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1. Introduction 

Fuzzy-logic-based modelling and control is very efficient in dealing with imprecision and 
nonlinearity [1]. However, the conventional approaches for designing Fuzzy Inference 
Systems (FISs) are subjective, which require significant human’s efforts. Other than time 
consuming, the subjective approaches may not be successful if the system is too complex or 
uncertain. Therefore, many researchers have been seeking automatic methods for generating 
the FIS [2]. 
The main issues for designing an FIS are structure identification and parameter estimation. 
Structure identification is concerned with how to partition the input space and determine 
the number of fuzzy rules according to the task requirements while parameter estimation 
involves the determination of parameters for both premises and consequents of fuzzy rules 
[3]. Structure identification and input classification can be accomplished by Supervised 
Learning (SL), Unsupervised Learning (UL) and Reinforcement Learning (RL). SL is a 
learning approach that adopts a supervisor, through which, the training system can adjust 
the structure and parameters according to a given training data set. In [4], the author 
provided a paradigm of acquiring the parameters of fuzzy rules. Besides adjusting 
parameters, self-identified structures have been achieved by SL approaches termed 
Dynamic Fuzzy Neural Networks in [3] and Generalized Dynamic Fuzzy Neural Networks 
in [5]. However, the training data are not always available especially when a human being 
has little knowledge about the system or the system is uncertain. In those situations, UL and 
RL are preferred over SL as UL and RL are learning processes that do not need any 
supervisor to tell the learner what action to take. Through RL, those state-action pairs which 
achieve positive reward will be encouraged in future selections while those which produce 
negative reward will be discouraged. A number of researchers have applied RL to train the 
consequent parts of an FIS [6.8]. The preconditioning parts of the FIS are either predefined 

as in [6] or through the ε-completeness and the squared TD error criteria in [7] or through 
the “aligned clustering” in [8]. Both DFQL and CQGAF methods achieve online structure 
identification by creating fuzzy rules when the input space is not well partitioned. However, 
both methods cannot adjust the premise parameters except when creating new rules. The 
center position and width of fuzzy neurons are allocated by only considering the input 
clustering. Moreover, both methods cannot delete fuzzy rules once they are generated even 
when the rules become redundant. O
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Source: Theory and Novel Applications of Machine Learning, Book edited by: Meng Joo Er and Yi Zhou,  
 ISBN 978-3-902613-55-4, pp. 376, February 2009, I-Tech, Vienna, Austria
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Since RL has been utilized as a good approach to generate well-matched state-action pairs 
for the consequent parts of an FIS, it is possible to train the premises and generate the 
structure of an FIS by RL as well. Thus, a novel algorithm termed Dynamic Self-Generated 
Fuzzy Q-learning (DSGFQL) which is capable of automatically generating and pruning 
fuzzy rules as well as tuning the premise parameters of an FIS by RL is presented. 

2. Architecture of the fuzzy controlling system 

The architecture of the fuzzy controlling system is based on extended Ellipsoidal Basis 
Function (EBF) neural networks, which are functionally equivalent to a simple Takagi-
Sugeno-Kan (TSK) fuzzy systems [4]. The neural networks structure of the DSGFQL system 
is depicted in Figure 1. 
Layer one is an input layer and layer two is a fuzzification layer which evaluates the 
Membership Functions (MFs) of the input variables. Layer one takes in the senor 
information and normalizes the value to be in range [0,1]. The MF is chosen as a Gaussian 
function and each input variable xi (i = 1, 2, ...,N) has L MFs given by 

 

(1)

where ┤ij is the jth MF of xi, while cij and ij are the center and width of the jth Gaussian MF 
of xi respectively. Layer three is a rule layer which decides controlling rules. The output of 
the jth rule Rj(j = 1, 2, ...L) in layer 3 is given by 

 

(2)

if multiplication is adopted for the T-norm operator. 
 

 
Fig. 1. Structure of the Fuzzy Controlling System 

www.intechopen.com



Reinforcement Learning in Generating Fuzzy Systems 

 

101 

Normalization takes place in layer 4 and we have 

 

(3)

Lastly, nodes of layer five define output variables. If the Center-Of-Gravity (COG) method is 

performed for defuzzification, the output variable, as a weighted summation of the 

incoming signals, is given by 

 

(4)

where ωj = aj for the Q-learning-based FIS and aj is the action selected through Q-learning in 

rule Rj . 

