is the input state at ith time, Ǎij is the jth membership function of xi, cij is the centers 
and σij is the width of the jth Gaussian membership function of xi. Layer three is the rule 
layer. The number of nodes in this layer represents the number of fuzzy rules. The output of 
the jth rule Rj (j=1,2,… l ) in Layer three is given by 

 

(2) 

 

 

Fig. 1.1. Structure of fuzzy rule sets of ITPM-FQL. 

Normalization takes place in Layer four and can be expressed as follows: 

 

(3) 

Layer five defines output variables by using the center-of-gravity method for defuzzificaiton. 

 
(4) 

where y denotes the value of an output variable and wj is the consequent parameter of the jth 

rule. For the Q-learning based FIS, wj = a j is the action selected through Q-learning in Rj . 

3. Complete algorithm of ITPM-FQL 

In order to understand the proposed ITPM-FQL algorithm, the readers should refer to the 

CAQL (Millan et al., 2002) and the GNG (Fritzke, 1995) and (Holmstrom) because the ITPM-

FQL is an extension of the CAQL technique. Based on CAQL, we make some modifications 
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to the ITPM so that it can be combined with the FQL approach. The complete algorithm of 

the ITPM-FQL is as follows: 

1. Perceive the initial situation X0, adopt the first fuzzy rule from the immediate input 

sensory data and initialize the width and Q-values according to initial built-in 

knowledge. Compute the action U0(X0) based on its current knowledge. 

2. Loop: Take computed action Ut-1(Xt-1 ). 

3. Receive reward zt-1 and observe the next situation Xt. 

4. Find the nearest M-distance unit (best matching fuzzy rule) b’ for any Xt. 

5. Compute the firing strength fj(Xt) for each rule. 

6. Compute the TD error, update Vt(Xt) and update Q-values of the previous action  

Ut-1(Xt-1 ) reward zt-1. 

7. If the ε-completeness is not satisfied (Xt is outside the Membership Function (MF) of 
unit b’), then 
a. If the MF similarity is not satisfied, the new unit u to the ITPM center on Xt and 

initialize the Q-values according to the built-in knowledge. 
b. Adjust the MF functions. 
c. Find the second nearest unit b” to Xt and create the edge from newly added unit u 

to b’ and b”. Remove the edge between b’ and b” if it exists. 
d. Find the best matching rule b’ (i.e. b’  u) and compute the firing strength fj(Xt) for 

each rule based on the new FIS structure. 
e. Reduce the local error Kjt of each rule with a very small factor (i.e. Kjt= Kjt x ef). 

8. Use the Q-values and firing strength fj(Xt) of each rule, compute the global action  
Ut(Xt ). 

9. Update the local error Kb’t and number of winning time wt b’t of the nearest unit b’ as 
follows: 

        a.    Kb’t=Kb’(t-1)+E-distance(b’ , Xt ) 
        b.    wt b’t=wt b’(t-1)+1 
10. Reinforcement Learning: Estimate the Q-value Q(Ut,Xt) for global action Ut(Xt) based 

on the firing strength fj(Xt). 
11. Self Organization: Update the connectivity of the nearest unit b’. 
        a.    Find the second nearest unit b” of Xt. 

        b.    Connect the edge between b’ and b”. If it exists, set the age of this edge to zero. 

        c.     Increase the age of the rest of the edges to b’ by one. 

12. Move the sensory components of b’ and its topological neighbors h to Xt’. 
        a.     Compute the learning rate ηb' of unit b’. 

        b.     Move the sensory components of b’. 

Cb' (t +1) = Cb' (t) +η b' (t)φb' (Xt −Cb' (t)) 

        c.     Compute the learning rate of the neighbour ηh . 

        d.     Move the sensory components of h. 

Ch (t +1) = Ch (t) +η h (t)φ h (Xt −Ch (t)) 

13. Update the eligibility trace. 
14. Remove the edges which are greater than the maximum age (amax). 
15. Xt-1ä Xt; Ut-1(Xt-1)ä Ut(Xt); Go to step 2 if the training process is not finished. 
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Fig. 2. Flowchart of ITPM-FQL algorithm. 

3.1 ε- Completeness Criterion for Rules Generation 

Generation of fuzzy rules in ITPM is only based on the ε-completeness and does not 
consider the performance index, which makes it difficult to obtain suitable values and is not 
applicable for non-TD-based RL methods. The generated fuzzy rules are later adjusted by 
means of the ITPM to their appropriate positions. 

