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1. Introduction 

Supervised Neural Network (NN) learning is a process in which input patterns and known 
targets are presented to a NN while it learns to recognize (classify, map, fit, etc.) them as 
desired. The learning is mathematically defined as an optimisation problem, i.e., an error 
function representing the differences between the desired and actual output, is being 
minimized (Bishop, 1995; Haykin, 1999). Because the most popular supervised learning 
techniques are gradient based (Backpropagation - BP), they suffer from the so-called Local 
Minima Problem (Bishop, 1995). This has motivated the employment of Global Optimisation 
(GO) methods for the supervised NN learning. Stochastic and heuristic GO approaches 
including Evolutionary Algorithms (EA) demonstrated promising performance over the last 
decades (Smagt, 1994; Sexton et al., 1998; Jordanov & Georgieva, 2007; etc.). EA appeared 
more powerful than BP and its modifications (Sexton et al., 1998; Alba & Chicone 2004), but 
hybrid methods that combine the advantages of one or more GO techniques and local 
searches were proven to be even better (Yao, 1999; Rocha et al., 2003; Alba & Chicano, 2004; 
Ludemir et al., 2006). 
Hybrid methods were promoted over local searches and simple population based 
techniques in Alba & Chicone (2004). The authors compared five methods: two BP 
implementations (gradient descent and Levenberg-Marquardt), Genetic Algorithms (GA), 
and two hybrid methods, combining GA with different local methods. The methods were 
used for NN learning applied to problems arising in medicine. Ludemir et al. (2006) 
optimized simultaneously NN weights and topology with a hybrid method combining 
Simulated Annealing (SA), Tabu Search (TS) and BP. A set of new solutions was generated 
on each iteration by TS rules, but the best solution was only accepted according to the 
probability distribution as in conventional SA. Meanwhile, the topology of the NN was also 
optimized and the best solution was kept. Finally, BP was used to train the best NN 
topology found in the previous stages. The new methodology compared favorably with SA 
and TS on four classification and one prediction problems. 
Plaginakos et al. (2001) performed several experiments to evaluate various training methods 
– six Differential Evolution (DE) implementations (with different mutation operators), BP, 
BPD (BP with deflection), SA, hybridization of BP and SA (BPSA), and GA. They reported O
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poor performance for the SA method, but still promoted the use of GO methods instead of 
standard BP. The reported results indicated that the population based methods (GA and 
DE) were promising and effective, although the winner in their study was their BPD method.  
Several methods were critically compared by Rocha et al. (2003) as employed for the NN 

training of ten classification and regression examples.  One of the methods was a simple EA, 

two others were combinations of EA with local searches in Lamarckian approach (differing in 

the adopted mutation operator), and their performance was compared with BP and 

modified BP. A hybridization of local search and EA with random mutation (macro-

mutation) was found to be the most successful technique in this study. 

Lee et al. (2004) used a deterministic hybrid technique that combines a local search method 

with a mechanism for escaping local minima. The authors compared its performance with 

five other methods, including GA and SA, when solving four classification problems. The 

authors reported worst training and testing results for GA and SA, and concluded that their 

method proposed in the paper was substantially faster than the other methods. 

Yao (1999) discussed hybrid methods combining EA with BP (or other local search), 

suggested references to a number of papers that reported encouraging results, and pointed 

out some controversial results. The author stated that the best optimizer is generally 

problem dependant and there was no overall winner. 

In our recent research (Jordanov & Georgieva, 2007; Georgieva & Jordanov, 2008a; 

Georgieva & Jordanov, 2008c) we investigated, developed and proposed a hybrid GO 

technique called Genetic LPτ Search (GLPτS), able to solve high dimensional multimodal 

optimization problems, which can be used for local minima free NN learning. GLPτS 

benefits from the hybridization of three different approaches that have their own specific 

advantages:  

• LPτ Optimization (LPτO): a GO approach proposed in our earlier work (Georgieva & 
Jordanov, 2008c) that is based on meta-heuristic rules and was successfully applied for 
the optimization of low dimensional mathematical functions and several benchmark 
NN learning tasks of moderate size (Jordanov & Georgieva, 2007); 

•  Genetic Algorithms: well known stochastic approaches that solve successfully high 
dimensional problems (De Jong, 2006); 

• Nelder-Mead Simplex Search: a derivative-free local search capable of finding quickly a 
solution with high accuracy, once a region of attraction has been identified by a GO 
method (Nelder & Mead, 1965). 

In this chapter, we investigate the basic properties of GLPτS and compare its performance 
with several other algorithms. In Georgieva & Jordanov (2008a) the method was tested on 
multimodal mathematical functions of high dimensionality (up to 150), and results were 
compared with findings of other authors. Here, a summary of these results is presented and 
subsequently, the method is be employed for NN training of benchmark pattern recognition 
problems. In addition, few of the more interesting benchmark problems are discussed here.  
Finally, a case study of machine learning in practice is presented: the NNs trained with 

GLPτS  are employed to recognize and classify seven different types of cork tiles. This is a 

challenging real-world problem, incorporating computer vision for the automation of 

production assembly lines (Georgieva & Jordanov, 2008b). Reported results are discussed 

and compared with similar approaches, demonstrating the advantages of the investigated 

method. 
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2. A novel global optimisation approach for training neural networks 

