
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322387746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

6

A Domain Engineering Process for RFID
Systems Development in Supply Chain

Leonardo Barreto Campos1, Eduardo Santana de Almeida2,
Sérgio Donizetti Zorzo3 and Silvio Romero de Lemos Meira4

1Federal University of Vale do São Francisco (UNIVASF)
2Recife Center for Advanced Studies and Systems (CESAR)

3Federal University of São Carlos (UFSCar)
4Federal University of Pernambuco (UFPE)

Brazil

1. Introduction

According to the Supply-Chain Council (1997), the supply chain encompasses every effort
involved in producing and delivering a final product or service, from the supplier's supplier
to the customer's customer. Supply Chain Management (SCM) includes managing supply
and demand, sourcing raw materials and parts, manufacturing and assembly, warehousing
and inventory tracking, order entry and order management, distribution across all channels,
and delivery to the customer. In this context of several sources of information exchanging
data dynamically in supply chain, the Radio Frequency Identification (RFID) appears as a
technology able to identify objects such as manufactured goods, animals, and people. Thus,
the goal of the RFID technology in supply chain management is to guarantee
interoperability providing, for example, accurate and real-time information on inventory of
the organizations, product recalls and communications among supply chain participants.
On the other hand, the RFID-based systems used in supply chain management were not
considered by a specific software development process. In this scenario, a process is
important and necessary to define how an organization performs its activities, and how
people work and interact in order to achieve their goals. In particular, processes must be
defined in order to ensure efficiency, reproducibility and homogeneity (Almeida, 2007).
There are several definitions on software process (Osterweil, 1987), (Pressman, 2005), and
(Sommerville, 2006). According to Ezran et al. (2002) software processes refer to all the tasks
necessary to produce and manage software, whereas reuse processes are the subset of tasks
necessary to develop and reuse assets (Ezran et al., 2002). The adoption of either a new,
well-defined, managed software process or a customized one is a possible facilitator for
success in reuse programs (Morisio et al., 2002). In supply chain domain, many scenarios
and processes are repeatable among supply chain participants (sub-domains), for example,
inventory management, shipment and delivery of the goods, and localization of a product.
In this sense, software reuse – the process of creating software systems from existing
software rather than building them from scratch – is a key aspect for improving quality and
productivity in the software development. O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Supply Chain, The Way to Flat Organisation, Book edited by: Yanfang Huo and Fu Jia,
ISBN 978-953-7619-35-0, pp. 404, December 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Supply Chain, The Way to Flat Organisation

104

In the context of software reuse, important research including company reports (Bauer, 1993),

(Endres, 1993), (Griss, 1994), (Joos, 1994), (Griss, 1995), informal research (Frakes & Isoda,

1995), (Frakes & Kang, 2005) and empirical studies (Rine, 1997), (Morisio et al., 2002),

(Rothenberger et al., 2003) have highlighted the relevance of a reuse process, since the most

common way of software reuse involves developing applications reusing pre-defined assets.

The software reuse processes literature focuses on two directions: Domain Engineering and,

currently, Software Product Lines (in section 3 a more detailed discussion about it is

presented). Thus, motivated by increasing utilization of the RFID technology in supply

chain and the lack of specific development processes for the RFID-based systems

development in supply chain, this chapter aims at defining a systematic process to perform

domain engineering which includes the steps of domain analysis, domain design, and

domain implementation.

In the next section we present the parts of the EPCglobal Network. Eight software reuse

processes distributed in domain engineering and software product lines are discussed in the

followed section. This is followed by an overview of the proposed domain engineering

process. The Sections 5, 6 and 7 describe the domain analysis, domain design, and domain

implementation steps respectively. Finally, the conclusion summarizes the contributions this

work and directions for future works.

2. The EPCglobal network

One critical issue of the new technologies is their standardization. In case of the RFID

systems, both EPCglobal and International Standards Organization (ISO) have adopted

RFID in their standards. According (Sabbaghi & Valdyanathan, 2008) the most prominent

industry standards for RFID are the EPCglobal specifications and standards for supply

chain. The EPCglobal Inc is a nonprofit organization that was initiated in 2003 by MIT Auto-

ID Center in cooperation with other research universities to establish and support the EPC

Network as the global standard for the automatic and accurate identification of any item in

supply chain. The EPCglobal is establishing the standards on how information is passed

from RFID readers to various applications, as well as from application to application, in the

supply chain. These standards are specified in EPCglobal Architecture Framework, or

simply EPCglobal Network. Its is a collection of interrelated hardware, software, and data

standards, together with core services that are operated by EPCglobal and is delegates, all in

service of a common goal of enhancing business flows and computer applications through

the use of Electronic Product Codes (Armenio, 2007). It is composed of five components: (i)

Electronic Product Code, (ii) Identification System, (iii) EPC Middleware, (iv) Discovery

Services, and (v) EPC Information Service.

Firstly, the Electronic Product Code (EPC) is defined as “a naming and identification scheme

designed to enable the unique identification of all physical and virtual objects, assemblies

and grouping of objects, and non-objects such as service” (Engels, 2003). It is incorporated

into a RFID chip and attached to a physical object. An Electronic Product Code is comprised

of header and more three distinct numbers: domain manager number, object class number,

and serial number. In this way is possible to provide information about product or object

such as your category, data and time of manufacture, final destination, etc. The

Identification System consists of RFID tags and RFID readers. RFID Tag is an electronic

www.intechopen.com

A Domain Engineering Process for RFID Systems Development in Supply Chain

105

device composed of microchip and an antenna attached to a substrate, as shown in Figure 1.

On the other hand, the RFID readers create a radio frequency field that detects radio waves.

When a tag passes through a radio frequency field generated by a compatible reader, the tag

reflects back to the reader the identifying information about the object to which it is

attached, thus identifying that object.

Fig. 1. Electronic Product Code and RFID Tag

Next, the EPC Middleware manages real-time read events and information, provides alerts,

and manages the basic read information for communication to EPC Information Services

and a company’s other existing information systems. The Discovery Services returm

locations that have some data related to an EPC (EPCglobal, 2005). In general, a Discovery

Services may contain pointers to entities other than the entity that originally assigned the

EPC code. Hence, Discovery Services are not universally authoritative for any data they may

have about an EPC. The important service in Discovery Services is the Object Name Service

(ONS) that, given an EPC, can return a list of network accessible service endpoints that

pertain to the EPC in question. Finally, the EPC Information Service (EPCIS) provides an

uniform programmatic interface to allow various clients to capture, secure, and access EPC-

related data and the business transactions which that data is associated (Harrison, 2003).

Companies that assign EPC numbers can maintain EPC Information Service servers with

item information. Using EPC numbers does not require organizations to share EPC data or

use other components of the system.