Here, the antecedent parts of the fuzzy inference systems are regarded as states and the 

consequent parts are local actions of each controlling rules. Gaussian MFs are utilized to 

convert discrete states and actions to continuous ones. 

Remark: It should be highlighted that the number of rules does not increase exponentially 

with the number of inputs as the EBF structure is adopted. 

3. Fixed fuzzy Q-learning 

We first consider the Fuzzy Q-Learning (FQL) approach of [6] that has a fixed number of 

fuzzy rule sets and the consequents of the rules can be adjusted based on the FQL. The local 

actions are selected through competitions based on local q-values which indicate the quality 

of actions at different states (in different fuzzy rule). 

3.1 Local action exploration and selection 
Here, we simply use the undirected exploration method employed in [6] to select a local 

action a from possible discrete action vector A, as follows: 

 (5)

The term of exploration η stems from a vector of random value ψ (exponential distribution) 

scaled up or down to take into account the range of q values as follows: 

 

(6)

 (7)

where sp is the noise size and sf is the corresponding scaling factor. Decreasing the sp factor 

implies reducing the undirected exploration. Details of the exploration-exploitation strategy 

can be found in [6].  

www.intechopen.com



 Theory and Novel Applications of Machine Learning 

 

102 

3.2 Generation of global actions 
As a learner may visit more than one fuzzy states, the system output/global action is 
determined by weighting all the local actions. Assume that L fuzzy rules have been 
generated. At time step t, the input state is Xt and the normalized firing strength vector of 

each rule is φ. Each rule Ri has M possible discrete actions and the local action of each rule is 
selected from the action set A by competing with each other based on their q-values. The 
winning local action ai of every rule cooperates to produce the global action based on the 

rule's normalized firing strength φ. Therefore, the global action is given by 

 

(8)

where 
 
is the selected action of rule Ri at time step t and Ut is the global action which is the 

same as y in Eq (2). 

3.3 Update of Q-value 
As defined before, local q-value presents the action quality with respect to the state. In the 
FQL, global Q-values are also obtained similarly as the global actions and they are weighted 
value of the local q-values of those local winning actions. The global Q function is given by 

 

(9)

where Ut is the global action,  is the selected action of rule Ri and qt is the q-value 

associated with the fuzzy state Si and action  at time step t. 

Q-learning is a type of Temporal Difference (TD) learning [9]. Based on the TD learning, the 

value function corresponding to the rule optimal actions is defined as follows: 

 

(10)

and the global TD error is given by 

 (11)

where rt+1 is the reinforcement signal received at time t + 1 and γ is the discounted factor 

utilized to determine the present value of future TD errors. Note that this TD error term 

only needs to be estimated with quantities available at time step t + 1. 

This TD error can be used to evaluate the action just selected. If the TD error is positive, it 

suggests that the quality of this action should be strengthened for future use; whereas if the 

TD error is negative, it suggests that the quality should be weakened. The learning rule is 

given by 

 (12)

where α is the learning rate. 

www.intechopen.com



Reinforcement Learning in Generating Fuzzy Systems 

 

103 

3.4 Eligibility traces 
In order to speed up learning, eligibility traces are used to memorize previously visited 
stateaction pairs, weighted by their proximity at time step t [6, 7]. The trace value indicates 
how state-action pairs are eligible for learning. Thus, it permits not only tuning of 
parameters used at time step t, but also those involved in past steps. 
Let Trt(Si, aj) be the trace associated with the discrete action ai of rule Ri at time step t 

 

(13)

where the eligibility rate ┣ is used to weight time steps. For all rules and actions, the 
parameter updating law given by Eq (12) becomes 

 (14)

and the traces are updated between action computation and its applications. 

4. Dynamic self-generated fuzzy Q-learning 

In this chapter, a Dynamic Self-Generated Fuzzy Q-Learning (DSGFQL) is presented to 
automatically determine fuzzy controllers based on reinforcement learning. In the DSGFQL 
method, fuzzy rules are to be created, adjusted and deleted automatically and dynamically 
according to the system performance and the contributions of each fuzzy rules. 