2.1 Introduction and motivation 

In Georgieva & Jordanov (2007) we proposed a novel heuristic, population-based GO 
technique, called LPτ Optimization (LPτO). It utilizes LPτ low-discrepancy sequences of 
points (Sobol', 1979), in order to uniformly explore the search space. It has been proven 
numerically that the use of low-discrepancy point sequences results in a reduction of 
computational time for small and moderate dimensionality problems (Kucherenko & 
Sytsko, 2005). In addition, Sobol’s LPτ points have very useful properties for higher 
dimensionality problems, especially when the objective function depends strongly on a 
subset of variables (Kucherenko & Sytsko, 2005; Liberti & Kutcherenko, 2005). In LPτO are 
incorporated novel, complete set of logic-based, self-adapting heuristic rules (meta-
heuristics) that guide the search through the iterations. The LPτO method was further 
investigated in Georgieva & Jordanov (2008c) while combined with the Nelder-Mead 
Simplex search to form a hybrid LPτNM technique. It was compared with other methods, 
demonstrating promising results and strongly competitive nature when tested on a number 
of multimodal mathematical functions (2 to 20 variables). It was successfully applied and 
used for training of neural networks with moderate dimensionalities (Jordanov & 
Georgieva, 2007). However, with the increase of the dimensionality, the method experienced 
greater computational load and its performance worsened. This led to the development of a 
new hybrid technique – GLPτS that combines LPτNM with evolutionary algorithms and 
aims to solve efficiently problems of higher dimensionalities (up to a 150). 
GAs are known for their very good exploration abilities and when optimal balance with 
their exploitation ones is found, they can be powerful and efficient global optimizers (Leung 
and Wang, 2001; Mitchell, 2001; Sarker et al., 2002).  Exploration dominated search could 
lead to excessive computational expense. On the other hand, if the exploitation is 
favourable, the search is in danger of premature convergence, or simply of turning into a 
local optimizer. Keeping the balance between the two and preserving the selection pressure 
relatively constant throughout the whole run is important characteristic of any GA 
technique (Mitchell, 2001; Ali et al., 2005). Other problems associated with GA are their 
relatively slow convergence and low accuracy of the found solutions (Yao et al., 1999; Ali et 
al., 2005). This is the reason why GA are often combined with other search techniques 
(Sarker et al., 2002), and the same approach is adopted in our hybrid method, aiming to 
tackle these problems effectively by complementing GA and LPτO search. 
The LPτO technique can be summarized as follows: we seed the whole search region with 
LPτ points, from which we select several promising ones to be centres of regions in which we 
seed new LPτ points. Then we choose few promising points from the new ones and again seed 
in the neighbourhood of each one and so on, until a halting condition is satisfied. By 
combining LPτO with GA of moderate population size, the aim is to explore the search space 
and improve the initial seeding with LPτ points by applying genetic operators in a few 
generations. Subsequently, a heuristic-stochastic rule is applied in order to select some of the 
individuals and to start LPτO search in the neighbourhood of each of the chosen ones. 
Finally, we use a local Simplex Search to refine the solution and achieve better accuracy. 

2.2 LPτ low-discrepancy points 

Low-discrepancy sequences (LDS) of points are deterministically generated uniformly 
distributed points (Niederreiter, 1992). Uniformity is an important property of a sequence 
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which guarantees that the points are evenly distributed in the whole domain. When 
comparing two uniformly distributed sequences, features as discrepancy and dispersion are 
used in order to quantify their uniformity. Two different uniform sequences in three 
dimensions are shown in Fig. 1. The advantage of the low-discrepancy sequences is that 
they avoid the so called shadow effect, i.e., when projections of several points on the 
projective planes are coincident. 
 

 
As it can be seen from Fig.1, the projections of the cubic sequence give four different points 
on the projective plane, each of them repeated twice, while the LPτ sequence gives eight 
different projection points. Therefore, the low-discrepancy sequence would describe the 
function behaviour in this plane much better than the cubic one; this advantage is enhanced 
with the increase of the dimensionality and the number of points. This feature is especially 
important when the function at hand is weakly dependent on some of the variables and 
strongly dependent on the rest of them (Kucherenko & Sytsko, 2005). 
The application of LDS in GO methods was investigated in Kucherenko & Sytsko (2005), 
where the authors concluded that the Sobol’s LPτ sequences are superior to the other LDS. 
Many useful properties of LPτ points have been shown in Sobol’, (1979) and tested in Bratley 
& Fox (1988), Niederreiter (1992), and Kucherenko & Sytsko (2005). The properties of LDS 
could be summarized as follows: 

• retain their properties when transferred from a unit hyper-cube to a hyper-
parallelepiped, or when projected on any of the sides of the hyper-cube; 

• explore the space better avoiding the shadowing effect discussed earlier. This property is 
very useful when optimising functions that depend weakly on some of the variables, 
and strongly on the others; 

• unlike the conventional random points, successive LDS have memory and know about 
the positions of the previous points and try to fill the gaps in between (this property is 
true for all LDS and is demonstrated in Fig. 2);  

• it is widely accepted (Sobol’, 1979; Niederreiter, 1992) that no infinite sequence of N 
points can have discrepancy ρ that converges to zero with smaller order of magnitude 
than O(N-1logn(N)), where n is the dimensionality. The LPτ sequence satisfies this 
estimate. Moreover, due to the way LPτ are defined, for values of N = 2k, k = 1, 2, …, 31, 
the discrepancy converges with rate O(N -1log n-1(N)) as the number of points increases 
(Sobol’, 1979).  

                      (a) Cubic sequence              (b) LPτ low-discrepancy sequence. 

