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1. Introduction 

Clustering is one of the most widely used statistical methods in data analysis (e.g. 

multimedia content-based retrieval, molecular biology, text mining, bioinformatics). 

Recently, with an increasing number of database applications that deal with very large high 

dimensional datasets, clustering has emerged as a very important research area in many 

disciplines. Unfortunately, many known algorithms tend to break down in high 

dimensional spaces because of the sparsity of the points. In such high dimensional spaces 

not all the dimensions might be relevant for clustering, outliers are difficult to detect, and 

the curse of dimensionality makes clustering a challenging problem. Also, when handling 

large amounts of data, time complexity becomes a limiting factor. 

There are two types of clustering algorithms: partitional and hierarchical (Jain et al., 1999). 

Partitional methods (e.g. k-means, mixture of Gaussians, graph theoretic, mode seeking) 

only produce one partition of the data; whereas hierarchical ones (e.g single link, complete 

link) produce several of them. In particular, k-means (MacQueen, 1967) is one of the 

simplest unsupervised learning algorithms that has been extensively studied and extended 

(Jain, 1988). Although k-means is a widely used technique due to its ease of programming 

and good performance, it suffers from several drawbacks. It is sensitive to initial conditions, 

it does not remove undesirable features for clustering, and it is optimal only for hyper-

spherical clusters. Furthermore, its complexity in time is O(nkl) and in space is O(k), where n 

is the number of samples, k is the number of clusters, and l the number of iterations. This 

degree of complexity can be impractical for large datasets. 

To partially address some of these challenges, this papers proposes Discriminative Cluster 

Analysis (DCA). DCA jointly performs clustering and dimensionality reduction. In the first 

step, DCA finds a low dimensional projection of the data well suited for clustering by 

encouraging preservation of distances between neighboring data points belonging to the 

same class. Once the data is projected into a low dimensional space, DCA performs a ”soft” 

clustering of the data. Later, this information is feedback into the dimensionality reduction 

step until convergence. Clustering in the DCA subspace is less prone to local minima, noisy 

dimensions that are irrelevant for clustering are removed, and clustering is faster to 

compute (especially for high dimensional data). Recently, other researchers (Ding & Li., 

2007), (Ye et al., 2007) have further explored advantages of discriminative clustering 

methods versus generative approaches. O
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2. Previous work 

This section reviews previous work on k-means, spectral methods for clustering, and linear 
discriminant analysis in a unified framework. 

2.1 k-means and spectral graph methods: a unified framework 
k-means (MacQueen, 1967; Jain, 1988) is one of the simplest and most popular  unsupervised 
learning algorithms used to solve the clustering problem. Clustering refers to the partition of 
n data points into c disjoint clusters. k-means clustering splits a set of n objects into c groups 
by maximizing the between-cluster variation relative to within-cluster variation. In other 
words, k-means clustering finds the partition of the data that is a local optimum of the 
following energy function: 

 

(1.1)

where dj (see notation1) is a vector representing the jth data point and mi is the geometric 
centroid of the data points for class i. The optimization criterion in eq. (1.1) can be rewritten 
in matrix form as: 

 
(1.2)

where G is an indicator matrix, such that Σj gi j = 1, gi j ∈ {0,1} and gi j is 1 if di belongs to class 

j, c denotes the number of classes and n is the number of samples. M ∈ ℜd×c
 is the matrix 

containing all the means for each cluster. The columns of D ∈ ℜd×n
 contain the original data 

points, and refers to the number of features. The equivalence between the k-means error 
function of eq. (1.1) and eq. (1.2) is only valid if G strictly satisfies the constraints. 
The k-means algorithm performs coordinate descent in E1(M,G). Given the actual value of 

the means M, the first step finds, for each data point dj, the value of gj minimizing eq. (1.2) 

subject to the constraints. The second step optimizes M= DG(GTG)−1, which effectively 

computes the mean of each cluster. Although it can be proven that alternating these two 

steps will always converge, the k-means algorithm does not necessarily find the optimal 

configuration of all possible assignments. The algorithm is significantly sensitive to the 