4.1 ε-Completeness criterion for input space partitioning 
In the DSGFQL approach, the input variable fuzzy sets are used to represent appropriate 
high-dimensional continuous sensory spaces. 

First of all, the ε-completeness criterion for judging clustering of the input space is adopted 
as in [3, 7, 8, 10]. As pointed out by the author of [8], a rule in a fuzzy controlling system 
corresponds to a cluster in the input space geometrically. An input data with higher firing 
strength of a fuzzy rule means that its spatial location is closer to the cluster center 

compared to those with smaller strengths. The definition of the ε-completeness of fuzzy 
rules is given in [10] as: 
For any input in the operating range, there exists at least one fuzzy rule so that the match degree (or 

firing strength) is no less than ε. 
The ε-completeness criterion is to check whether the whole input space has been completely 

covered with a certain degree (ε). If the criterion is not satisfied, it means more fuzzy rules 
should be created to accomplish the input space. 

4.2 Allocation of newly generated rules 
4.2.1 Assignment of membership functions 

If the existing system does not satisfy the ε-completeness criterion, a new rule should be 
considered. If the existing fuzzy system passes a similarity test [5, 7], a new Gaussian MF is 
allocated whose center is with 

 (15)

and the widths of MFs in the ith input variable are adjusted as follows: 
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(16)

where ci(k-1) and ci(k+1) are the two centers of adjacent MFs of the middle MF whose center is 

cik. Note that only the new MF and its neighboring MFs need to be adjusted. The main result 

concerning adjusting MFs to satisfy the ε-completeness of fuzzy rules has been proved in [2, 5] 

4.2.2 Novel sharing mechanism for initialization of new q-values 
Instead of randomly assigning q-values for the newly created rules, a novel initialization 
approach is presented here. In order to reduce the training time, the initial q-values for the 
newly generated fuzzy rule are set by the nearest neighbors. By this means, the newly 
generated rules learn/share the training experience from the neighboring rules. For 
instance, if rules Rm and Rn are the two nearest neighbors to the newly generated rule Ri, 
then 

 
(17)

where fm(Ci) and fn(Ci) stand for the firing strengths of the newly generated center Ci to rules 
Rm and Rn, which can be obtained from Eq (2). 

4.3 Global TD error evaluation 
The objective of RL is to maximize the expected value function. Q-learning is a TD-based 
approach which utilizes the TD error for updating the estimated reward value function. In 
TD-based methods, the estimated value function is updated, as in [9], as follows: 

 (18)

where TD = r + γV (s’) – V (s) and V (s) is the value function of state s. 
Thus, we have 

 (19)

If the initial value of V (s, 0) is 0, the value function can be regarded as 

 
(20)

It can be seen that the TD error estimates the value function and it becomes a criterion for 
measuring the learning system as well the performance of fuzzy controller. The bigger the 
TD error is, the greater the value function will be. Therefore, TD error can be considered as a 
criterion for measuring the system performance in RL. 
As a criterion of system performance, the TD error is to be checked periodically, e.g. a 
number of training steps or an episode. At the end of each training episode or after several 
steps, the performance of the fuzzy system is examined by the TD error obtained during that 
period. Average TD error is adopted if the training environment is static. However, 
discounted TD error is to be considered for dynamic environment, i.e. 
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(21)

where T is the training time of each episode, TD(t) is the TD error at time t and  is the 
discounted factor which is less than 1. 
By this means, the averaged system TD error is adopted as an index of the system 
performance. 

4.4 Local TD error evaluation 
Besides evaluation of system performance via reinforcement signals, contributions of each 
fuzzy rules are also measured through reinforcement signals in the DSGFQL system. In 
order to evaluate the individual contributions of each fuzzy rules, a local TD error criterion 
is adopted. By this means, contributions or significance of each fuzzy rules are evaluated 
through the local TD errors. Inspired from the TD error sharing mechanism in [11], a local 
TD error scheme is adopted here to share the reinforcement with each local rule according to 
its contributions. The local TD error for each fuzzy rule is given, similarly as in [11], as 
follows: 

 
(22)

where j = 1, 2, ...,L, and 
 
is the action selected at time t. 