Fig. 1.  Two different uniform sequences. 
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2.3 The LPτO meta-heuristic approach 

Stochastic techniques depend on a number of parameters that play decisive role for the 
algorithm performance assessed by speed of convergence, computational load, and quality 
of the solution. Some of these parameters include the number of initial and subsequent trial 
points, and a parameter (or more than one) that defines the speed of convergence (cooling 
temperature in SA, probability of mutation in GA, etc.). Assigning values to these 
parameters (tuning) is one of the most important and difficult parts from the development of 
a GO technique. The larger the number of such decisive parameters, the more difficult (or 
sometimes even impossible) is to find a set of parameter values that will ensure an 
algorithm’s good performance for as many as possible functions. Normally, authors try to 
reduce the number of such user defined parameters, but one might argue that in this way, the 
technique becomes less flexible and the search depends more on random variables. 
The advantage of the LPτO technique is that the values of these parameters are selected in a 
meta-heuristic manner – depending on the function at hand, while guided by the user. For 
example, instead of choosing a specific number of initial points N, in LPτO, a range of 
allowed values (Nmin and Nmax) is defined by the user and the technique adaptively selects 
(using the filling-in the gaps property of LPτ sequences) the smallest allowed value that gives 
enough information about the landscape of the objective function, so that the algorithm can 
continue the search effectively. Therefore, the parameter N is exchanged with two other 
user-defined parameters (Nmin and Nmax), which allows flexibility when N is selected 
automatically, depending on the function at hand. Since the method does not assume a 
priori knowledge of the global minimum (GM), all parts of the parameter space must be 
equally treated, and the points should be uniformly distributed in the whole region of initial 
searched. The LPτ low-discrepancy sequences and their properties fulfill this issue 
satisfactorily. We also use the property of LPτ sequences that additional points fill the gaps 
between the other LPτ points. For example, if we have an LPτ sequence with four points and 
we would like to double their number, the resulting sequence will include the initial four 
points plus the new four ones positioned in-between them. This property of the LPτ 
sequences is demonstrated in Fig. 2. 
 

  

Fig. 2. Fill in the gaps property of the LPτ sequences. 

As discussed above, when choosing the initial points of LPτO, a range of allowed values 
(Nmin and Nmax) is defined and the technique adaptively selects the smallest possible value 
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that gives enough information about the landscape of the objective function, so that the 
algorithm can continue the search effectively. Simply said, after the minimal possible 
number of points is selected, the function at hand is investigated with those points, and if 
there are not enough promising points, additional ones are generated and the process is 
repeated until an appropriate number of points is selected, or the maximal of the allowed 
values is reached.  
Another example of the meta-heuristic properties of LPτO is the parameter that allows 
switching between exploration and exploitation and, thus, controls the convergence of the 
algorithm. In simulating annealing (SA), this is done by the cooling temperature (decreased by 
annealing shedule); in GA - by the probability of mutation, etc. These parameters are user-
defined at the beginning of the search. In the LPτO method, the convergence speed is 
controlled by the size of future regions of interest, given by a radius R, and, in particular, the 
speed with which R decreases (Georgieva & Jordanov, 2008c). If R decreases slowly, then the 
whole search converges slowly, allowing more time for exploration. If R decreases quickly, 
the convergence is faster, but the risk of omitting a GM is higher. In the LPτO, the 
decrease/increase step of R is not a simple user-defined value. It is determined adaptively 
on each iteration and depends on the current state of the search, the importance of the region 
of interest, as well as the complexity of the problem (dimensionality and size of the searched 
domain). The convergence speed depends also on a parameter M, which is the maximum 
allowed number of future regions of interest. M is a user defined upper bound of the 
number of future regions of interest Mnew, while the actual number is adaptively selected at 
each iteration within the interval [1, M]. The GO property of LPτO to escape local minima is 
demonstrated in Fig. 3, where the method locates four regions of interest and after a few 
iterations detects the GM. 
 

 

Fig. 3. Two-dimensional Rastrigin function with three local and one global minima, 
optimized with LPτO. 

The convergence stability of LPτO with respect to these parameters (in particular M and 
Nmax), the stability of the method with respect to the initial points and the searched domain,  
the analytical properties of the technique and the results from testing on a number of 
benchmark functions are further analysed and discussed in Georgieva & Jordanov (2008c). 
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2.4 GA and Nelder-Mead simplex search 

General information for GA and their properties can be found in Mitchell (2001). We use 

conventional one-point recombination and our mutation operator is the same as in (Leung & 

Wang, 2001). We keep constant population size, starting with G individuals. The general 

form of the performed GA is: 

Step 1. From the current population p(G), each individual is selected to undergo 
recombination with probability Pr. If the number of selected individuals is odd, we 
dispose of the last one selected. All selected individuals are randomly paired for 
mating. Each pair produces two new individuals by recombination; 

Step 2. Each individual from the current population p(G) is also selected to undergo 
mutation with probability Pm; 

Step 3. From the parent population and the offspring generated by recombination and 
mutation, the best G individuals are selected to form the new generation p(G). 

Step  4.  If the halting condition is not satisfied, the algorithm is repeated from step 1. 
 

Further details of the adopted GA can be found in Georgieva & Jordanov (2008a). The 
Nelder-Mead (NM) simplex method for function optimization is a fast local search 
technique (Nelder & Mead, 1965), that needs only function values and requires continuity of 
the function. It has been used in numerous hybrid methods to refine the obtained solutions 
(Chelouah & Siarry, 2003; 2005), and for coding of GA individuals (Hedar & Fukushima, 
2003). The speed of convergence (measured by the number of function evaluations) depends 
on the function values and the continuity, but mostly, it depends on the choice of the initial 
simplex - its coordinates, form and size. We select the initial simplex to have one vertex in 
the best point found by the LPτO searches and another n vertices distanced from it in a 
positive direction along each of its n coordinates, with a coefficient λ. As for the choice of the 
parameter λ, we connect it with the value of R1, which is the average distance between the 
testing points in the region of attraction, where the best solution is found by LPτO.  