                                                 
1 Bold capital letters denote matrices D, and bold lower-case letters signify a column vector 

d. dj represents the jth column of the matrix D. dj is a column vector that designates the j-th 
row of the matrix D. All non-bold letters refer to scalar variables. di j corresponds to the 
scalar in the row i and column j of the matrix D, as well as the i-th element of a column 
vector dj . diag is an operator that transforms a vector into a diagonal matrix or transforms 

the diagonal of a matrix into a vector. vec vectorizes a matrix into a vector. 1k ∈ ℜk×1 is a 

vector of ones. Ik ∈ℜk×k
 denotes the identity matrix. ║d║  denotes the norm of the vector d. 

tr(A) = Σi aii is the trace of the matrix A, and |A| denotes the determinant. ║A║F = tr(ATA) = 

tr(AAT
 ) designates the Frobenious norm of matrix A. Nd(x;Ǎ,Σ) indicates a d-dimensional 

Gaussian on the variable x with mean Ǎ and covariance Σ. ○ denotes the Hadamard or point-
wise product. 
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initial randomly selected cluster centers. It is typically run multiple times, and the solution 

with less error is chosen. Despite these limitations, the algorithm is used frequently as a 

result of its easiness of implementation and effectiveness. 

After optimizing over M, eq. (1.2), can be rewritten as: 

 

(1.3)

where ǌi
 are the eigenvalues of DTD. Minimizing E2(G), eq. (1.3), is equivalent to 

maximizing tr((GTG)−1GTDTDG). Ignoring the special structure of G and considering gij in 

the continuous domain, the optimum G value is given by the eigenvectors of the Gram 

matrix DTD. The error of E2 with the optimal continuous G is . A similar 

reasoning has been reported by (Ding & He, 2004; Zha et al., 2001), demonstrating that a 

lower bound of E2(G), eq. (1.3), is given by the sum of residual eigenvalues. The continuous 

solution of G lies in the c−1 subspace, spanned by the first c−1 eigenvectors with highest 

eigenvalues (Ding & He, 2004) of DTD. 

Finally, it is worthwhile to point out the connections between k-means and standard spectral 

graph algorithms (Dhillon et al., 2004), such as Normalized Cuts (Shi & Malik, 2000), by 

means of kernel methods. The kernel trick is a standard method for lifting the points of a 

dataset to a higher dimensional space, where points are more likely to be linearly separable 

(assuming that the correct mapping is found). Consider a lifting of the original points to a 

higher dimensional space, Γ = [ φ(d1) φ(d2) ...φ(dn) ] where φ represents a high dimensional 

mapping. The kernelized version of eq. (1.2) is: 

 (1.4)

in which we introduce a weighting matrix W for normalization purposes. Eliminating M= 

ΓWWTG(GTWWTG)−1, it can be shown that: 

 (1.5)

where Γ TΓ is the standard affinity matrix in Normalized Cuts (Shi & Malik, 2000).  

After a change of variable Z = GTW, the previous equation can be expressed as  

E3(Z) ∝ tr((ZZT )−1ZWTΓ TΓWZT ). Choosing W = diag(Γ TΓ 1n)  the problem is equivalent to 

solving the Normalized Cuts problem. This formulation is more general since it allows for 

arbitrary kernels and weights. In addition, the weight matrix can be used to reject the 

influence of pairs of data points with unknown similarity (i.e. missing data). 

2.2 Linear discriminant analysis 
The aim of LDA is to find a low dimensional projection, where the means of the classes are 

as far as possible from each other, and the intra-class variation is small. LDA can be 

computed in closed form using the following covariance matrices, conveniently expressed in 

matrix form (de la Torre & Kanade, 2005): 
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where f = n−1, and Pi’s are projection matrices (i.e. ) with the following 

expressions: 

 
(1.6)

Sb is the between-class covariance matrix and represents the average distance between the 
mean of the classes. Sw is the within-class covariance matrix and it is a measure of the 
average compactness of each class. Finally, St is the total covariance matrix. Through these 
matrix expressions, it can be easily verified that St = Sw +Sb. The upper bounds on the ranks 
of the matrices are min(c−1,d), min(n− c,d), min(n−1,d) for Sb,Sw, and St respectively. 