The EPCglobal Network presented previously contains several aspects that can be
considered by Software Reuse. According to (Harrison, 2003), the hardware, software, and
Interfaces defined in EPCglobal Network are management by applications with networked
databases. In this sense, software reuse can be used in development of applications, reusing
assets available in domains of the Supply Chain. For example, the localization of a product
in supply chain is divided into six steps: (i) the RFID reader capture the EPC stored on the
tag, (ii) EPC Middleware verify and validate the EPC, (iii) EPC Information Service search
data related to EPC in local ONS and return the result, (iv) next, the supply chain participant
authenticate it in the EPCglobal Network, (v) ONS search data related to EPC in external
databases using EPCglobal Network infrastructure, and (vi) return the search results to
application as shown in Figure 2.
This scenario and others situation are commons for some supply chain domains. Therefore,
the goal of domain engineering process described in this chapter is to identify common and
specific features, scenarios, domain-specific software architecture, and so on, for analysts
and designers in a domain, as well as simplifying the identification and implementation of
the software components.
The next section presents an analysis involving eleven software reuse processes discussing
their, fundamentals, concepts, pros and cons that consists a base for the process defined in
this chapter.

www.intechopen.com

 Supply Chain, The Way to Flat Organisation

106

Fig. 2. Scenario of utilization of the EPCglobal Network

3. Software reuse processes

Since the time that software development started to be discussed within the industry,
researchers and practitioners have been searching for methods, techniques, and tools that
would allow for improvements in costs, time-to-market and quality (Almeida, 2007). The
software reuse processes encompass concepts, strategies, techniques, and principles that
enable developers to create new systems effectively using previously developed
architectures and components. A software reuse process, besides presenting issues related to
non-technical aspects (education, culture, organizational aspects, etc), must describe two
essential activities: the development for reuse (Domain Engineering), which will be
discussed next and the development with reuse (Application Engineering) which consists in
building applications based on the assets produced in Domain Engineering.
In the state-of-art of the software reuse processes presented in (Almeida et al., 2005) and the
discussions about it in (Frakes & Kang, 2005) is possible to note that several research studies
aimed at finding efficient ways to develop reusable software. These work focus on two
directions: Domain Engineering and, currently, Software Product Lines, as can be seen in the
next sections.

3.1 Domain engineering

Domain Engineering is defined in (Czarnecki & Eisenecker, 2000) as “the activity of collecting,
organizing, and storing past experience in building systems or parts of systems in a particular
domain in the form of reusable assets, as well as providing an adequate means for reusing these assets

www.intechopen.com

A Domain Engineering Process for RFID Systems Development in Supply Chain

107

when building new systems”. In this context, this work analysed four domain engineering
processes. The first domain engineering approach is called Draco. This approach is based on
transformation technology and was developed by James Neighbors in his Ph.D. Work
(Neighbors, 1989). The main idea introduced by Draco is to organize software construction
knowledge into a number of related domains. Each Draco domain encapsulates the needs
and requirements and different implementations of a collection of similar systems. In this
work, is presented also, an initial direction to development software using Domain
Engineering. However, his approach is very difficult to apply in the industrial environment
due the complexity to perform activities such as writing transformations and using the
Draco machine.
Described in the 90’s, Feature-Oriented Domain Analysis (FODA) is a domain analysis
method developed at the Software Engineering Institute (SEI). The method presented in
(Kang et al., 1998) consists of two phases: Context Analysis and Domain Modelling. The
major contribution of FODA method is the feature model. An important part of this model is
the feature diagram that defines three types of features: mandatory, alternative, and
optional features. Next, the Feature-Oriented Reuse Method (FORM) (Kang et al., 2002),
seen as an elaboration of the FODA, to present four layers to classify features: capability,
operating environment, domain technology, and implementations technique. Moreover, the
processes do not include essential domain analysis techniques such as domain scoping.
Other important domain engineering method analysed was the Organization Domain
Modeling (ODM) developed by Mark Simos. The ODM process described in (Simos et al.,
1996) consists of three main phases: Plan Domain, Model Domain, and Engineer Asset Base.
However, the phases do not present specific details on how to perform many of its activities.
According to (Czarnecki & Eisenecker, 2000) the ODM provides a “general high-level guidance
in tailoring the method for application within a particular project or organization”.

3.2 Software product lines

A new trend started to be explored in software reuse process is the Software Product Line

area. According to (Clements & Northrop, 2001), a software product line is “a set of software-

intensive systems sharing a common, managed set of features that satisfy the specific needs of a

particular market segment or mission and that are developed from a common set of core assets in a

prescribed way”. In this context, we analysed four software product lines processes. Firstly,

we present the Family-Oriented Abstraction, Specification and Translation (FAST) process,

described in (Weiss & Lai, 1999). The FAST process focuses on pattern for software

production processes that strives to resolve the tension between rapid production and

careful engineering. The FAST process consists of three well-defined sub-processes: domain

qualification, domain engineering, and application engineering. On the other hand, some

activities in the process such as in Domain Engineering are not as simple to perform, for

example, the specification of an Application Modeling Language.

Presented in (Atkinson, 2000), the Komponentenbasierte Anwendungsentwicklung (KobrA)
approach provides a generic assets that can accommodate variants of a product line through
framework engineering. The gap in KobrA approach is does not present guidelines to
perform systematic tasks such as domain analysis and domain design. An effort to apply the
reuse concepts within the embedded systems domain is described in (Winter et al., 2002).
The Pervasive Component Systems (PECOS) approach focuses on two issues: how to enable
the development of families of PECOS devices? And how pre-fabricated components have

www.intechopen.com

 Supply Chain, The Way to Flat Organisation

108

to be coupled? Some gaps was identified in PECOS, for example, in component
development, there is not guidance on how the requirements elicitation is performed, and
how the components are identified.
Finally, is presented in (Gomaa, 2005) the Product Line UML-Based Software Engineering
(PLUS) approach considered the most current process related to product lines. PLUS
extends UML by integrating several product line engineering techniques to support UML-
based product line engineering. PLUS defines three general steps: requirements, analysis,
and design. Modelling in order to provide various modelling techniques and notation for
product line requirements engineering activity, use case modelling, and feature modelling.
However, in requirements and analysis, activities related to scoping are not considered.

4. The domain engineering process

According to the previous Section, software reuse can be an important way to develop
software, offering benefits related to quality, productivity and costs, mainly, using a well-
defined reuse process. However, the current software reuse processes present gaps and lack
of details in key activities such as, for example, domain engineering. Other requirements
like application engineering, metrics, economic aspects, reengineering, adaptation, and
quality are important as well, but focus on this chapter is on domain engineering. In this
context, this section presents an overview of the proposed domain engineering process, its
foundations, and steps.