2.5 The GLPτS technique: hybridization of GA, LPτO and Nelder-Mead search 

Here, we introduce in more detail the hybrid method called Genetic LPτ and Simplex Search 

(GLPτS), which combines the effectiveness of GA during the early stages of the search with 

the advantages of LPτO, and the local improvement abilities of NM search (further 

discussion of the method can be found in Georgieva & Jordanov (2008a).  

Based on the complexity of the searched landscapes, most authors intuitively choose 

population size for their GA that could vary from 100s to 1000s (De Jong, 2006). We employ 

smaller number of points that leads to a final population with promising candidates from 

regions of interest, but not necessarily to a GM. Also, our initial population points are not 

random (as in a conventional GA), but uniformly distributed LPτ points. 

Generally, the technique could be described as follows: 
Step  1. Generate a number I of initial LPτ points; 
Step  2. Select G points, (G < I ), that correspond to the best function values. Let this be the 

initial population p(G) of the GA; 
Step  3. Perform GA until a halting condition is satisfied; 
Step  4. From the population p(G) of the last GA generation, select g points of future interest 

(1 ≤ g ≤ G/2); 
Step  5. Initialize the LPτO search in the neighbourhood of each selected point; 
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Step 6. After the stopping conditions of the LPτO searches are satisfied, initialize a local NM 
search in the best point found by all LPτO searches. 

To determine the number g of subsequent LPτO searches (Step 4), the following rule is used 
(illustrated in Fig. 4): 
Let p(G) be the population of the last generation found by the GA run. Firstly, all G 

individuals are sorted in non-descending order using their fitness values and then rank ri is 

associated to the first half of them by using formula (1): 

 ,
minmax

max

ff

ff
r i
i −

−
=  i = 2, …, G/2.  (1) 

In (1), fmax and fmin are the maximal and minimal fitness values of the population and the 

rank ri is given with a linear function which decreases with the growth of fi, and takes values 

within the range [0, 1]. 
 

 

Fig. 4. Algorithm for adaptive selection of points of future interest from the last population 
of the GA run. 

The best individual of the last population p(G) has rank r1 = 1 and always competes. It is 

used as a centre for a hyper-cube (with side 2R), in which the LPτO search will start. The 

parameter R is heuristically chosen with formula (2) 

 R = 50/G + intmax*0.001,  (2) 
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where intmax is the largest of all initial search intervals. This parameter estimates the trade-
off between the computational expense and the probability of finding a GM. The greater the 
population size G, the smaller the intervals of interest that are going to be explored by the 
LPτO search. The next individual Pi, i = 2, …, G/2 is then considered, and if all of the 
Euclidean distances between this individual and previously selected ones are greater than 
2R (so that there is no overlapping in the LPτO search regions), another LPτO search will be 
initiated with a probability riPLP. Here PLP is a user-defined probability constant in the 
interval [0, 1]. In other words, individuals with higher rank (that corresponds to lower 
fitness) will have greater chance to initiate LPτO searches. After the execution of the LPτO 
searches is completed, Nelder-Mead Local Simplex Search is applied to the best function 
value found in all previous stages of GLPτS.  

3. Testing GLPτS on mathematical optimisation problems and benchmark NN 

learning tasks 

3.1 Mathematical testing functions 

Detailed testing results of GLPτS on multi-dimensional optimization functions are reported 
in Georgieva & Jordanov (2008a). Here, we only demonstrate the results of testing GLPτS on 
30 and 100 dimensional problems for which a comparison with several other GO approaches 
was possible. The results, in terms of average (over 100 runs) number of function 
evaluations, are scaled logarithmically for better visualization and are shown in Fig. 5. 
 

 

Fig. 5. Average number of function evaluations for ten test functions: comparison of GLPτS 
with  needed Orthogonal Genetic Algorithm with Quanitsation (OGA/Q, Leung & Wang, 
2001) and FEP (Yao et al., 1999). 

When compared to the other evolutionary approaches, it can be seen from Fig. 5 that GLPτS 
performed very efficiently. In addition, the comparison with Differential Evolution in 
Georgieva & Jordanov (2008a) for lower dimensional problems helped us conclude that 
GLPτS is a promising state-of-the-art GO approach solving equally well both low and  high-
dimensional problems.  
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3.2 NN learning benchmark problems 

Subsequently, we employed the GLPτS for minimizing the error function in NN learning 
problems and the results were reported in Georgieva & Jordanov, (2006). Here, we present 
only few interesting examples of using GLPτS for NN training.  
The architectures of the investigated NNs comprise static, fully connected between the 
adjacent layers topologies with a standard sigmoidal transfer functions. The training is 
performed in a batch-mode, i.e., all of the training samples are presented to the NN at one 

go. The NN weight vector is considered an n-dimensional real Euclidean vector ,W  

obtained by concatenating the weight vectors for each layer of the network. The GLPτS 
global optimisation algorithm is then employed to minimize the objective function (the NN 
error function) and to perform optimal training. The proposed algorithm is tested on well-
known benchmark problems with different dimensionalities. For comparison, a BP 
(Levenberg-Marquardt) is also employed and performed using Matlab NN Toolbox. Both 
methods are ran 50 times and their average values are reported. 
Classification of XOR Problem 
For the classification of the XOR, which is a classical toy problem (Bishop, 1995), the 
minimal configuration of a NN with two inputs, two units in the hidden layer, and one 
output is employed. The network also has a bias, containes 9 connection weights, and 
therefore, defines n = 9 dimensional optimization problem. There are P = 4 input-target 
patterns for the training set. It can be seen from the Fig. 6 that after the 20th epoch, BP did 
not improve the error function, while our method continued minimizing it. To assess the 
ability of the trained NN to generalize, tests with 100 random samples of noisy data are 
performed, where the noise is up to 15%. Obtained optimal results from the training and 
testing are given in Table 1 (Georgieva & Jordanov, 2006). 