Remarks: The local TD error adopted here is different from that in [11] in that the original 
form is multiplied by the firing strength of the corresponding fuzzy rule. In [11], the local 
TD error is used for selecting local actions while the local TD error is adopted as an 
evaluation criterion of individual rules in this thesis. 

4.5 Reinforcement learning on input space partitioning 
In the DSGFQL approach, the system/global TD error is selected as a measurement of 
system performance, the local TD error is adopted as an evaluation for individual 
contributions, while an averaged firing strength is adopted as a measurement for 
participation. If the averaged firing strength is lower than a threshold value, it means the 
significance of that rule is too low. Therefore, the rule can be eliminated to reduce the 
computational cost. 
If the global TD error is less than a threshold value, it means that the overall performance of 
the entire system is unsatisfactory. Therefore, the FNNs need to be adjusted. 

4.6 Restructure of FNNs via reinforcement learning 
In the DSGFQL system, if the global average TD error is too negative e.g. it is less than a 
threshold value kg, the overall performance is considered unsatisfactory. If the FNN passes 

the ε-completeness criterion but fails the average TD error test, it means that the input space 
is well partitioned but the overall performance needs to be improved. 
To resolve this problem, the weights of some good rules should be increased which means 
that the system will be modified by promoting the rule with the best performance, e.g. the 
best local TD error, to a more important position. As a result, the overall performance is 
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improved as the rules with good contributions participate more in the system while those 
rules with poor contributions participate less, correspondingly. In this case, the width of the 
jth fuzzy rule’s MF (the one with the best local TD error) will be increased as follows 

 
(23)

where ┢ is slightly larger than 1 and max is the maximum width allowed for Gaussian MFs, 

which can be set to 1.2 if ε is chosen as 0.5
  

Remarks: The restructuring is only adopted when the system under-performs. Enlarging the 
MF of the rule will increase the firing strength of the rule. As a result, the global action is 
improved by becoming closer to the best local action. 
On the other hand, if the local TD error is larger than a heavy threshold value klh, but smaller 
than a light threshold value kll, a punishment will be given to the rule by decreasing its 
width of the MF as follows: 

 (24)

where τ is a positive value less than 1. 
Remarks: This is a performance-oriented approach, in which fuzzy rules with the best local 
TD error values are to be promoted and those with unsatisfactory local TD error are to be 
demoted or even removed from the system. 

4.7 Pruning of redundant fuzzy rules 
The local TD error criterion offers a direct evaluation of contributions of fuzzy rules. The 
more negative the local TD error is, the worse result is offered by the fuzzy rule and vice 
versa. Therefore, a fuzzy rule should be punished if the local TD error is extremely poor. If 
the local TD error of a fuzzy rule is less than a heavy threshold value klh (klh < kll), the 
individual contributions are unsatisfactory and the fuzzy rule will be deleted as a serious 
punishment. 
Removing problematic fuzzy rules can help to improve the overall performance of the FNN 

and new rules may be generated if the ε-completeness criterion fails due to the elimination of 
rules at the next step. By this means, performance can be improved as “black sheep” has been 
eliminated and it is better to restart the learning rather than staying in the problematic region. 
Besides the TD error, firing strength should also be considered for system evaluation as it is 
a measurement for participation. If a fuzzy rule has very low firing strength during the 
entire episode or a long period of time recently, it means that this rule is unnecessary for the 
system. As more fuzzy rules mean more computation and longer training time, the rule 
whose mean firing strength over a long period of time is less than a threshold value, kf , 
should be deleted. 
Remarks: If a fuzzy rule keeps failing the light local TD error check, its firing strength will 
be reduced by decreasing width of its MF. When the width is reduced to a certain level, it 
will fail the firing strength criterion and will be deleted. The light local test gives a certain 
tolerance, which means the fuzzy rule is not deleted due to one slight fault. However, the 
fuzzy rule which does not provide satisfactory result is still punished by being demoted and 
it will be deleted if it keeps failing the light local test. 
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4.8 Gradualism of learning 
The values of the thresholds for the TD error criteria are set according to the expection of the 

task. At the early stage of training, each fuzzy rule needs time to adjust its own 

performance. For a training system, it is natural to set the demanding requirement small at 

the beginning and increase it later when the training becomes stable. Thus, the idea of 

gradualism learning in [12], which uses coarse learning in the early training stage and fine 

learning in the later stage, is adopted here. Moreover, the elimination process is frozen in 

the early stage and rules are only pruned after a certain period of time. 