According to the ε-completeness, when an input vector X ∈ RN
 enters the system, the firing 

strength and M-distance between the current observation state X and centers Cj ( j = 1, 2, 3,..., 

l) of the existing fuzzy rules can be calculated as follows: 

 
(5) 
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Where  

)()(
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 (6) 

is the M-distance, ,  and  is defined as 

follows: 

 

(7) 

Next, find 

 
(8) 

If 

 (9) 

where kd is the predefined threshold of ε-completeness and is given by: 

 
(10)

and 

 
(11)

This implies that the existing system does satisfy the ε- completeness criterion and a new 
rule should be considered. If the Euclidean distance does not pass the similarity test as 
mentioned in (Jouffe, 1998), no new rules will be created. Otherwise, a new fuzzy rule with 
Gaussian MFs is allocated with 

 

(12)

The basic idea of similarity process used in (Er & Deng, 2004) is to generate only one rule for 
a predefined topological area. This assumption is only suitable for low density data areas 
and not suitable for those areas which have high density data. High density data areas 
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should be covered with more than one rule to get better performance. So, similarity 
restrictions should be relaxed on these areas. By applying the ITPM structure in FQL, the 
ITPM can adjust centre locations of the rules to their appropriate locations and also solve the 
similarity restriction problems. 

3.2 Adaptive learning rate 
The original ITPM algorithm (Millan et al., 2002) uses the constant learning rate which is not 
suitable in many real-world situations. The fuzzy rules will be generated according to the 
incoming sensory data when the ε-completeness and similar matching criteria failed. So, 
some of the fuzzy rules are initially located near to their appropriate locations while some 
are located far from their designated positions as mentioned in Section 1.1. Each rule should 
have an appropriate learning rate according to their initial positions. 
A rule which is initially in a wrong location starts to be adjusted with a larger learning rate 
first and follows by a small learning rate when it is located in the neighborhood of its 
appropriate location. Similarly, a rule which is initially located in the neighborhood area of 
its appropriate position starts with a small learning rate to ensure that the rule can be finely 
tuned to its desired place. To circumvent the learning problem of the fuzzy rules, an 
adaptive learning scheme is proposed as follows:  

'
' 1 2

max

( )
( ) exp 1 b

b

t
t k kη

⎛ ⎞⎛ ⎞Λ
= − −⎜ ⎟⎜ ⎟⎜ ⎟Λ⎝ ⎠⎝ ⎠

 (13)

1 3

max

( )
( ) exp 1 h

h

t
t k kη

⎛ ⎞⎛ ⎞Λ
= − −⎜ ⎟⎜ ⎟⎜ ⎟Λ⎝ ⎠⎝ ⎠

 (14)

where b' is the best matching fuzzy rule, h denotes the neighboring fuzzy rules of b' and  
ηb' (t) and ηh (t) are the individual learning rates of the best matching fuzzy rule and its 
neighboring rules at a particular time instance t. The terms k2 and k3 are the maximum 
adaptive learning rate and k1 denotes the rate of change of the learning rate. The term Λ max  

is the maximum error radius of a rule, the term Λb' (t) and Λh (t) is the error radius of b' and h 
fuzzy rules respectively and the error radius of each rule, as in (15), can be formulated as 
follows: 

 

(15)

where κ 
j (t) is the accumulated local error and wt j (t) is the number of times won by the 

fuzzy rule at the time instant t . The terms κ 
j (t) and wt j (t) are computed as follows: 

 (16)

 (17)

 (18)

where b’is the best matching fuzzy rule. 
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The neighboring learning rate k3 is usually used 100 times less than k2 in order to favor the 
best matching rule. Similar to the Self Organizing Map, the adaptation process can be 
divided into self-organizing (rough-tuning) phase and convergence (fine-tuning) phase. At 
the convergence phase, the learning rate should be 20 times less than the maximum learning 
rate. Whether the fuzzy rules are in the convergence phase are decided by an error radius 
threshold Λth  as shown in Figure 3. The term k1 is computed according to (13) using Λ th. 
 

 

Fig. 3. Error-radius-based adaptive learning rate. 