 

Fig. 6. Error function for the XOR problem when BP and GLPτS are used. 

Predicting the rise time of a servo mechanism 
The Servo data collection represents an extremely non-linear phenomenon (Quinlan, 1993; 
Rocha et al., 2003) – predicting the rise time of a servomechanism, depending on four 
attributes: two gain settings and two mechanical linkages. The database consists of 167 
different samples with continuous output (the time in seconds). In order to avoid 
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Criterion 
Method 

Error Function 
(Std. Dev.) 

Mean Test Error 
(Std. Dev.) 

BP 0.08 (0.09) 0.1987 (0.0290) 

GLPτS 7.6e-08 (7e-08) 8.3e-07 (3.3e-7) 

Method: BP – Backpropagation with Levenberg-Marquardt optimisation (the source of 
Matlab NN Toolbox is used). 

Table 1. Optimal errors for the GLPτS and BP (XOR problem). 

computational inaccuracies, we normalized the set of outputs to have a zero mean and unit 
standard deviation. A network with a 4-4-1 architecture (25-dimensional problem) is 
employed to produce a continuous output. The dataset is divided into two parts – one batch 
of 84 training samples and second batch of 83 testing ones. In this case, the transfer function 
in the output layer is changed to a linear function (instead of a sigmoidal one) in order to be 
able to produce output outside the [0, 1] interval. Obtained optimal solutions for the train 
and test errors are given in Table 2 and Fig. 7 illustrates the average values of the errors for 
each testing sample for both BP and GLPτS. One can see from the figure that there are more 
outliers in the case of BP and that overall, a smaller mean test value is achieved by the 
GLPτS method. 
 

Criterion 
Method 

Error Function 
(Std. Dev.) 

Mean Test Error (Std. 
Dev.) 

BP 0.0474 (0.06) 0.4171 (0.5515) 

GLPτS 0.0245 (0.005) 0.2841 (0.4448) 

Table 2. Optimal errors for the GLPτS and BP (Servo problem). 

 

Fig. 7. Test errors and mean test errors for BP and GLPτS. 

Classification of Pima Indians Diabetes Database 
In the Diabetes data collection, the investigated, binary-valued variable is used to diagnose 
whether a patient shows signs of diabetes or not (Rocha et al., 2003). All patients are females 
of at least 21 years old and of Pima Indian heritage. The data set comprises 500 instances 
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that produce an output 0 (non-positive for diabetes), and 268 with output 1 (positive for 
diabetes). Each sample has 8 attributes: number of times pregnant, age, blood test results, 
etc. In order to avoid computational inaccuracies, in our experiment all attributes are 
normalized to have a zero mean and a unit standard deviation. A network with 8-8-1 
architecture (81-dimensional problem) is adopted to produce continuous output in the range 
[0, 1]. The dataset is divided into two parts – training subset of 384 samples (145 of which  
correspond to output 1), and testing subset of the same number of patterns. Table 3 shows 
the obtained optimal solutions for the training and testing errors.  
 

Criterion 
Method 

Error Function 
(Std. Dev.) 

Mean Test Error (Std. 
Dev.) 

BP 0.0764 (0.07) 0.2831 (0.2541) 

GLPτS 0.001 (0.005) 0.2619 (0.3861) 

Table 3. Optimal errors for the GLPτS and BP (Diabetes problem) 

Function Fitting Regression Example 
We also performed a function fitting example, for which the network is trained with noisy 
data. The function to be approximated is the Hermit polynomial: 

G(x) = 1.1(1-x+2x2)exp(-x2/2). 

The set up of the experiment is the same as reported in Leung et al. (2001), with the only 
difference that we use batch-mode instead of on-line training. The test results from 2000 
testing samples and 20 independent runs of the experiment are shown in Table 4. It can be 
seen from the table that our results improve slightly the best ones reported in Leung et al. 
(2001). Fig. 8 graphically illustrates the results and shows the Gaussian noise that we used 
for training, the function to be approximated, and the NN output. 
 

Criterion 
Method 

Average Max Min Std. Dev. 

RLS 0.1901 0.2567 0.1553 0.0259 

IPRLS 0.1453 0.1674 0.1207 0.0076 

TWDRLS 0.1472 0.1711 0.1288 0.0108 

GLPτS 0.1349 0.1602 0.1184 0.01 

Method: By Leung et al. (2001): RLS – Recursive Least Squares; IPRLS – Input Perturbation 
RLS; TWDRLS – True Weight Desay RLS. 

Table 4. Test results for the GLPτS and the methods in  Leung et al. (2001). 