4.1 Overview of the process

As defined in the previous chapter, domain engineering is the activity of collecting,
organizing, and storing past experience in building systems or parts of systems in a
particular domain in the form of reusable assets (i.e. reusable work products), as well as
providing an adequate means for reusing these assets (i.e. retrieval, qualification,
dissemination, adaptation, assembly, and so on) when building new systems (Czarnecki &
Eisenecker, 2000, pp. 20). A domain engineering process should define three important
steps: Domain Analysis (DA), Domain Design (DD), and Domain Implementation (DI). In
general, the main goal of Domain Analysis is domain scoping and defining a set of reusable,
configurable requirements for the systems in the domain. Next, Domain Design develops a
common architecture for the system in the domain and devising a product plan. Finally,
Domain Implementation implements the reusable assets, for example, reusable components,
domain-specific languages, generators, and a production process (Czarnecki & Eisenecker,
2000).
Before presenting more details about the proposed domain engineering process, it is
important to discuss two basic concepts which will be used next: (i) Domain: encompasses
not only the real world knowledge in a given problem area, but also the knowledge about
how to build software systems in that area, corresponding to the domain as a set of systems
view, (ii) Feature: is widely used in domain analysis to capture the commonalities and
variabilities of systems in a domain. In general, there are two definitions of features found in
the reuse literature. The first says that an end-user-visible characteristic of a system, the
FODA definition. The second definition about feature says that it is a distinguishable
characteristic of a concept (e.g. system, component, etc) that is relevant to some stakeholder
of the concept, the ODM definition (Simos et al., 1996). In this work, the first definition will
be used, since it is the base for the domain analysis area. Other important concepts, more

www.intechopen.com

A Domain Engineering Process for RFID Systems Development in Supply Chain

109

specific to each step of the process, will be presented later, together with the process
detailed description.

4.2 The foundations

A software development process can be understood as the set of activities needed to
transform an user’s requirements into a software system. The way it is done can change
from process to process. For example, processes can be focused on domain engineering,
services (Papazoglou & Georgakopoulos, 2003), or Model-Driven Development (MDD)
(Schmidt, 2006), or use different process models, however, all kind of process is based on
some foundations. In this section, the foundations for the domain engineering process will
be presented.
Process Model. A software process model is an abstract representation of a software process

(Sommerville, 2006). Each process model represents a process from a particular perspective,

and thus provides only partial information about that process. There are different process

models published in the software engineering literature, such as Waterfall model,

Evolutionary development, Component-Based Software Engineering (CBSE), Incremental

delivery, Spiral development, among others (Pressman, 2005). These process models are

widely used in current software development practice. The domain engineering process

defined in this thesis is based on the spiral process model (Boehm, 1988), however, it

presents some characteristics of the CBSE process model, since reusable assets are used to

develop applications. The spiral model proposed originally by Boehm (1988), rather than

represent the software process as a sequence of activities with some backtracking from one

activity to another, consists of a spiral, where each loop represents a phase of the software

development process. The Figure 3 shows an overview of the process according to spiral

process model. Domain Driven. Instead of traditional software development processes as,

for example, the RUP, which is use-case driven, the domain engineering process is domain-

driven, where the focus is on a set of applications for a particular domain. In this domain,

the crucial points are: to identify common and specific features from existing, future, and

potential applications; to organize this information in a domain model; next, to design the

Domain-Specific Software Architecture (DSSA); and, finally, to implement reusable

components for that domain. Even being domain driven, use cases are also used in the

process as will be shown in section 6. Software Architecture. Software architecture involves

the structure and organization by which modern system components and subsystems

interact to form systems; and the properties of systems that can be better designed and

analysed at system level (Kruchten et al., 2006).

Component-Based Development (CBD). Component-based Development techniques are

important because in domain design, for example, it is interesting to modularize the

architecture in well-defined components, which can be easily changed without affecting

other parts of the architecture. Moreover, in domain implementation, whose goal is to

develop reusable assets, an important way of doing it is through a set of domain-specific

components, increasing the reuse potential. Desig Pattern. A design pattern is a larger-

grained form of reuse than a class because it involves more than one class and the

interconnection among objects from different classes. From the perspective of the domain

engineering process, design patterns are important because they can be used to encapsulate

the variability existing in domain analysis model and perform the mapping for design.

www.intechopen.com

 Supply Chain, The Way to Flat Organisation

110

Fig. 3. Process model of the domain engineering process.

4.3 Steps of the domain engineering process

The process for Domain Engineering defined in this chapter is composed of three steps:
Domain Analysis, Domain Design, and Domain Implementation. Due to the amplitude, each
step is respectively divided in activities and sub-activities. The steps are defined to be used
in sequence. However, even with less optimal results, they can be used separately.
Therefore, in this chapter, each step will be treated as an approach for a different part of the
domain engineering life cycle. In this sense, there is an approach for Domain Analysis,
described in section 5, an approach for Domain Design, described in section 6, and, finally,
an approach for Domain Implementation, described in section 7.

5. Domain analysis step

The Domain Analysis is considered an important phase in reuse-based software

development because it is able to identify common and variable features, analyse the

domain scope, define the people (stakeholders) who has a defined interest in the result of

the project, etc. The first definition for domain analysis was presented by Neighbors as “the

activity of identifying the objects and operations of a class of similar systems in a particular problem

domain” (Neighbors, 1989). For Neighbors, the identification of objects and operations

commons in domain minimizes effort in systems development. However, Neighbors not

present steps of “how to perform” domain analysis.
Based in this gap, works as (Arango, 1989), (Prieto-Diaz, 1990) and (Almeida, 2006) focus on
the outcome, not on the process. For Prieto-Diaz (1990), domain analysis is: “to find ways to

www.intechopen.com

A Domain Engineering Process for RFID Systems Development in Supply Chain

111

extract, organize, represent, manipulate and understand reusable information, to formalize the
domain analysis process, and to develop technologies and tools to support it”. In this sense, this
section presents a domain analysis approach for engineering RFID-based systems in supply
chain. The goal this approach is identify and modelling commons and variables features
presents in each domain supply chain (Campos & Zorzo, 2007). The domain analysis
consists of four steps: Planning, Requirements, Domain modelling, and Documentation. The
next sub-sections presents each step in details.

5.1 Planning
Firstly, ours goals whit domain analysis are: (i) description of the domain, (ii) identify the
stakeholders, and (iii) domain scoping. Therefore, the planning step is based in three sub-
activities (P):
P1. Domain: encompass to describe which supply chain will be applied the domain analysis
(e.g., domain of the healthcare, automotive, food, etc). Next, is necessary to divide the
supply chain in domains and describe it into four aspects (A): A1. Activity: that objective of
sub-domain in supply chain? A2. Input: from who the sub-domain receives information in
supply chain. A3. Output: to who the sub-domain send information in supply chain. A4.
Technology: where and which objective to use RFID systems in sub-domain. Hence, the
supply chain will be represented how domains that uses RFID systems in specifics activities,
inputs, and outputs. P2. Stakeholder analysis: the stakeholders are “people or someone who has a
defined interest in the result of the project”. In this sense, many stakeholders can be identified in
development and utilization of RFID-based systems in supply chain. For example, the RFID
engineering, person that must be expert with EPCglobal Network, RFID readers, RFID tags
and yours variabilities, installation, utilization, etc.
P3. Domain scope: this step consists in identify and discard domains in supply chain out of
scope. Domains that do not send or receive data for other sub-domains are eliminated. Next,
the domain scope analysis is made in terms of horizontal scope. This type of analysis has the
goal answer the questions: How many different systems are in the domain? Finally, the last
step, consists of analysing the domain scope in terms of vertical scope. Such, is important
answer the questions: Which parts of these systems are in the domain? In this context,
vertical domains contain complete systems. An organization which does not have any
experience with Domain Engineering should choose a small but important domain. After
succeeding with the first domain, the organization should consider adding more and more
domains to cover its product lines.