LDA computes a linear transformation of the data B ∈ ℜd×k that maximizes the distance 
between class means and minimizes the variance within clusters. Rayleigh like quotients are 
among the most popular LDA optimization criterion (Fukunaga, 1990). For instance, LDA 
can be obtained by minimizing: 

 (1.7)

where several combinations of S1 and S2 matrices lead to the same LDA solution (e.g. S1 = 
{Sb,Sb,St} and S2 = {Sw,St ,Sw}). The Rayleigh quotient of eq.(1.7) has a closed-form solution in 

terms of a Generalized Eigenvalue Problem (GEP), S2B = S1BΛ (Fukunaga, 1990). In the case 
of high-dimensional data (e.g. images) the covariance matrices are not likely to be full rank 
due to the lack of training samples and alternative approaches to compute LDA are needed. 
This is the well-known small sample size (SSS) problem. There are many techniques to solve 
the GEP when S1 and S2 are rank deficient, see (Zhang & Sim, 2007; Ye, 2005) for a recent 
review. However, solving LDA with standard eigensolvers is not efficient (neither space or 
nor time) for large amounts of high dimensional data. Formulating LDA as a leastsquares 
problem suggests efficient methods to solve LDA techniques. Moreover, a least-squares 
formulation of LDA facilitates its analysis and generalization. 

Consider the following weighted between-class covariance matrix  = DGGTDT = 

, that favors classes with more samples. mi is the mean vector for class i, and 

we assume zero mean data (i.e. m =  D1n). Previous work on neural networks (Gallinari et 

al., 1991; Lowe & Webb, 1991) have shown that maximizing J4(B) = tr((BT B)(BT StB)−1) is 

equivalent to minimizing: 

 (1.8)

This approach is attractive because (Baldi & Hornik, 1989) have shown that the surface of eq. 
(1.8) has a unique local minima, and several saddle points. 
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3. Discriminative cluster analysis 

In the previous section, we have provided a least-squares framework for LDA (supervised 
dimensionality reduction) and k-means (unsupervised clustering). The aim of DCA is to 
combine clustering and dimensionality reduction in an unsupervised manner. In this 
section, we propose a least-squares formulation for DCA. 

3.1 Error function for LDA and DCA 
The key aspect to simultaneously performing dimensionality reduction and clustering is the 
analysis of eq. (1.8). Ideally we would like to optimize eq. (1.8) w.r.t. B and G. However, 
directly optimizing eq. (1.8) has several drawbacks. First, eq. (1.8) biases the solution 

towards classes that have more samples because it maximizes  = DGGTDT =  

(mi)(mi)
T . Secondly, eq. (1.8) does not encourage sparseness in G if gi j> 0. That is, assuming 

that C = BTD ∈ ℜk×n, then eq. (1.8) is equivalent to E4 = tr(GTG)−tr(GTCT (CCT )−1CG). If gi j
 ∀ 

i, j is positive, minimizing the first term, tr(GTG), does not encourage sparseness in gi ∀i (gi 

represents the ith row of G, see notation). 
In this section, we correct eq. (1.8) to obtain the unbiased LDA criterion by normalizing E4 as 
follows: 

 
(1.9)

where (GTG)  is the normalization factor. After eliminating V, eq. (1.9) can be written as: 

 

(1.10)

If G is known, eq. (1.10) is the exact expression for LDA. 
Eq. (1.10) is also the basis for DCA. unlike LDA, DCA is an unsupervised technique and G 

will be a variable to optimize, subject to the constraints that gi j ∈ {0,1}, and G1c = 1n. DCA 
jointly optimizes the data projection matrix B and the indicator matrix G. 