The results from the classification experiments (Table 1, Table 2, and Table 3) show that the 
achieved by GLPτS least-square errors are at  least twice better than the BP ones. The 
multiple independent runs of our method also show that the obtained solutions are stable 
with small deviations. As it can be seen from Table 1, in the case of XOR, the GLPτS method 
outperforms BP considerably (BP with mean error of 0.08, in comparison with 7.6e-8 for the 
proposed here method). For this task Wang et al. (2004), also reported low success rate for 
BP with frequent entrapment in local minima. In the case of Servo problem, the superiority 
of our method is not so dominant (as in the case of XOR), but still the results in Table 2 show 
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better standard deviation of both measures – 0.005 against 0.06 for the error function, and 
0.44 against 0.55 for the test error. This indicates a better and more stable solution for our 
method. The reported in Rocha et al. (2003) results from five different methods for the same 
task and architecture are also with worse error function values compared to ours. Those 
observations indicate that further improvement of the solution could not be found for the 
investigated 4-4-1 NN architecture, nevertheless, experiments with different architectures 
could lead to better results. The comparison of the training results for Diabetes given in 
Rocha et al. (2003), also confirms the advantages of the GLPτS method. 

 

Fig. 8. Output of the network trained with  GLPτS  for the function fitting example. 

4. Machine learning in practise: an intelligent machine vision system 

4.1. Introduction and motivation 

In (Georgieva & Jordanov, 2008b) we investigate an intelligent machine vision system that 
uses NNs trained with GLPτS for pattern recognition and classification of seven types of 
cork tiles with different texture. Automated visual inspection of products and automation of 
product assembly lines are typical examples of application of machine vision systems in 
manufacturing industry (Theodoridis & Koutroumbas, 2006). At the assembly line, the 
objects of interest must be classified in a priori known classes, before a robot arm places them 
in the right position or box. In the area of automated visual inspection, where decisions 
about the adequacy of the products have to be made constantly, the use of pattern 
recognition provides an important background (Davies, 2005). 
 Cork is a fully renewable and biodegradable sustainable product obtained from the bark of 
the cork oak tree. Although the primary use of cork is in the wine stoppers production (70% 
of the total cork market), cork floor and wall covering give about 20% of the total cork 
business (WWF, 2006). Cork oak plantations have proven biodiversity, environmental and 
economical values. Recent increase of alternative wine stoppers arises serious attention and 
concerns, since this is reducing the economical value of cork lands and might lead to 
abandonment, degradation and loss of irreplaceable biodiversity (WWF, 2006).  On the other 
hand, in the past several years of technological advancement, cork has become one of the 
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most effective and reliable natural materials for floor and wall covering.  Some of the 
advantages of the cork tiles are their durability, ability to reduce noise, thermal insulation, 
and reduction of allergens. Many of the cork floors installed during the “golden age” of cork 
flooring (Frank Lloyd Wright’s Fallingwater; St. Mary of the Lake Chapel in Mundelein (USA); 
US Department of Commerce Building, etc.) are actually still in use, which is the best proof 
of their durability and ever-young appearance. 
Image analysis techniques have been applied for automated visual inspection of cork 
stoppers in (Chang et al., 1997; Radeva et al., 2002; Costa & Pereira, 2006), and according to 
the authors, the image-based inspection systems have high production rates. Such systems 
are based on a line-scan camera and a computer, embedded in an industrial sorting machine 
which is capable of acquiring and real-time processing of the product surface image. 

4.2 Database and features extraction 

The aim of this case study was to design, develop and investigate an intelligent system for 
visual inspection that is able to automatically classify different types of cork tiles. Currently, 
the cork tiles are sorted “by hand” (e.g., see www.expanko.com), and the use of such a 
computerized system could automate this process and increase its efficiency. We 
experimented with seven types of cork wall tiles with different texture. The tiles used in this 
investigation are available on the market by www.CorkStore.com and samples of each type 
are shown in Fig. 9.  
 

 

Fig. 9. Images taken with our system: samples from the seven different types of wall cork tiles. 

The functionality of our visual system is based on four major processing stages: image 
acquisition, features extraction (generation and processing), NN training, and finally NN 
testing. For the image acquisition stage, we used a Charge-Coupled Device (CCD) camera 
with a focal length 5-50 mm that is capable of capturing fine details of the cork texture. For 
all cork types we used grayscale images of size 230x340 pixels and, in total, we collected 770 
different images for all classes. Fig. 10 shows the percentage distribution of each type of cork 
tiles. We used 25% of all images for testing (not shown to the NN during training) and 
assessing the generalization abilities of the networks. 
The first step of the features generation stage was to reduce the effects of illumination. 
Subsequently, we used two classical approaches to generate image texture characteristics: 
the Haralick ‘sco-occurrence method (Haralick et al., 1973) and the Laws’ filter masks (Laws, 
1980). Both methods were employed and the obtained features were used to generate one 
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dataset, without taking into account the feature generation technique. This approach 
resulted in obtaining 33 features for each image (8 co-occurrence characteristics and 25 
Laws’ masks). These features were further processed statistically with Principal Component 
Analysis (PCA) and Linear Discriminent Analysis (LDA) in order to extract the most 
valuable information and to present it in a compact form, suitable for NN training (Bishop, 
1995). Before processing the data, we took out 120 samples to be used later as a testing 
subset, therefore, this data was not involved in the feature analysis stage. All additional 
details of this case study, can be found in Georgieva & Jordanov (2008b). 
 

 

                                        (a)                              (b) 

Fig. 10. Dataset sample distribution (50% training, 25% testing, 25% validation): (a) Number 
of samples from each cork type; (b) The percentage distribution of each cork type. 

