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Performance Analysis and Optimization of 
Sizable 6-axis Force Sensor  
Based on Stewart Platform 

Y. Z. Zhao, T. S. Zhao, L. H. Liu, H. Bian and N. Li 
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P. R. China 

 

1. Introduction    

The Stewart platform, originally proposed for a flight simulator by Stewart (1965) has been 

suggested for a variety of applications by Hunt (1978), Fichter (1986) and Portman (2000). 

The advantage of the compact design with six degrees of freedom prompts one to consider 

the mechanism for force-torque sensor application. The parallel 6-axis force sensor is a kind 

of measure instrument which has the ability of detecting the forces and moments in x, y, and 

z directions simultaneously. The 6-axis force-torque sensor has been widely used in the 

situation of force/force-position control, such as parts teaching, contour tracking, precision 

assembly, etc. in addition to the applications in thrust testing of rocket engines and wind 

tunnel by Gaillet (1983) and Kaneko (1996). 

Performance analysis and optimization design are important during the design of the 

sensor. There are a lot of literatures available on the design of force-torque sensor. Kerr 

(1989) analyzed an octahedral structure and enumerated a few design criteria for the sensor 

structure. Uchiyama and Hakomoic (1985) studied the isotropy of force sensor. Bicchi (1992) 

discussed the optimization of force sensor. Xiong (1996) defined the isotropy of force sensor 

on the basis of the information matrix. Jin (2003) presented the indices design method for 6-

axis force sensor used on a dexterous hand. Ranganath (2004) studied the performances of 

the force sensor in the near-singular configuration. Tao (2004) optimized the performances 

of force sensor with finite element method. Theoretical and experimental investigations of 

the Stewart platform sensor were carried out by various authors, namely Romiti and Sorli 

(1992), Zhmud (1993) and Dai (1994) etc. So far, the researchers have obtained many 

achievements in the field of 6-axis force sensor, but the performances of the sizable parallel 

6-axis force sensor prototype based on Stewart platform varies largely in different 

directions. The further application of the sizable parallel sensor is blocked by the existent 

performance anisotropy. So, the performance analysis and optimization design is significant 

to evaluating performances and the conceptual design of the sizable parallel sensor based on 

Stewart platform. 

This paper presents the performance analysis and optimization design of the sizable parallel 

6-axis force sensor with Stewart platform. The paper is organized as follows. Section 2 O
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presents the static mathematics model of the 6-axis force sensor with screw theory. The 

static force influence coefficient matrix and the generalized force Jacobian matrix of the 6-

axis force sensor are derived. Based on the screw theory and the theory of physical model of 

the solution space, some performances indices are defined. The force isotropy, torque 

isotropy, force sensitivity isotropy and torque sensitivity isotropy indices atlases of the 6-

axis force sensor are plotted, and the rules how structure parameters affect the performances 

indices are summarized in Section 3. The optimization method of sizable parallel 6-axis force 

sensor’s structure parameters is proposed, and an optimization numerical example is 

demonstrated in nonlinear single objective and multi-objective in section 4, respectively. 

Based on the result of the performances analysis and optimization, the section 5 presents a 

novel sizable 6-axis force sensor with flexible joints, which can avoid effectively the friction 

and the clearance in general spherical joint and has a wider application foreground. The 

research result reported of the chapter is concluded in section 6, future research in section 7, 

acknowledgement in section 8, and references in section 9. 

2. Static mathematics model of 6-axis force sensor 

The Stewart platform 6-axis force sensor is a kind of special parallel mechanism that is 
symmetrical design. Fig.1 is the sketch of the mechanism and forces acted on the platform. 
The platforms of the upper and lower platform are shown in Fig.2. Ou-XuYuZu is the 
coordinate system fixed on the center point P of the upper platform, when the upper 
platform and the lower are both in the horizontal position. The spherical joints connecting 

links and upper platform at the upper ends are signed ( )1, 2, ,6
i
a i = A  while the spherical 

joints in the lower and the corresponding position vectors are ( )1, 2, ,6
i
i = AA  and 

( )1,2, ,6
i
i = AB  respectively. Each link will be subjected only to the axial force, ignoring 

the links’ gravitation and the friction between joints. 
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Fig. 1. The sketch of 6-axis force sensor based on Stewart platform 
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Fig. 2. The upper and lower platform of 6-axis force sensor’s  

Investigating the upper platform, the force equation based on the screw theory and static 
equilibrium can be obtained as 

 
6

1

$
w i i

i

f
=

=∑F  (1) 

where, if  is magnitude of the ith link’s axial force, ( )0;
T

i i i=$ S S  expresses the unit 

vector of ith link’s direction, and ( )Tw w w=F f m  is the generalized external force applied 

to the upper platform. ( )Tw wx wy wzf f f=f  and ( )Tw wx wy wzm m m=m  are the 

external force and moment. The above equation can be disintegrated as 

∑
=

=
6

1i

iiw f Sf  

∑
=

=
6

1

0

i

iiw f Sm  

(2) 

where, ( )i i i i i= − −S a b a b  and ( )0i i i i i= × −S b a a b . So, the equation (1) can be 

also expressed as w =F G f , where ( )1 2 3 4 5 6

T
f f f f f f=f . The static force influence 

coefficient matrix of the parallel 6-axis force sensor can be expressed as 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

060201

621

SSS

SSS
G

A

A
 (3) 

The former three rows of the matrix G  is the force transmitting factor of the parallel sensor, 

while the latter three rows is the torque-transmitting factor. The factors having different 

unit, which the former is dimensionless, while the latter has length unit, the matrix G  is 

disintegrated into the static force influence coefficient matrix 
1
G  and the static torque 

influence coefficient matrix 
2
G . That is [ ]1 2

T

=G G G . The transformational relation 

between the generalized external force in 6 dimensions and the link’s axial force can be 

given as 
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 fFJ =
w

 (4) 

where, 
1−=J G  is the generalized force Jacobian matrix of the parallel 6-axis sensor. 