5.2 Requirements

The second step in domain analysis is the requirements elicitation, or simply requirements.
The goal is to describe the characteristics of the domain and to understand the users’ needs.
The requirements identification process includes stakeholders as manager, engineering, and
end user identified in planning activity. The Requirements activity is not an easy task,
mainly, because can exist some problems in potential since the domain contains several
systems, (Pr) as: Pr1. Ambiguity: stakeholders do not know what they really want. Pr2.
Redundancy: requirements of stakeholders different interpreted of the same form.
Pr3.Conflicting Requirements: Different stakeholders with conflicting requirements. Pr4.
External Factors: domain requirements may be influenced by organizational and political
factors. Pr5. Stakeholders Evolution: news stakeholders may emerge during the analysis
process. Pr6. Requirements Evolution: change of the requirements during the analysis process.

www.intechopen.com

 Supply Chain, The Way to Flat Organisation

112

Our effort to minimize errors is to make the requirements elicitation through features. The
feature definition used in this chapter is in concordance with (Kang et al., 1998): “an end-
user-visible characteristic of a system”. After defining the form to extract the domain
requirements, is necessary to define as to extract them. In this task, the approach uses the
concept of the scenarios. The scenarios are descriptions of how a system is used in practice.
Thus, the steps (S) for requirements elicitation from scenarios are: S1. Initial stage: systems
stage at the beginning of the scenario. S2: Events: normal flow of events in the scenario. S3.
Alternative Events: eventual events out the normal flow that can cause error. S4. Finish stage:
systems stage on completion of the scenarios. S5. Stakeholders: to list the stakeholders that
had participated in scenarios.

5.3 Domain modelling
The Domain Modelling is the third step in domain analysis. Your goal is identifying and
modelling commons and variables requirements in domains. In RFID-based systems, the
features will be based on the EPCglobal Network and the following sub-activities (M): M1.
Commonality analysis: consist in identify which features are commons to all applications of
the domain. There are different ways to identify common requirements. This approach uses
a based-priority sub-domain-requirements matrix shown in Table 1. The idea is select
requirements by priority for all stakeholders.

 Dom. 1 Dom. 2 Dom. 3 . . . Dom. n

Req. 1 Pr2 Pr1 Pr2 - -

Req. 2 X Pr2 Pr3 - -

Req. 3 Pr1 Pr1 Pr1 - -

. . . - - - - -

Req. n - - - - -

Table 1. Structure of Based-Priority Domain-Requirements Matrix

The left column of the matrix lists the requirements of the considered sub-domains. The sub-
domains themselves are listed in the top row. In the body of the matrix it is filled by priority
of the requirements. The priorities (Pr) are classified as follows: Pr1. High: the requirement
‘Pr1’ is mandatory for all sub-domains and is thus a candidate to be defined as a common
domain requirement. Pr2. Medium: the requirements that assists high-priority requirements
to keep the functionality of the systems. Pr3. Low: low-priority requirements to systems.
After filling of the matrix, the domain analyst must define ideal priority for commons
requirements.
The second sub-activity is M2. Variability analysis: this activity consists in identifying which
features are variable to applications of the domain. According to (Svahnberg et al., 2001) in
situations where a lot of effort has been made to preserve variability until very late in the
development process, the systems provides greater reusability and flexibility. Finally, we
have the sub-activity M3. Domains modelling: here, the commonalities and variabilities are
modelled. The model may be applicable at a high level to a number of applications. In this
approach the features may be mandatory, optional, or features or alternative as shown Figure 4
(Czarnecki & Eisenecker, 2000):
According to Czarnecki and Eisenecker (2000) a mandatory feature node is pointed to by a

simple edge ending with a filled circle. An optional feature may be included in the description

www.intechopen.com

A Domain Engineering Process for RFID Systems Development in Supply Chain

113

of a concept instance if and only its parent is included in the description. A concept may

have one or more sets of direct alternative features. Finally, a concept may have one or more

sets of direct or-features. However, if the parent of a set of or-feature is included in the

description of a concept instance, then any non-empty subset from the set of or-features is

included in the description; otherwise, none are included.

Fig. 4. Features types. Adapted (Czarnecki & Eisenecker, 2000)

Documentation. In this activity the requirements, identified in form of features, will be
documented. According to (Czarnecki & Eisenecker, 2000) the template used for document
features contain the fields:

6. The domain design step

The second phase of the domain engineering process defined in this chapter is the Domain

Design. The key goal this phase is to produce the domain-specific or reference architecture,

defining its main software elements and their interconnections in concordance with (Bosch,

2000). The concept of software architecture as a distinct discipline started to emerge in 1990,

and in 1995 (Shaw & Garlan, 1996), the field had a strong grow with contributions from

industry and academia, such as methods (Kazman et al., 2005) for software architecture. Our

domain design approach use the following concept: “A software architecture is a description of

the subsystems and components of a software system and the relations between them. Subsystems and

components are typically specified in different views to show the relevant functional and non-

functional properties of a software system. The software architecture of a system is an artefact. It is

the result of the software development activity”, presented by (Clements et al., 2004).

www.intechopen.com

 Supply Chain, The Way to Flat Organisation

114

Feature Name:

Semantic Description

Each feature should have at least description describing its semantics

Rationale

A feature should have a note explaining why the feature is included in the model

Stakeholders and client programs

Each feature should be annotated with stakeholders (e.g., users, customers, developers,
managers) who are interested in the feature and the client programs that need this feature

Exemplar applications

If possible, the documentation should describe features with known applications
implementing them

Constraints

Constraints are had dependencies between variable feature. Two important kinds of
constraints are mutual-exclusion constrains and required constrains

Open/closed attribute

Variation points should be market as open if new direct variable sub-feature (or features)
are expected. On the other hand, marking a variation point as closed indicates that no
other direct variable sub-feature (or feature) are expected

Priorities

Priorities may be assigned to features in order to record their relevance to the process

The main way of reusing a software architecture is to design a Domain-Specific Software
Architecture1 (DSSA) (Tracz, 1995) or Product-Line Architecture2 (Dikel et al., 1997). The
difference between software architecture in general and a DSSA is that a DSSA is used by all
applications in the domain. In this sense, a DSSA for RFID-based Systems in Supply Chain is
defined in the domain design phase and your goal is develop an assemblage of software
components, specialized for a particular type of task (domain), generalized for effective use
across that domain, composed in a standardized structure effective for building successful
applications (Tracz, 2005). The next sections present the activities of the domain design: (i)
Mapping, (ii) Components Design, (iii) Architecture Views, (iv) and, Architecture
Documentation.