The proposed learning rate of the rule is based on the error radius of each rule because the 
error radius indicates the clustering ability of the rules. 

3.3 Generation of global continuous action 
In order to explore the set of possible actions and acquire experiences through reinforcement 
signals, the local action aj for each rule Rj is selected using exploration-exploitation strategy 
as in (Jouffe, 1998), (Er & Deng, 2004), (Er & Zhou, 2008) and (Zhou & Er, 2008) from 
possible discrete actions set A as follows: 

 
(19)

where η denotes exploration, S is the state situation and a is the action in the action set A, 
and q(S,a) is the q-value of action a at state S . Readers can refer to (Jouffe, 1998) and (Sutton, 
1988) for details of the exploration-exploitation strategy. At time step t, the input state is Xt . 
Assume that l fuzzy rules have been generated and the normalized firing strength vector of 

rules is . Each rule Rj has m possible discrete actions A. Local actions selected from A 

compete with each other based on their q-values while the winning local action  of 

every fuzzy rule cooperates to produce the global action (Ut (Xt ) = at ) based on the rule’s 

normalized firing strength, φ j . The global action is given by 

 
(20)

where  is the selected action of rule Rj at time step t. 

3.4 Update of Q-values 
Q-values are also obtained by the FIS outputs, which are inferred from the quality of local 
discrete actions that constitute the global continuous action. The Q function for global action 
Qt (Xt ,Ut ) is computed with the same assumption as that for generation of global continuous 
action, i.e. 
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(21)

where Ut is the global action,  is the selected action of rule Rj at time step t and qt is the q-

value associated with the fuzzy state, state situation, Si and action, . 

Based on TD learning, the Q-values corresponding to the rule optimal actions which defined 
as follows: 

 
(22)

The Q-values are used to estimate the following TD error: 

 
(23)

where rt+1 is the reinforcement signal received at time t+1 and γ is the discount factor used to 
determine the present value of future rewards. Note that we have to estimate this error only 
with quantities available at time step t+1. 
The learning rule based on the TD error is, as in (Jouffe, 1998) and (Er & Deng, 2004) , given 
by 

 
(24)

where  is the learning rate. 

3.5 Eligibility traces 
In order to speed up learning, eligibility traces are used to memorize previously visited rule-
action pairs weighted by their proximity to time step t. Let Trt (Si, aj) be the trace associated 
with discrete action aj of rule Rj at time step t. We have 

 

(25)

where the eligibility rate ǌ is used to weight time steps. 
The parameter updating law given by Eq. (24) becomes, for all rules and actions, 

 

(26)

and the traces are updated between action computation and its application. 

4. Simulation studies and results 

In order to compare the ITPM-FQL with other methodologies, an experimental study has 

been carried out on a Khepera II mobile robot (Nilsson, Online). The aim of the experiment 
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is to design a controller for the mobile robot in order to follow the wall within the range of 

[d-, d+]. The environment which is exactly the same as in (Zhou & Er, 2008) is adopted and 

depicted in Figure 4. The same reward system, as in (Er & Deng, 2004), (Er & Zhou, 2008), 

(Er & Zhou) and (Zhou & Er, 2008) , has been adopted here and the reinforcement signal, r is 

given by 

 

(27)

where d-=0.15 and d+=0.85 which are the same as in (Er & Deng, 2004) , (Er & Zhou, 2008) 

and (Zhou & Er, 2008). 
 

 

Fig. 4. The testing environment. 

The performances of all methodologies are evaluated based on the number of failures and 

reward values at every episode of 1000 control steps as in (Er & Deng, 2004), ), (Er & 

Zhou, 2008), (Er & Zhou) and (Zhou & Er, 2008) . In order to compare the performances, 

we use the mean values during 40 runs over 10 episodes. The same parameter settings, as 

in (Er & Deng, 2004) and (Zhou & Er, 2008) , are adopted, i.e. the FQL controller with 81 

rules, whose MFs satisfy the 0.5 ε-completeness; initial Q value, kq = 3.0; exploration rate, 

Sp = 0.001; discount factor, γ = 0.95; learning rate = 0.05 ; the specific distance range [d-

,d+] = [0.15,0.85] and set of discrete actions A = [−30,−25,−20,−15,−10,−5,0,5,10,15,20,25,30]. 