In this chapter, a linear gradualism learning is introduced and the values of the thresholds 

for global and local TD error are set as follows: 

 
(25)

 
(26)

 
(27)

where k
 
and k  are the minimal and maximal values for the global TD error threshold 

values respectively, k  and k  are the minimal and maximal values for the heavy local 

TD error threshold values respectively, and k  and k  are the minimal and maximal 

values for the light TD error threshold values respectively. The term episodes is the number 

of training episodes or periods and Kr is a controlling constant which can be set according to 

the number of training episodes. Those threshold values are set according to the target of 

the training system. If the total TD error (value function) is expected to be V in T training 

steps, the values of thresholds of the TD error criterion should be set around the value V/T . 

The maximal threshold values should be slightly bigger than the minimal ones as the system 

trained by the DSGFQL is supposed to obtain better results via the training. Another 

suggested guidance is to check the performances of some classical controllers (such as basic 

fuzzy Controller and FQL controller) and set the results as the minimal threshold values. 

Remarks: The gradualism learning is optional for applying the DSGFQL method. The 

DSGFQL can also be applied with unique threshold values throughout the training, if users 

do not like to adjust the thresholds. Gradualism learning offers a framework or guideline in 

case that users are keen on adjusting the thresholds during the learning process. 

5. The Khepera robot 

The robot employed in this chapter is a miniature mobile robot called Khepera [13] shown in 

Figure 2. The Khepera mobile robot is cylindrical in shape, with 55 mm in diameter and 30 

mm in height weighting only 70g. Its small size allows experiments to be performed in a 

small work area. The robot is supported by two lateral wheels that can rotate in both 

directions and two rigid pivots in the front and back. 
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Fig. 2. The miniature mobile robot: Khepera 

The basic configuration of Khepera is composed of the CPU and the sensory/motor boards. 

The micro-controller includes all the features needed for easy interfacing with memories, 

with I/O ports and with external interrupts. 

The sensory/motor board includes two DC motors coupled with incremental sensors, eight 

analogue infra-red (IR) proximity sensors denoted by (S0, ..., S7) in Figure 3, and an on-board 

power supply. Each IR sensor is composed of an emitter and an independent receiver. The 

dedicated electronic interface uses multipliers, sample/holds and operational amplifiers. 

This allows absolute ambient light and estimation, by reflection, of the relative position of 

an object to the robot to be measured. By this estimation, the distance between the robot and 

the obstacle can be derived. This estimation gives, in fact, information about the distance 

between the robot and the obstacle. The sensor readings are integer values in the range of [0, 

1023]. A sensor value of 1023 indicates that the robot is very close to the object, and a sensor 

value of 0 indicates that the robot does not receive any reflection of the IR signal. 
 

 

Fig. 3. Position and orientation of sensors on the Khepera 

Simulation version of the Khepera [14] is used for carrying out a comprehensive numerical 

comparison of different approaches. The program simulates Kheperas in the MATLAB 
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environment. Simulated Kheperas are controlled in the same way as real physical Kheperas. 

Simulation studies on a wall following task are presented in the following sections. 

6. Wall following task for Khepera robot 

In this chapter, the Khepera robot is to be applied for a wall-following task. The aim of the 

experiment is to design a controller for wall following. In order to simplify the problem, we 

only consider robots moving in clockwise direction at a constant speed as that in [7]. Thus, 

we only need to deal with four input variables, which are the values of sensor Si (i = 0, 1, 2, 3). 