6.1 Mapping

The first activity in domain design is the mapping from requirements to reference
architecture. An important issue considered in this activity is the variability. According to

1 Term used by the reuse community and adopted in this thesis.
2 Term used by the software product lines community. However, both present the same
idea

www.intechopen.com

A Domain Engineering Process for RFID Systems Development in Supply Chain

115

(Svahnberg et al., 2001), variability is the ability to change or customize a system. Improving
variability in a system implies making it easier to do certain kinds of changes. It is possible
to anticipate some types of variability and construct a system in such a way that it facilitates
this type of variability. In domains supply chains there are many variabilities, both in use of
the RFID technology and in supply chain organization. Therefore, the requirements
mapping must keep the variability in order to repeat the process for many different domains
and offer a reference for it.
Other issue that the domain designer should consider is with components specifications.
Some decisions (e.g. algorithms used in component development, objects and types of the
component interfaces) can to restrict the component reuse. When these decisions conflict
with specific requirements, the components reuse is limited or the system will be inefficient.
An efficient way to minimize or eliminate these conflicts is using Design Pattern. According
to Christopher Alexander (Alexander et al., 1977) “each pattern describes a problem which occurs
over and over again in our environment, and then describes the core of the solution to that problem,
in such a way that you can use this solution a million tomes over, without ever doing it the same way
twice”. This way, the pattern is a description of the problem and the essence of its solution,
so that the solution may be reused in different settings. In the software world, design
pattern were popularized by the gang of four (Gamma et al., 1995). According to Gamma
and his colleagues, design patterns describe a recurring design problem to be solved, a
solution to the problem, and the context in which that solution works. From the perspective
of the domain engineering process, design pattern are important because they can be used
to encapsulate the variability existing in domain analysis model and perform the mapping
for design. In general, a pattern has four essential elements: the pattern name, the problem,
the solution, and the consequences.
In the approach presented in this chapter, Design Patterns are used, but together with useful
guidelines that determine how and when patterns can be used to represent the different
kinds of variability that can exist in a DSSA for RFID-based Systems in Supply Chain. In to
order to design the variability of each module, we consider that it should be traceable from
domain analysis assets (features) to architecture, according to alternative, or and optional
features (Lee & Kang, 2004).

6.1.1 Alternative features

Alternative features indicate a set of features, from which only one must be present in an

application. Thus, the following set of patterns can be used (Gamma et al., 1995): Abstract

Factory. The abstract factory pattern provides an interface for creating families of related or

dependent objects without specifying their concrete classes. Specifying a class name when

the domain designer creates an object commits you to a particular implementation instead of

a particular interface. In this way, this pattern can be used to create objects indirectly and

assure that only one feature can be present in the application. In RFID-based systems in

supply chain, there are several readers and simultaneous readings. Thus, the EPC

Middleware must select only one EPC in case of various requisitions and to discard

unnecessary information of the data bases as shows Figure 5.

Chain of Responsibility. This pattern avoids coupling the sender of a request to its receiver
by giving more than one object a chance to handle the request. Objects in a chain of
responsibility must have a common type, but usually they do not share a common
implementation. In this sense, the same requisitions realized in distinct domains can be

www.intechopen.com

 Supply Chain, The Way to Flat Organisation

116

resolved by different objects. For example, the Discovery Service can want to be able to
query the data in local ONS or in external databases. Factory Method. Defines an interface
for creating an object, but let subclasses decide which class to instantiate. This pattern is
similar to the abstract factory and can be used also for alternative features. Finally, Observer
defines an one-to-many dependency between objects so that when one object changes state,
all its dependents are notified and updated automatically. Using this pattern, features can be
added to the application as a plug-in, after the deployment. In supply chains, the systems
must be flexible the various patterns RFID tags used in identifying of the products or items.

Fig. 5. Simultaneous readings. Adapted (Harrison, 2003)

6.1.2 Optional features

Optional features are features that may or may not be present in an application. For this
type of feature, three patterns can be used (Gamma et al., 1995):
Decorator. Attaches additional responsibilities to an object dynamically. Decorators provide

a flexible alternative to sub-classes for extending functionality. The decorator pattern can be

used for optional features, mainly those that are additional features. Thus, if a feature is

present, the ConcreteDecorator is responsible to manage and call the execution.

Prototype. Specifies the kinds of object to create using a prototypical instance, and create

new objects by copying this prototype. The prototype pattern specifies the kinds of objects

to create using a prototypical instance, and creates new objects by copying this prototype. In

this pattern, the prototype specifies how the interaction wit the feature should be, by

defining a concrete prototype for each feature. When the EPC Information Service request

www.intechopen.com

A Domain Engineering Process for RFID Systems Development in Supply Chain

117

data of any EPC to Object Naming Service and it does not provide information, data

obtained of the external databases are copied in local server. Observer. This pattern can be

used in the same way as in alternative features.

6.1.3 Or features

Or features represent a set of features, from which at least one must be present in an

application. For this type of feature, three patterns can be used (Gamma et al., 1995):

Bridge. Decouples an abstraction from its implementation so that the two can vary

independently. This pattern is appropriated where exist dependence on object

representations or implementations, and dependence on hardware and software platform.

Builder. The pattern separates the construction of a complex object from its representation

so that same construction process can create different representations. This pattern can be

used to build composed features. Thus, for the remainder of the architecture, only the

Director is available, being responsible to decide which features will be in the application

and which will not.. For example, in the transport of pallets, the application decides what

transport unit will be utilized (truck, ship, aeroplane, etc), and creates the object

automatically considering its characteristics (size, weight, etc). Singleton. Ensures a class

only has one instance, and provide a global point of access to it. This pattern also is strongly

recommended to or features that interact with mandatory features.

6.2 Component design

In this activity, the goal is to create an initial set of interfaces and component specifications.
This activity is composed of two steps: Identify Interfaces, and Component Specification.
Firstly, is important understand the concept of interfaces. For (Szyperski et al., 2002) define
interface as “a set of operations, with each operation defining some services or function that the
component will perform for the client”. In concordance with (Cheesman & Daniels, 2000) our
work considers two types of interfaces: system and business. The business interfaces are
abstractions of the information that must be managed by components. Our process for
identifying them is the following: to analyse the feature model to identify classes (for each
module and component); to represent the classes based on features with attributes and
multiplicity; and refine the business rules using formal language. The system interfaces and
their operations emerge from a consideration of the feature model and mainly of the use
case model. This interface is focused on, and derived from, system interactions. Thus, in
order to identify system interfaces for the components, the domain architect uses the
following approach: for each use case, he considers whether or not there are system
responsibilities that must be modelled. If so, they are represented as one or more operations
of the interfaces (just signatures). This gives an initial set of interfaces and operations.
After identifying the interfaces, additional information for specifying components are

necessary as, for example, interdependency of the components, and interfaces. The steps

presented in this chapter to identifying the interfaces are in concordance with (Cheesman &

Daniels, 2000). Firstly, for every component that is specified, the domain architect defines

which interfaces its realizations must support (provided and required interfaces). Next, the

restrictions of interaction between components must be specified. Unlike the traditional

interactions in implementation level, interactions of components define restrictions on the

specification level.

www.intechopen.com

 Supply Chain, The Way to Flat Organisation

118

6.3 Architecture views

A good way of mapping requirements to implementation is across of the architecture views.
The view must be defined as a representation of a set of system elements and the relations
associated with them. A view constrains the types of elements, relations and properties that
are represented in that view. In this work the four views considered are: (i) module view, (ii)
process view, (iii) deployment view, and (iv) data view.
The module view shows structure of the system in terms of units of implementation (e.g.

component, class, interfaces and their relations). It is essentials because represents the

blueprints for software engineering. Despite of the EPCglobal Network to propose one

architecture reference, it is can contain different modules in domains. The module view

defines three types de relations in concordance with UML relations between modules

(Jacobson et al., 1999): is part of, depends, is a as shown the Figure 6. The first relation “is part

of” is used when a package contain sub-packages and class. The second relation “depends

of” show the dependences between modules, for example, if the EPCIS need to update your

data bases are necessary to authenticate in EPCglobal Network. Finally, the relation “is a”

have as goal to represent specialization or generalization among modules, or interface

realization. The notation more appropriate to represent module view is although UML

diagrams as: package, components, class, and objects diagrams.