For CAQL, the width of the receptive field, kr is set to 0.35, learning rate (winning unit) δ = 

0.01 , learning rate (neighboring units) δ r = 0.0001 and the rest are the same as that of 

FQL-81 rules. For DFQL, the parameters are set as follows: ε = 0.5; similarity of 

membership, kmf = 0.3 and the rest of the parameter settings are similar to FQL-81 rules. In 

the DSGFQL and EDSGFQL approaches, the global reward thresholds are set as = 

−0.05 and  = −0.45; heavy local thresholds set as = −0.10 and = −0.30; light 

local reward thresholds values set as = 0 and = −0.20; firing threshold value is k f 

= 0.0002; Kr = 20 , κ = 1.05 and τ = 0.95 . Readers can refer to (Er & Deng, 2004), (Zhou & 

Er, 2008) and (Millan et al., 2002) for parameter settings in details. For the ITPM-FQL 

approach, the following parameters are set: the maximum age amax =100; similarity of 
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membership, kmf = 0.32 because it needs a larger value than the DFQL algorithm so that 

the fuzzy rules can be adjusted without causing many similarity matching rules; the 

maximum error radius Λmax= 2; the error radius threshold Λth = 0.3 (Λth ≤ kmf ) so that the 

fuzzy rule, which has the error radius less than kmf, undergoes convergence phase; the rate 

of change of learning rate, k1 = 3.5; the maximum adaptive learning rates are k2 = 0.03 and 

k3 = 0.0001; the error reducing factor ef=0.995 and the rest of the parameters are the same 

as in (Er & Deng, 2004). 

Figures 5 and 6 compare the performances of the robot during direct training by ITPM-FQL, 

DFQL, DSGFQL, EDSGFQL, CAQL and FQL-81 rules. Judging from the simulation results, 

we can conclude that the proposed approach of ITPM-FQL can produce better performance 

than the FQL-81 rules, CAQL and similar performances to the DFQL in terms of failures and  

 
 

 

                                          (a)                                                                            (b) 

 

 

(c) 

 

Fig. 5. Performance comparisons of ITPM-FQL, DFQL, CAQL and FQL-81 rules (a) Number 
of failures versus episodes (b) Reward values versus episodes (c) Number of generated 
fuzzy rules versus episodes. 
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reward criteria. From the point of number of generated fuzzy rules, the ITPM-FQL approach 

is better than other methodologies which do not have pruning capability because it uses not 

only the ε-completeness to generate the rules but also the convergence property for 

generalization of the rules. Comparing with the approaches which adopt pruning 

mechanism, especially EDSGFQL, the performance of ITPM-FQL is not desirable because it 

does not have the ability to fine tune fuzzy membership functions of the fuzzy rules and 

pruning mechanism. The main advantage of EDSGFQL is that it can delete unnecessary 

rules and maintain the requirement of rules within a certain region. But, the ITPM-FQL 

method achieves the same performance with significantly fewer numbers of rules than the 

DFQL. 

 
 

 
 

                                         (a)                                                                            (b) 

 

 

                                                                                 (c) 

 

Fig. 6. Performance comparisons of ITPM-FQL, DSGFQL and EDSGFQL (a) Number of 
failures versus episodes (b) Reward values versus episodes (c) Number of generated fuzzy 
rules versus episodes. 
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5. Conclusions 

In this study, a new Q-learning-based approach termed ITPM-FQL which can automatically 

generate and tune fuzzy rules based on the online SOM algorithm (ITPM) with ε- 
completeness criterion is proposed. Compared with the original CAQL approach, the ITPM-

FQL uses the ε-completeness criterion instead of predefined Euclidean distance and fuzzy 

reasoning to generate continuous actions. To improve the generalizing ability, adaptive 

learning rate has also been adopted in the ITPM-FQL. Therefore, the ITPM-FQL is 

theoretically superior to the CAQL. Compared to the DFQL, the ITPM-FQL has convergence 

ability in generalizing fuzzy rules, which is lacking in the former approach. Comparative 

studies in the wall-following task show that the proposed method produces more desirable 

overall performance than the DFQL, CAQL and FQL approaches. 
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Probability and Statistics, Decision Trees, etc. Real-world applications of ML are widespread such as Pattern

Recognition, Data Mining, Gaming, Bio-science, Telecommunications, Control and Robotics applications. This

books reports the latest developments and futuristic trends in ML.
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