3.2 Updating B 
The optimal B given G can be computed in closed form by solving the following GEP: 

 (1.11)

There are many methods for efficiently solving the GEP in the case of highdimensional data 
when (d >> n) (de la Torre et al., 2005; Zhang & Sim, 2007; Ye, 2005). In this section, we 

propose a regularized stable closed form solution. Assuming DTD is full rank, computing 

(DTD)−1 can be a numerically unstable process, especially if DTD has eigenvalues close to 
zero. A common method to solve ill-conditioning is to regularize the solution by factorizing 

Σ = DTD as the sum of the outer products plus a scaled identity matrix, i.e. Σ ≈ VΛVT +σ2Id. 

V ∈ ℜn×k, Λ ∈ ℜk×k is a diagonal matrix. The parameters σ2, V and Λ are estimated by 
minimizing: 
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 (1.12)

After optimizing over V,Λ,σ2, it can be shown (de la Torre & Kanade, 2005) that: σ2 = 

tr(Σ −V Λ̂  VT )/d −k, Λ = Λ̂  −σ2Id, where Λ̂  is a matrix containing the eigenvalues of the 

covariance matrix Σ and V the eigenvectors. This expression is equivalent to probabilistic 
PCA (Moghaddam & Pentland, 1997; Roweis & Ghahramani, 1999; Tipping & Bishop, 1999). 

After the factorization, the matrix inversion lemma (Golub & Loan, 1989) (A−1 +VC−1VT )−1 = 

A−AV(C+VTAV)−1VTA is applied to invert (VΛVT +σ2In)−1, which results in: 

 

Now, solving  becomes a better conditioned 

problem. 

The number of bases (k) are bounded by the number of classes (c), because the rank(DRDT ) 
= c. We typically choose c−1 to be consistent with LDA. Moreover, the best clustering results 
are achieved by projecting the data into a space of c−1 dimensions. Also, observe that there 

is an ambiguity in the result, because for any invertible matrix T1 ∈ Rk×k, E5(B) = E5(BT1). 

3.3 Optimizing G 

Let A = CT (CCT )−1C ∈ ℜn×n, where C = BTD, then eq. (1.10) can be rewritten as: 

 (1.13)

Optimizing eq. (1.13) subject to gi j ∈ {0,1} and G1c = 1n is an NP complete problem. To make 
it tractable, we relax the discrete constraint on gi j allowing to take values in the range (0,1). 
To use a gradient descent search mechanism, we parameterize G as the Hadamard 
(pointwise) product of two matrices G = V○V (Liu & Yi, 2003), and use the following 
updating scheme: 

 

(1.14)

The increment of the gradient, η, in eq. (1.14) is determined with a line search strategy 
(Fletcher, 1987). To impose G1c = 1n in each iteration, V is normalized to satisfy the 
constraint. Because eq. (1.14) is prone to local minima, this method starts from several 
random initial points and selects the solution with smallest error. 
This optimization problem is similar in spirit to recent work on clustering with non-negative 
matrix factorization (Zass & Shashua, 2005; Ding et al., 2005; Lee & Seung, 2000). However, 
we optimize a discriminative criterion rather than a generative one. Moreover, we 
simultaneously compute dimensionality reduction and clustering, using a different 
optimization technique. 

3.4 Initialization 

At the beginning, neither G nor B are known, but the matrix G(GTG)−1GT can be estimated 
from the available data. Similar to previous work (He & Niyogi, 2003), we compute an 
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estimate of a local similarity matrix, G(GTG)−1GT ∈ℜn×n, from data.We assume that (GTG) ≈ 

sIc, so that all classes are equally distributed and s is the number of samples per class. R =  

GGT is a hard-affinity matrix, where ri j
 will be 1 if di

 and dj
 are considered neighbors (i.e. 

belong to the same class). R can be estimated by simply computing the k nearest neighbors 
for each data point using the Euclidian distance. To make R symmetric, if di

 is within the k-
neighborhood of dj, but not the contrary, then its similarity is set to zero. Figure 1.5.b shows 
an estimate of R for 15 subjects in the ORL database. Each subject (class) has ten samples 
and for each sample the nearest nine neighbors are selected. The samples are ordered by 

class. After factorizing R = UΣUT , we normalize R as ≈ UcU
T

c
, where Uc ∈ Rn×c are the first 

c eigenvectors of R.   is the initial neighbor matrix. 