 The second architecture view defined in this chapter is the runtime view. It shows the

systems in execution, your properties, performance, and help to analyse some features in

runtime. The best representation for this view is using the UML diagrams following:

Interaction, Timing, State Machine, Activity, Communication, and Sequence diagrams.

Together with the activity diagram, the state machine diagram to offer more features to

describe the process exists in RFID-based systems of the supply chain. These diagrams

depict behavioural features of the system or business process.

Fig. 6. UML Relations between modules

In deployment view our goal is to describe the hardware structure which the systems are

running. Thus, is possible to verify the interconnection between EPC Information Services,

www.intechopen.com

A Domain Engineering Process for RFID Systems Development in Supply Chain

119

to analyse the performance of the EPCglobal Network, security, and access control to data

bases. The UML 2.0 define the deployment diagram with goal of shows the physical

deployment of the system, such as the computers, and devices (nodes) and how connect to

each other.

Finally, the data view can be used to describe the data bases modelling and their

relationship. The goal this view is to improve performance and adaptability of the systems,

and to avoid redundancy and enforce consistency. In RFID-based supply chains context the

data view is stronger used to represent the data bases that store information about each

RFUD tag. The UML diagram that better show the data view representation is the class

diagram. However, this view can also be represented entity-relationship diagram.

6.4 Architecture documentation

After defining the view, the domain designer will make the architecture documentation,

especially, information that will be applied to more than a vision. In this sense, we define a

template with goal of to assist architecture documentation.

Architecture Documentation

1. Guidelines

Describe the way that the architecture documentation is organized, including the use this
document in Supply Chain.

2. Design Information

Show design information as, for example, EPC version, previous and auxiliary documents,
design members, and goals in general lines.

3. Domain Information

Describe the domain that will project their quality attributes, functional and non-functional
requirements with major relevance for supply chain designers.

4. Views Documentation

4.1 Name

4.2 Graphic Representation

4.3 Elements Description

4.4 Relationship of views

4.5 Others information

5. Relation between Analysis and Design

Show which requirements described in analysis phase are in architecture

6. Glossary

Glossary of the system and acronyms

www.intechopen.com

 Supply Chain, The Way to Flat Organisation

120

7. The domain implementation step

The last phase of the domain engineering process for RFID-based systems development in
supply chain is the Domain Implementation. In concordance with (Pohl et al., 2005), the goal
of this step is to provide the implementation and documentation of the reusable assets
described in previous step. The activities defined in this chapter for domain implementation
step are in concordance with component-based development methods and software reuse
processes, among this process are UML Components (Cheesman & Daniels, 2000) and
Catalysis (D'Souza & Wills, 1998). The following sections show activities of the domain
implementation.

7.1 Component implementation

In this activity, the software engineer, based on requirements, implements the software
components through a set of well defined sub-activities. The approach is intended to be
used in the scope of domain engineering, and therefore it depends on assets developed in
domain analysis (feature model, requirements, domain use case model) and domain design
(domain-specific software architecture, component specifications).
This activity is divided into two sets of sub-activities, each one with a different purpose.

Sub-activities 1 to 4 deal with the provided services, i.e. when the software engineer wants to

implement a component to be reused. Sub-activities 5 to 7 deal with required services, i.e.

when the software engineer wants to reuse services from existent components. The first sub-

activity is to describe the component, providing general-purpose information, such as the

component vendor, version, package, among others. This information may be used to

identify a component, an important issue when components are stored in a repository, for

example.

In this second sub-activity, the software engineer should specify the interfaces. However, as

mentioned before, the domain implementation method depends on artefacts developed in

domain analysis and design, such as the domain-specific software architecture and

component specifications. These artefacts already contain the interface specification, and so

the software engineer only needs to review and refine them, if necessary. In the third sub-

activity, the goal is to implement the services defined in the previous sub-activity, using any

implementation technology, as well as the code to register these services to be used by other

components, if a dynamic execution environment is used. In fourth sub-activity, which

concludes the provided side of the component, the goal is to build and install the component.

According to the implementation technology used, this involves compiling and packaging

the component in a form that is suitable to be deployed in the production environment.

Sub-activities 1 to 4 deal with the provided side of a component. In order to implement the
required side, three sub-activities should be performed: First, the software engineer needs to
describe the component that will reuse other services. This is similar to first sub-activity, but
with the focus on the services that are required. In this sub-activity, the code that accesses
the required services is implemented. Here, different techniques can be employed, such as
the use of adapters, wrappers, or other ways to implement this access. The main goal of this
sub-activity is to provide low coupling between the required service and the rest of the code,
so that it can be more easily modified or replaced. The last sub-activity corresponds to
building and installing the component that reuses the services, which is similar to fourth sub-
activity. Although these two sets of sub-activities (1-4 and 5-7) are focused on different

www.intechopen.com

A Domain Engineering Process for RFID Systems Development in Supply Chain

121

aspects, in practice they will be present in most components, since normally each
component has both provided and required interfaces.

7.2 Component documentation

When a component is designed and implemented, the developer has clearly in mind some
test scenarios and specifics set of the use cases. Thus, case the client does not encompass the
component goals, it will be used incorrect way. In this sense, the component documentation
is presented by Sametinger (1997) as “a direct path for information from author to customer,
transfers knowledge efficiently. It is one of the most important ways to improve program
comprehension [and reduce] software costs”(Sametinger 1997). This way, Kotula (Kotula 1998)
presents thirty nine interrelated patterns as solution for documentation of quality. It is
grouped in six categories: (i) Generative Patterns: which describe high-level, pattern-creating
pattern, (ii) Content Pattern: which describe the material that must be included in the
documentation, (iii) Structure Patterns: which describe how the documentation must be
organized, (iv) Search Patterns: which discuss the facilities needed to find specific
information, (v) Presentation Patterns: describing how the documentation should be
presented graphically; and (vi) Embedding Patterns: which provide guidelines for how to
embed documentation content within source code.
Other the hand, (Taulavuori et al., 2004) says that “definition of the documentation pattern is not
sufficient for the adoption of a new documentation practice. An environment that supports the
development of documentation is also required”. This way, Taulavuori et al., (2004) provide
guidelines concerning how to document a software component. After to analyse patterns
defined by Kotula (1998) and component documentation in the context of software product
lines, described in (Taulavuori et al., 2004), this chapter defines the following template for
component documentation.