4.3 Neural network training and testing 

NNs with three different topologies (with biases) were employed and different coding of the 
seven classes of interest was used. In the first case, a NN with three neurons in the output 
layer (with Heaviside transfer function) was employed. The seven classes were coded as 
binary combinations of the three neurons (‘1-of-c’ coding, as proposed in Bishop, 1995), e.g., 
Beach was coded as (0, 0, 0), Corkstone as (1, 0, 0), etc. The last, (8th) combination (1, 1, 1) was 
simply not used. In the second designed topology, the output layer contained only one 
neuron (with Tanh transfer function and continuous output). Since the Tanh function has 
values in [-1, 1], the seven classes were coded as (-0.8571, -0.5714, -0.2857, 0, 0.2857, 0.5741, 
0.8571) respectively. When assessing the system generalization abilities, we considered each 
testing sample as correctly classified if |output – target| < 0.14. For the last topology was 
used an output layer with seven neurons and a Heaviside transfer function. Each class was 
coded as a vector of binary values where only one output is 1, and all others are 0. For 
example, Beach was coded as (1, 0, 0, 0, 0, 0, 0), Corkstone as (0, 1, 0, 0, 0, 0, 0), etc. 
The number of neurons in the input layer depends on the number of features (K) that 
characterize the problem samples. Utilizing the rules of thumb given by Heaton (2005) and 
after experimenting, the number of neurons in the hidden layer was chosen to be N = 7. The 
three different architectures were employed for both datasets, obtained by the PCA and 
LDA respectively, processing: K-7-3 (3-binary coding of the targets), K-7-1 (continuous 
coding of the targets), and K-7-7 (7-binary coding), where K is the number of features. At the 
system evaluation stage, 25% of the total data were used as a testing set, only 1/3 of which 
was present at the feature analysis phase (used in the preprocessing with PCA and LDA) 
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and the remaining 2/3 of the test set were kept untouched. Further on, we considered the 
testing results as average test errors for both testing subsets. Rigorous tests when a 
validation set is used were performed and the results can be found in Georgieva & Jordanov 
(2008b). 
 

Feature 
Set 

Measure 
Three outputs  
(binary coding) 

One output 
(continuous coding) 

MSE (std), 
[min, max] 

0.052 (0.0094) 
[0.03, 0.074] 

0.014 (0.0044) 
[0.011, 0.036] 

PCA 

Test rate, 
[min, max] 

86% [79%, 94%] 66% [41%, 77%] 

MSE (std), 
[min, max] 

0.0038 (0.0029) 
[0, 0.014] 

0.0037 (0.0022) 
[0.0005, 0.0113] 

LDA 

Test rate, 
[min, max] 

95% [88%, 99%] 88% [74%, 98%] 

Feature set: Principal Component Analysis (PCA) and Linear Discriminant Analysis – 
discussed in Georgieva & Jordanov, 2008b. 

Table 5. Neural Network Training with GLPτS and Performance Evaluation: two different 
datasets with binary and continuous output. 

Table 5 shows training and testing results for both topologies with K = 7 for the PCA dataset 
and K = 6 for the LDA dataset. In Table 5 the MSE (mean squared error) and standard 
deviation (given in parentheses) for 50 runs are independently reported for each dataset. 
The minimal and maximal values obtained for the different runs are also shown in this table. 
The system was evaluated with the testing rate, given by the percentage of correctly 
classified samples from the test set. Similarly, Table 6 shows results for the same topologies 
and datasets, with the only difference being the NN training technique. For the training of 
the NNs in Table 5, GLPτS was used, and for Table 6 – the Matlab implementation of 
gradient-based Levenberg-Marquardt minimisation, denoted here as Backpropagation (BP). All 
test results are jointly illustrated in Fig. 11. The analysis of the results given in Table 5, Table 
6, and Fig. 11, led to the following conclusions: 

• The generalisation abilities of the NNs trained with GLPτS were strongly competitive 
when compared to those trained with BP. The best testing results of 95% were obtained 
for NN trained with GLPτS,  LDA dataset, and three binary outputs; 

• In general, the BP results were not as stable as the GLPτS ones, having significantly 
larger differences between the attained minimal and maximal testing rate values. This is 
due to entrapment of BP in local minima that resulted in occasional very poor solutions;  

• The LDA dataset results had better testing rate and smaller MSE than those 
corresponding to the PCA dataset. In our view this advantage is due to the LDA 
property to look for optimal class separability; 

• The three-output binary coding of the targets led to a NN architecture with higher 
dimensionality, but gave better results than the continuous one. This is not surprising, 
since the binary coding of the targets provided linearly independent outputs for the 
different classes, which is more suitable for classification tasks compared to continuous 
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coding (Bishop, 1995). However, in the case of seven binary outputs, the NN 
performance deteriorated, since the dimensionality was increased unnecessarily. 

 

Feature 
Set 

Measure 
Three outputs  
(binary coding) 

One output 
(continuous coding) 

MSE (std), 
[min, max] 

0.025 (0.053) 
[0.001, 0.245] 

0.0489 (0.1473) 
[0.0113, 0.9116] 

PCA 

Test rate, 
[min, max] 

85% 
[39%, 94%] 

71% 
[0%, 85%] 

MSE (std), 
[min, max] 

0.022 (0.06) 
[0, 0.244] 

0.0049 (0.027) 
[0, 0.1939] 

LDA 

Test rate, 
[min, max] 

89% 
[40%, 98%] 

90% 
[45%, 98%] 

Table 6. Neural Network Training with BP and Performance Evaluation: two different 
datasets with binary and continuous output. 
 

 

Fig. 11. Mean, min, and max test success rate (Table 5 and Table 6) for the experiments with 
different datasets, NN topologies, and learning approaches. 