3.5 Interpreting the weighted covariance matrix 
A key aspect to understand DCA is the interpretation of the weighted covariance matrix 

. Principal Component Analysis (PCA) (Jolliffe, 1986) computes 

a basis B that maximizes the variance of the projected samples, i.e. PCA finds an 
orthonormal basis that maximizes . The PCA solution B is 

given by the eigenvectors of DDT . Finding the leading eigenvectors of DRDT is equivalent to 

maximizing . If R = I, it is equivalent to standard 

PCA. However, if R is G(GTG)−1GT , where G is the indicator matrix (or an approximation), 
the weighted covariance only maximizes the covariance within each cluster. This effectively 
maximizes the correlation between each pair of points in the same class. Figure 1.1 shows a 
toy problem with two oriented Gaussian classes. The first eigenvector in PCA finds a 
direction of maximum variance that does not necessarily correspond to maximum 
discrimination. In fact, by projecting the data into the first principal component, the clusters 
overlap. If R is the initial matrix of neighbors, the first step of DCA finds a more suitable 
projection that maximizes class separability (see fig. 1.1). 
 

 

Fig. 1.1 Two class toy problem. PCA, WPCA, and DCA projections in one dimensional space. 
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4. Experiments 

This section describes three experiments using synthetic and real data that demonstrate the 
effectiveness of DCA for clustering. 

4.1 Clustering with DCA 
In the first experiment, we show how the DCA error function is able to correctly cluster 
oriented clusters. 
Consider the DCA optimization expression, eq. (1.10), when B = Id

 (i.e. no projection); in this 

case, eq. (1.10) becomes tr((GTG)−1GTDT (DDT )−1DG). This error function, due to the term 

(DDT)−1, provides affine invariance to clustering. To illustrate this property, we have 
generated three examples of three two-dimensional random Gaussian clusters. Figure 1.2.a 
shows three clusters of 300 samples each, generated from three two-dimensional Gaussians: 
N2(x; [−4;3],0.25I2), N2(x;−[4;2],0.25I2) and N2(x; [7;3],0.25I2). Similarly, fig. 1.2.b illustrates 300 
samples generated from three two-dimensional Gaussians N2(x; [−10;−10],0.25I2) , N2(x; 
[−10;−5],0.25I2) and N2(x; [30;15],0.25I2). Analogously, fig. 1.2.c shows N2(x;−[4;3],2[1 0.8;0.1 
1]), N2(x;−[4;2],0.25[1 0.8;0.1 1]) and N2(x; [3;3],0.25[1 0.8;0.1 1]). 
 

 
                           a)                                                   b)                                                   c) 

Fig. 1.2 Three examples of three two-dimensional Gaussian clusters. 

We run DCA and k-means with the same random initialization and let both algorithms 
converge. To compute the accuracy of the results for a c cluster case, we compute a c-by-c 
confusion matrix C, where each entry ci j is the number of data points in cluster i that belong 
to class j. It is difficult to compute the accuracy by strictly using the confusion matrix C, 
because it is unknown which cluster matches with which class. An optimal way to solve this 
problem is to compute the following maximization problem (Zha et al., 2001; Knuth, 1993): 

 (1.15)

To solve eq. (1.15), we use the classical Hungarian algorithm (Knuth, 1993). Table (1.2) 

shows the clustering accuracy for the three examples described above. We run the 

algorithms 1000 times from different random initializations (same for k-means and DCA). 
 

 

Table 1.1 Comparison of clustering accuracy for DCA and k-means. 