All these sensor values can be normalized within the interval [0, 1]. The output of the 

controller is the steering angle of the robot. In order for the robot to follow a wall, it must 

keep the distance from the wall while staying between a maximum distance, d+, and a 

minimum distance, d_. The distance to the wall being followed, d, can be calculated via the 

sensor values. The robot receives a reward evaluation after performing every action U. The 

reward function depends on this action and the next situation as given in [7]: 

 

(28)

Here, d_ = 0.15 and d+ = 0.85, which are normalized values, and U is the steering angle of the 
robot. These values are the same as the settings used in [7]. 
The training environment with lighted shaped walls used for simulation studies is shown in 
Figure 4. 
 

 

Fig. 4. MATLab simulation environment for wall-following experiments 
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The performances of different approaches are evaluated at every episode of 1000 control 

steps according to two criteria, namely the number of failures which correspond to the total 

number of steps the robot has left the “lane” and rewards which are accumulated. In order 

to compare the different approaches systematically and find appropriate parameters, we 

have done a number of comparison studies of these methods on simulations. 

7. Simulation results and comparison studies 

7.1 Basic fuzzy controller 
First, a fuzzy controller based on intuitive experiences is designed. For each input linguistic 

variable, we define two linguistic values: Small and Big, whose MFs cover the region of the 

input space evenly with the match degree set to 0.5. This means that there are 16 (24) fuzzy 

rules. Through trial and error, 16 fuzzy rules are obtained as a special case of the TSK fuzzy 

controller, whose consequents are constant, as in [7]. The 16 fuzzy rules are listed in Table 1. 

 

 

Table 1. Basic fuzzy control rules for wall following 

If the robot only uses the basic fuzzy controller, it can actually follow the wall, but along 

inefficient trajectories. When only the basic fuzzy controller is used, the robot encounters 79 

failures and -164.0 of reward value per episode on average. Certainly, we can provide finer 

partitioning of the input space or tune the parameters of the MFs and consequents so as to 

obtain better performances. However, the number of rules will increase exponentially with 

increase in the number of input variables. Furthermore, tuning consequents of rules is time 

consuming because of the risk of creating conflicts among the rules. It is almost impossible 

or impractical to design an optimal fuzzy controller by hand due to a great number of 

variables involved. Therefore, automatic tuning and determination of fuzzy controlling 

rules are desired. 
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7.2 Simulation results for the FQL controller 
The set of discrete actions is given by A = [-30, -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30]. The 

initial q-values for incorporated fuzzy rules are set as, kq = 3.0. Other parameters in the 

learning algorithm are: Discounted factor, γ = 0.95; Trace-decay factor, ┣ = 0.7; TD learning 

rate, α = 0.05. The controller with 81 (34) fuzzy rules whose MFs is with 0.5 match degree of 

the input space is also considered. Average performances of the two controllers during 40 

episodes over 30 runs are shown in Figures 5 and 6. 

 

 
 

Fig. 5. Number of failures for comparison of performances of fuzzy controllers for (a)Basic fuzzy 
controller with 16 fuzzy rules, (b)16 fuzzy rules based on FQL, (c)81 fuzzy rules based on FQL 

 

 
 

Fig. 6. Reward values for comparison of performances of fuzzy controllers for (a)Basic fuzzy 
controller with 16 fuzzy rules, (b)16 fuzzy rules based on FQL, (c)81 fuzzy rules based on FQL 

www.intechopen.com



 Theory and Novel Applications of Machine Learning 

 

112 

At the very beginning, performances of the two controllers based on the FQL are worse than 

that of the basic fuzzy controller due to the exploration feature of RL. The robot has to 

explore different actions in order to ensure that better actions are selected in the future. 

However, the performance of the robot is improved gradually and is better than that of the 

basic fuzzy controller. Therefore, it can be concluded that performance can be improved by 

explorations in the action set and tuning consequent parameters. 

To assess the effectiveness of finer partitioning of the input space, we compare the 

performances of the FQL using 16 rules and 81 rules. The speed of learning 81 rules is 

slower than that of 16 rules because a lot more parameters need to be explored. However, 

asymptotic performances of these two methods are almost the same. It is impractical to 

partition the input space further due to the curse of dimensionality. Therefore, automatic 

generation of premises of fuzzy controllers and automatic partitioning of input space are 

desired. 
 