Component Documentation

1.General Information

1.1 Name

Should be well defined and describe the component

1.2 Type

Expresses the way the component is intended to be used

1.3 Goal

Describe the relation with the RFID technology present in supply chain

1.4 History

Describes the life cycle of the component.

2. Interfaces

2.1 Required Interfaces

The interface information is here defined as including the interface name, type, description,
behaviour and interface functions.

www.intechopen.com

 Supply Chain, The Way to Flat Organisation

122

2.2 Provided Interfaces

The same that required interfaces

3. Standards

3.1 Protocol

Describe the interaction between two components needed to achieve a specific objective

3.2 Standards

What EPCglobal Network standards the component is using? What standards are
necessaries? Standards can restrict the compatibility, structure and functionality of
components.

4. Technical Details

The Technical Details describes details the of design and implementation component.

4.1 Development Environment

Defines the environment in which the component has been development.

4.2 Interdependencies

Describes component's dependency on the components

4.3 Prerequisites

Defines all the other requirements that component may have to operate.

4.4 Implementation

Implementation includes composition, context, configuration, and interface
implementation. Composition information describes the internal structure of the
component, which can be derived from the component's class diagram. The component's
class diagram must be included, if possible, as well as the classes, operations and
attributes.

4.5 Restrictions

Should describe all the items that will limit the provider's options for designing or
implementing the components.

5. Information Non-functional

5.1 Modifiability

Define as the component can be adapted in new supply chains.

5.3 Expandability

Describes how new is often qualified only for OCM components.

5.3 Performance

Performance is a quality attribute that measures the component.. The measurements are

www.intechopen.com

A Domain Engineering Process for RFID Systems Development in Supply Chain

123

size of the component, prioritisations of events, and utilization in RFID systems.

5.4 Security

Define strategies to combat hackers. Including cryptography in RFID tags level.

6. General Information

6.1 Installation guide

Defines the operations that must be performed before the component can be used.

6.2 Support

Customer support includes the name of the contact person and an address or a phone
number where the customer can get help.

8. Conclusion

As widely discussed in this chapter, the reuse process present gaps and lack of details in key
activities such as, for example, domain engineering. In this sense, we believe that our
approach can be useful to reduce the gaps and lack of details among the steps, and
presenting a domain engineering process for RFID-based systems development presents in
supply chain domain. This work can be seen as initial climbing towards the full vision for an
efficient domain engineering process and interesting directions remain to improve what
started and to explore new routes. Thus, the following issues should be investigated as
future work: (i) Other RFID Standards, (ii) Other Directions in Software Architecture, for
instance, Service-oriented or Model-Driven and (iii) Architecture Documentation.

9. References

Alexander, C. (1977). A Pattern Language: Towns, Buildings, Construction, Oxford
University Press, 1977, pp. 1216

Almeida, E. S. et al., (2005). A Survey on Software Reuse Processes, IEEE International
Conference on Information Reuse and Integration, pp. 66-71, Nevada, USA, August,
2005, Las Vegas

Almeida, E. S. et al., (2006). The Domain Analysis Concept Revisited: A Practical Approach,
9th International Conference on Software Reuse, Lecture Notes in Computer Science,
Torino, Italy, June, 2006, pp. 43-57

Almeida, E. S. (2007). RiDE – The RiSE Process for Domain Engineering, Ph. D. Thesis,
Federal University of Pernambuco, Recife, Brazil, 2007

Arango, G. (1989). Domain Analysis: from art form to Engineering Discipline, 5th
International Workshop on Software specification and design, Pennsylvania, USA, May,
1989, Pittsburgh

Armenio, F et al., (2007) The EPCglobal Architecture Framework, EPCglobal Final Version, pp.
7, September 2007

Atkinson, C.; Bayer, J. & Muthig, D. (2000). Component-Based Product Line Development:
The KobrA Approach, First Software Product Line Conference, Kluwer International
Series in Software Engineering and Computer Science, pp. 19, Colocado, USA,
August, 2000, Denver

www.intechopen.com

 Supply Chain, The Way to Flat Organisation

124

Bauer, D. (1993). A Reusable Parts Center, IBM Systems Journal, Vol. 32, No. 04, pp. 620-624,
September, 1993

Boehm, B. W. (1988). A Spiral Model of Software Development and Enhancement, IEEE
Computer, Vol. 21, No. 05, pp. 61-72, May, 1988

Bosch, J. (2000). Design and Use of Software Architecture, Addison-Wesley, 2000, pp. 354
Campos, L. B. & Zorzo, S. D. (2007). A Domain Analysis Approach for Engineering RFID

Systems in Supply Chain Management, IEEE International Conference on System of
Systems Engineering, Texas, USA, pp. 165-171, April, 2007, San Antonio

Cheesman, J. & Daniels, J. (2000). UML Component A Simple Process for Specifying
Component-Based Software, Addison-Wesley, 2000, pp. 208

Clements, P & Northrop, L. (2001). Software Product Lines: Practices and Patterns, Addison-
Wesley, 2001, pp. 608

Clements, P. et al., (2004). Documenting Software Architectures: Views and Beyond,
Addison-Wesley, 2004, pp. 512

Czarnecki, K & Eisenecker, U. W. (2000). Generative Programming: Methods, Tools, and
Applications, pp. 832, Addison-Wesley, 2000

Dikel, D. (1997). Applying Software Product-Line Architecture, IEEE Computer, Vol. 30, No.
08, pp. 49-55, August, 1997

D'Souza, D. F. & Wills, A. C. (1998). Objects, Components and Frameworks with UML: The
Catalysis Approach, Addison-Wesley, 1998, pp. 816

Endres, A. (1993). Lessons Learned in an Industrial Software Lab, IEEE Software, Vol. 10, No.
05, pp. 58-61, September, 1993

Engels, D (2003). The use of the Electronic Product Code, White Paper of the Massachusetts
Institute of Technology (MIT), pp. 03, February 2003.

EPCglobal (2005). Object Naming Service (ONS) Version 1.0, EPCglobal Ratified
Specifications, pp. 09, October, 2005

Ezran, M.; Morisio, M & Tully, C. (2002). Practical Software Reuse, pp. 374, Springer
Frakes, W. B. & Isoda, S. (1994). Success Factors of Systematic Software Reuse, IEEE Software,

Vol. 12, No. 01, pp. 15-19, September, 1994
Frakes, W. B. & Kang, K. C. (2005). Software Reuse Research: Status and Future, IEEE

Transactions on Software Engineering, Vol. 31, No. 07, pp. 529-536, July, 2005
Gamma, E. (1995). Design Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley, 1995, pp. 395
Gomaa, H. (2005). Designing Software Product Lines with UML: From Use Cases to Pattern-

Based Software Architectures, Addison-Wesley, 2005, pp. 701
Griss, M. L. (1994). Software Reuse Experience at Hewlett-Packard, 16th IEEE International

Conference on Software Engineering, pp. 270, Italy, May, 1994, Sorrento
Griss, M. L. (1995). Making Software Reuse Work at Hewlett-Packard, IEEE Software, Vol. 12,