As we can see from the results in table 1.1, DCA is able to achieve better clustering results 

starting from the same initial condition as k-means. Moreover, DCA results in a more stable 
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(less variance) clustering. k-means clustering accuracy largely degrades when two clusters 

are closer together or the clusters are not spherical. DCA is able to keep the accuracy even 

with oriented clusters (fig. 1.2.c). 

4.2 Removing undesirable dimensions 
The second experiment demonstrates the ability of DCA to deal with undesired dimensions 

not relevant for clustering. A synthetic problem is created as follows: 200 samples from a 

two-dimensional Gaussian distribution with mean [−5,−5] and another 200 samples from 

another Gaussian distribution with mean [5,5] are generated (x and y dimensions). We add a 

third dimension generated with uniform noise between [0,35] (z dimension). Figure 1.3 

shows 200 samples of each class in the original space (fig. 1.3.a), as well as the projection 

(fig. 1.3.b) onto x and y. The k-means algorithm is biased by the noise (fig. 1.4.a). Similarly, 

projecting the data into the first two principal components also produces the wrong 

clustering because PCA preserves the energy of the uniform noise, which is not relevant for 

clustering. However, DCA is able to remove the noise and achieve the correct clustering as 

evidenced in fig. 1.4.b. In this particular example 15 neighbors were initially selected and  

B ∈ ℜ3×2. 
 

 

Fig. 1.3 a) 2 classes of 3 dimensional data. b) Projection onto XY space. 

 

 

Fig. 1.4 a) k-means clustering. b) DCA clustering. 
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4.3 Clustering faces 
The final experiment shows results on clustering faces from the ORL face database 

(Samaria & Harter, 1994). The ORL face database is composed of 40 subjects and 10 

images per subject.We randomly selected c subjects from the database and add the 10 

images for each subject to D ∈ ℜd×10c (e.g. fig. 1.5.a). Afterwards, we compute PCA, 

weighted PCA (WPCA), PCA+LDA (preserving 95% of the energy in PCA), and DCA. 

After computing PCA, WPCA (with the initial matrix R), and PCA+LDA, we run the k-

means algorithm 10 times and the solution with smallest error is chosen. This procedure is 

repeated 40 times for different number of classes (between 4 and 40 subjects). To perform 

a fair comparison, we project the data into the number of classes minus ones (c−1) 

dimensions for all methods. 
 

 

Fig. 1.5 a) Some faces of the ORL data base. b) Estimate of R for 15 clusters (people), each 
cluster has 10 samples. The samples are ordered by clusters. 

 

 

Table 1.2 Comparison of the clustering accuracy for several projection methods (same 
number of bases). 

Fig. 1.6 shows the accuracy in clustering for PCA+k-means versus DCA. For a given number 

of clusters, we show the mean and variance over 40 realizations. DCA always outperforms 

PCA+k-means. Table 1.2 shows some numerical values for the clustering accuracy. DCA 

outperforms most of the methods when there are between 5 and 30 classes. For more classes, 

PCA+LDA performs marginally better. In addition, the accuracy of the PCA+k-means 

method drops as the number of classes increases (as expected). 
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Fig. 1.6 Accuracy of clustering versus the number of classes. Blue PCA and red DCA (dotted 
line). 

5. Discussion and future work 

In this paper, we have proposed DCA, a technique that jointly performs dimensionality 
reduction and clustering. In synthetic and real examples, DCA outperforms standard k-
means and PCA+k-means, for clustering high dimensional data. DCA provides a 
discriminative embedding that minimizes cluster separation and is less prone to local 
minima. Additionally, we have proposed an unbiased least-squares formulation for LDA. 
Although DCA has shown promising preliminary results, several issues still need to be 
addressed. It remains unclear how to select the optimal number of clusters. Several model 
order selection (e.g. Minimum Description Length or Akaike information criterion) could be 
applied towards this end. On the other hand, DCA assumes that all the clusters have the 
same orientation (not necessarily spherical). This limitation could be easily address by using 
kernel extensions of eq. (1.10) to deal with non-Gaussian clusters. 
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