7.3 Simulation results of the DSGFQL controller 
The DSGFQL is presented as a novel approach of determining premise parts of fuzzy 

controllers. In this section, the performance of the DSGFQL approach is to be assessed. The 

parameter values for consequents training are the same as those used in the FQL approach. 

Other learning parameters for rule generation are ε-completeness, ε = 0.5 and similarity of 

MF, kmf = 0.3. The training aim is to limit the number of failures to 60; therefore, the 

threshold values of the TD error criterion should be set around (–3 × 60/1000) = –0.18. If it 

requires each rule to be active at least with an average firing strength for 10 times in the 1000 

training steps among about 50 rules, the firing strength threshold value is set as 10.(1000 × 

50) = 0.0002. Therefore, the global TD error threshold values are k  = –0.05 and k  = –

0.45; heavy local threshold values are k  = –0.10 and k  = –0.30; light local TD error 

threshold values are k  = 0 and k  = –0.20; the firing strength threshold values are kf = 

0.0002 and Kr = 20, ┢ = 1.05 and τ = 0.95. These values give good performances of the 

algorithms in an initial phase. However, it should be pointed out that we have not searched 

the parameter space exhaustively. 

The performances of the DSGFQL approach shown in Figures 7 and 8 which are also the 
mean values during 40 episodes over 30 runs. 
As expected, the DSGFQL performs better than the FQL with respect to both number of 

failures and reward values. The number of fuzzy rules generated at every episode is shown 

in Figure 9. The MFs produced by the DSGFQL after learning input variables at one run are 

shown in Figure 10. The number of rules can be generated automatically online and does 

not increase exponentially with the increase in the number of input variables. At the same 

time, MFs can be adjusted dynamically according to the performance of controlling rules. 

Thus, a compact and excellent fuzzy controller can be obtained online. 

The reason why the DSGFQL method outperforms the FQL method is that the DSGFQL 

approach is capable of online self-organizing learning. Besides the input space partitioning, 

both overall and local performances have been evaluated to determine the structure of a 

fuzzy system. The common approach of conventional input-space partitioning is the 

socalled grid-type partitioning. The FQL with 16 rules partitions the state space coarsely, on 
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the other hand, the speed of learning 81 rules is slow because a lot more parameters need to 

be explored. The DSGFQL does not need to partition the input space a priori and is suitable 

for RL. It partitions the input space online dynamically according to both the 

accommodation boundary and the reinforcement criteria. The compact fuzzy system 

considers sufficient rules in the critical state space which requires high resolution and does 

not include redundant rules in unimportant or unvisited state space so that learning is rapid 

and efficient. 
 

 
 

Fig. 7. Number of failures for comparison of performances of fuzzy controllers for (a) 16 
fuzzy rules based on FQL, (b) 81 fuzzy rules based on FQL, (c) DSGFQL 
 

 
 

Fig. 8. Reward values for comparison of performances of fuzzy controllers for (a) 16 fuzzy 
rules based on FQL, (b) 81 fuzzy rules based on FQL, (c) DSGFQL 
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Fig. 9. Number of rules generated by the DSGFQL approach 
 

 

Fig. 10. Membership functions after learning at one run 

8. Conclusions 

In this chapter, a novel reinforcement learning method termed (DSGFQL) is introduced for 

navigation tasks of mobile robots. In the DSGFQL approach, continuous sensory states and 
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action space for mobile robots can be self-generated. Controlling rules are expressed in 

fuzzy logic and the rules can be generated, adjusted and pruned automatically and 

dynamically without a priori knowledge or supervised learning. Online clustering method 

is adopted for partitioning the input space (sensory space of robots) and fuzzy rules are 

generated automatically by reinforcement learning. In the DSGFQL, new rules are created if 

system fails the ε-completeness criterion. At the same time, contributions of existing rules 

are to be determined through a reinforcement sharing mechanism. When the performance of 

the control system is poor, controlling rules are adjusted according to reinforcement signals. 

Q-learning is adopted in selecting optimal local actions in each fuzzy rule and the system 

action is a weighted continuous action via fuzzy reasoning. Comparative studies with other 

fuzzy controllers on mobile robot navigation demonstrate that the DSGFQL method is 

superior. 
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