Further on, we considered only the two cases with 3-binary and 1-continuous coding (as 
well as NN trained with GLPτS), as the most interesting and successful ones. Fig. 12 
illustrates the testing success rate for the two NN topologies for both datasets (PCA and 
LDA) with respect to the increasing number of training samples. The idea was to assess 
whether the number of used samples and features gave comprehensive and reliable 
information for the different cork classes. We used 25% of the whole data as an unseen 

www.intechopen.com



 Theory and Novel Applications of Machine Learning 

 

28 

testing subset and started increasing the percentage of used samples when training, keeping 
the NN topology unchanged. If the success rate increases proportionally to the increase of 
the training set size, then the features can be considered to be reliable (Umbaugh, 2005). The 
results illustrated in Fig. 12 were averaged over 20 runs. One can see from Fig. 12 that for 
both NN architectures, LDA gives better generalisation results than PCA. It can also be seen 
that for all combinations (datasets and coding), the test rate graphs are ascendant, but the 
increased of number of training samples above 60% hardly brings any improvement of the 
test error success rate (with the exception of the LDA – binary architecture). 
 

 

Fig. 12. Test success rate for increasing number of samples in the training set. PCA and LDA 
feature sets are considered with binary and continuous coding of the classes. 

4.4 Comparison with results of other authors 

Straightforward comparison of our results with findings for similar cork classification 
systems (Chang et al., 1997; Radeva et al., 2002; Costa & Pereira, 2006) is a difficult task, 
because of the many differences in the parameters and techniques. Some of the main 
differences can be listed as follows: 

• Automated systems for cork products inspection have been developed only for cork 
stoppers and planks, but not for cork tiles; 

• While natural cork stoppers are manufactured by punching a one-piece cork strip 
(which may have cracks and insect tunnels), cork tiles consist of various sizes of 
granules compressed together under high temperature, and cracks are not likely to be 
expected to appear. In (Chang et al., 1997; Radeva et al., 2002; Costa & Pereira, 2006), 
the authors are looking mostly for pores, cracks and holes (and their sizes) in cork 
stoppers, whereas in our case, gray density (texture) changes and overall appearance is 
of interest. We use feature generation techniques that capture the images texture 
information, while in (Chang et al., 1997; Radeva et al., 2002; Costa & Pereira, 2006) the 
authors use features that aim to identify cracks and holes; 

• In Costa & Pereira (2006) the authors employ only LDA as a classifier and in (Chang et 
al., 1997) the investigation does not include any feature analysis techniques at all. In our 
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experiment, after using LDA and PCA to reduce the dimensionality of the problem 
space, we used GLPτS method for optimal NN learning. Other authors relay on 
different classifiers (Nearest Neighbor, Maximal likelihood, Bayesian classifier (Radeva 
et al., 2002), Fuzzy-neural networks (Chang et al., 1997), LDA (Costa & Pereira, 2006); 

• The size of training and testing datasets and the size of the investigated images vary 
significantly. 

In our study, we showed that LDA could reach up to 95% success rate for a task with seven 
classes,  providing that the classifier is well designed and combined with NN (trained with 
GLPτS method). We claim that LDA is computationally efficient and very useful technique 
when the other stages of the system process – feature generation and appropriate classifier 
design are thoroughly thought and investigated. On the other hand, ICA is not suitable for 
all types of data, because it imposes independence conditions on the features and also 
involves additional computational cost (Theodoridis & Koutroumbas, 2006; Radeva et al., 
2002). Considering the above-mentioned results, we can conclude that the intelligent 
classification system investigated has very good and strongly competitive generalization 
abilities (Table 7). 
 

This Experiment 
System 

 

Costa & 
Pareira 

Radeva et 
al. 

Chang et 
al. BP training 

This Experiment 
GLPτS training 

 
71% –90% 

Test 
Rate 

46% –58% 46% –98% 93.3% 
 

66% –95% 

Table 7. Neural Network testing: comparison of our system with other intelligent visual 
systems employed for cork stoppers classification. 

6. Conclusions 

Here has been presented an overview of our recent research findings. Initially, a novel 
Global Optimisation technique, called LPτO, has been investigated and proposed. The 
method is based on LPτ Low-discrepancy Sequences and novel heuristic rules for guiding 
the search. Subsequently, LPτO has been hybridized with Nelder-Mead local search, 
showing very good results for low-dimensional problems. Nevertheless, with the increase of 
problems dimensionality, method’s computational load increases considerably. To tackle 
this problem, a hybrid Global Optimisation method, called GLPτS, that combines Genetic 
Algorithms, LPτO method and Nelder-Mead simplex search, has been studied, discussed 
and proposed. When compared with Genetic Algorithms, Evolutionary Programming, and 
Differential Evolution, GLPτS has demonstrated strongly competitive results in terms of 
both number of function evaluations and success rate. Subsequently, GLPτS has been 
applied for supervised NN training and tested on a number of benchmark problems. Based 
on the reported and discussed findings, it can be concluded that the investigated and 
proposed GLPτS technique is very competitive and demonstrates reliable performance when 
compared with similar approaches from other authors. 
Finally, an Intelligent Computer Vision System has been designed and investigated. It has 
been applied for a real-world problem of automated recognition and classification of 
industrial products (in our case study – cork tiles). The classifier, employing supervised 
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Neural Networks trained with GLPτS, has demonstrated reliable generalization abilities. The 
obtained and reported results have shown strongly competitive nature when compared 
with results from BP and other authors investigating similar systems.  
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