No. 01, pp. 105-107, January, 1995
Harrison, M. (2003). EPC Information Service – Data Model and Queries, White paper of the

Massachusetts Institute of Technology (MIT), pp. 03, October, 2003
Jacobson, I.; Booch, G. & Rumbaugh, J. (1999). The Unified Software Development Process,

Addison-Wesley, 1999, pp. 463
Joos, R. (1994). Software Reuse at Motorola, IEEE Software, Vol. 11, No. 05, pp. 42-47,

September, 1994

www.intechopen.com

A Domain Engineering Process for RFID Systems Development in Supply Chain

125

Kang. K. C. et al., (1998). FORM: A Feature-Oriented Reuse Method with domain-specific
reference architectures, Annals of Software Engineering Notes, Vol. 05, No. 00,
January, 1998, pp; 143-168

Kang, K. C.; Lee, J. & Donohoe, P. (2002). Feature-Oriented Product Line Engineering, IEEE
Software, Vol. 19, No. 04, pp; 58-65, July/August, 2002

Kazman et al., (2005). A Basis for Analyzing Software Architecture Analysis Methods,
Software Quality Journal, Vol. 13, No. 04, pp. 329-355, December, 2005

Kotula, J. (1998). Using Patterns To Create Component Documentation. IEEE Software, Vol.
15, No. 02, pp. 84-92, March/April, 1998

Kruchten, P.; Obbink, H. & Stafford, J. (2006). The Past, Present, and Future of Software
Architecture, IEEE Software, Vol. 23, No. 02, pp. 22-30, March/April, 2006

Lee, K. & Kang, K. C. (2004). Feature Dependency Analysis for Product Line Component
Design, 8th International Conference on Software Reuse, Madri, Spain, July, 2004, pp.
69-85

Morisio, M; Ezran, M & Tully, C. (2002). Success and Failure Factors in Software Reuse, IEEE
Transactions on Software Engineering, Vol. 28, No. 04, pp. 340-357, April, 2002

Neighbors, J. M. (1989). Draco: A Method for Engineering Reusable Software Systems, in
Software Reusability Volume I: Concepts and Models, T. Biggerstaff, A. Perlis,
1989, pp. 425

Osterweil, L. (1987). Software Process are Software too, 9th International Conference on
Software Engineering, pp. 02-13, California, USA, March/April, 1987, Monterey

Papazoglou, M. P. & Georgakopoulos, D. (2003). Service-Oriented Computing,
Communications of the ACM,Vol. 46, No. 10, pp. 25-28, October, 2003

Pohl, K.; Bockle, G. & van der Linden, F. (2005). Software Product Line Engineering:
Foundations, Principles, and Techniques, Springer, 2005, pp. 467

Pressman, R. S. (2005). Software Engineering: A Practitioner's Approach , pp. 880, McGraw-
Hill, 2005

Prieto-Diaz, R. (1990). Domain Analysis: An Introduction, ACM SIGSOFT Software
Engineering Notes, Vol. 15, No. 02, pp. 47-54, April, 1990

Rine. D. C. (1997). Success Factors for Software Reuse that are Applicable Across Domains
and Businesses, ACM Symposium on Applied Computing, pp. 182-186, California,
USA, March, 1997, San Jose

Rothenberger, M. A.; Dooley, K. J.; Kulkarni, U. R. & Nada, N. (2003). Strategies for Software
Reuse: A Principal Component Analysis of Reuse Practices, IEEE Transactions on
Software Engineering, Vol. 29, No. 09, pp. 825-837, September, 2003

Sabbaghi, A. & Valdyanathan, G. (2008). Effectiveness and Efficiency of RFID Technology in
Supply Chain Management: Strategic values and Challenges. Journal of Theoretical
and Applied Electronic Commerce Research, Vol. 03, No. 02, August 2008, pp. 71-81,
ISSN 0718-1876 Electronic Version

Sametinger, J. (1997). Software Engineering with Reusable Components, Springer-Verlag,
1997, pp. 275

Schmidt, D. C. (2006). Model-Driven Engineering, IEEE Computer, Vol. 39, No. 02, pp. 25-31,
February, 2006

Shaw, M & Garlan, D. (1996). Software Architecture: Perspective on an Emerging Discipline,
Prentice Hall, pp. 242

www.intechopen.com

 Supply Chain, The Way to Flat Organisation

126

Simos, M. et al. (1996). Organization Domain Modeling (ODM) Guidebook, Version 2.0,
Technical Report, June, 1996, pp. 509

Sommerville, I. (2006). Software Engineering, pp. 840, Addison Wesley
Supply-Chain Council (1997). New group aims to improve supply chain integration,

Purchasing, pp. 8-32, Vol. 123, No. 6
Svahnberg, M; van Gurp, J & Bosch, J. (2001). On the Notion of Variabilities in Software

Product Lines, Working IEEE/IFIP Conference on Software Architecture, Amsterdam,
Netherlands, August, 2001, pp. 45-54

Taulavuori, A.; Niemela, E. & Kallio, P; (2004). Component Documentation – a key issue in
software product lines, Journal Information and Software Technology, Vol. 46, No. 08,
pp. 535-546, June, 2004

Tracz, W. (1995). DSSA (Domain-Specific Software Architecture) Pedagogical Example,
ACM SIGSOFT Software Engineering Notes, Vol. 20, No. 03, pp. 49-62, July, 1995

Weiss, D. M. & Lai, C. T. R. (1999). Software Product-Line Engineering: A Family-Based
Software Development Process, Addison-Wesley, 1999, pp. 426

Winter, M.; Zeidler, C. & Stich, C. (2002). The PECOS Software Process, Workshop on
Component-based Software Development, 7th International Conference on Software Reuse,
pp. 07, Texas, USA, April, 2002, Austin

www.intechopen.com

Supply Chain the Way to Flat Organisation

Edited by Julio Ponce and Adem Karahoca

ISBN 978-953-7619-35-0

Hard cover, 436 pages

Publisher InTech

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

With the ever-increasing levels of volatility in demand and more and more turbulent market conditions, there is

a growing acceptance that individual businesses can no longer compete as stand-alone entities but rather as

supply chains. Supply chain management (SCM) has been both an emergent field of practice and an

academic domain to help firms satisfy customer needs more responsively with improved quality, reduction cost

and higher flexibility. This book discusses some of the latest development and findings addressing a number of

key areas of aspect of supply chain management, including the application and development ICT and the

RFID technique in SCM, SCM modeling and control, and number of emerging trends and issues.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Leonardo Barreto Campos, Eduardo Santana de Almeida, Sérgio Donizetti Zorzo and Silvio Romero de Lemos

Meira (2009). A Domain Engineering Process for RFID Systems Development in Supply Chain, Supply Chain

the Way to Flat Organisation, Julio Ponce and Adem Karahoca (Ed.), ISBN: 978-953-7619-35-0, InTech,

Available from:

http://www.intechopen.com/books/supply_chain_the_way_to_flat_organisation/a_domain_engineering_proces

s_for_rfid_systems_development_in_supply_chain

© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