Similarly, the generalized force Jacobian matrix J  is disintegrated into the force Jacobian 

matrix 
1
J  and the torque Jacobian matrix 

2
J , that is [ ]1 2

=J J J . 

3. Performance analysis of parallel 6-axis force sensor 

3.1 Physical model of the solution space theory 

The physical model of the solution space theory has the ability to show all possible size 

combination of the mechanism. It is convenient to obtain the law of the sensor’s indices 

following the changing of the element structure parameters. From the static mathematics 

model of the force sensor above, the 6-axis force sensor based on Stewart platform contains 

four structure parameters. That is the radius 
a
R  of the upper platform, the radius 

b
R  of the 

lower platform, the height H  between platforms, and the angle difference 
ab a b

θ θ θ= −  

between the corresponding twin link of the upper and the lower platform. With the 

precondition of 
ab

θ  is changeless, let 
a b
R R H T+ + = , then 

 1a b
RR H

T T T
+ + =  (5) 

Let a

a

R
r

T
= , b

b

R
r

T
=  and c

c

R
r

T
= , the equation (5) gives 

 1=++
Hba
rrr  (6) 

where, 0 1
a
r< < , 0 1

b
r< < , 0 1

H
r< < . Thus, the physical model of the solution space 

theory of the 6-axis force sensor based on Stewart platform is developed. For displaying 
conveniently, the physical model can be transformed into two dimension O-XY plane as 
shown in Fig. 3. The transformation between the coordinates can be expressed as 

 
Hb
rrx ⋅+⋅=

3

3

3

32
 and 

H
ry =  (7) 

 

Fig. 3. The ichnography of the sensor’s spacial model 
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Therefore, all possible parameters combination of the 6-axis force sensor based on Stewart 
platform are included in the triangle ocd. In other words, each point in the triangle ocd 
corresponds with a set of structure parameters. With the physical model of the solution 
space theory, selecting parameters and optimization structure design are convenient greatly. 

3.2 Performances atlases analysis 

The indices evaluating the performances of the 6-axis force sensor are the foundation of the 

performance evaluating and the optimization design. As for the parallel 6-axis force sensor, 

it should have high force isotropy, torque isotropy, and force/torque (F/T) sensitivity 

isotropy, in addition to the high sensitivity, precision, signal noise ratio (SNR) and speedy 

response. The performances atlases are plotted in the area of the physical model triangle 

ocd, based on the static mathematics model above and the defining of the performances 

indices given by Uchiyama and Hakomori (1985), Xiong (1996) and Jin (2003) with the force 

isotropy 
1 1

1 cond( )u = G , the torque isotropy 
2 2

1 cond( )u = G , the force sensitivity 

isotropy 
3 1

1 cond( )u = J  and the torque sensitivity isotropy 
4 2

1 cond( )u = J . From the 

sensor’s physical model of the solution space theory developed above, the performances 

atlases varies with the angle 
ab

θ . It is unpractical to show all existent performances atlases. 

Considering the latter optimization design of the structure parameters, the performances 

spacial and planar atlases are plotted as shown in Fig. 4-11, respectively, when the 

coordinate system fixed on the center point of the lower platform and 60
ab

θ = c
. It can be 

easily gotten the indices distributing laws with the performances atlases of force isotropy, 

torque isotropy, force sensitivity isotropy and torque sensitivity isotropy, especially in the 

planar atlases of as shown in Fig.5, Fig.7, Fig.9 and Fig.11. 
From the influence that the structure parameters act on the sensor’s performances indices 
shown in Fig. 4-11, the laws guiding the optimization design can be concluded as following. 
The plot of the force isotropy distributes parabola approximately in the area of the physical 
model as shown in Fig. 4 and Fig. 5. The force isotropy will becomes higher in the middle 
and lower area of the physical model. The corresponding structure parameters can be 
selected, when the index of the force isotropy should be attached importance to design. 
 

 

Fig. 4. Force isotropy spacial atlas with respect to 60
ab

θ =
c
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Fig. 5. Force isotropy planar atlas with respect to 60
ab

θ =
c
 

 

Fig. 6. Torque isotropy spacial atlas with respect to 60
ab

θ =
c
 

 

Fig. 7. Torque isotropy planar atlas with respect to 60
ab

θ =
c
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The plot of the torque isotropy distributes beeline approximately in the area of the physical 
model as shown in Fig. 6 and Fig. 7. The torque isotropy will becomes lower in the right side 
and upper area of the physical model. The corresponding structure parameters should be 
eliminated, when the index of the torque isotropy should be attached importance to design. 
 

 

Fig. 8. Force sensitivity isotropy spatial atlas with respect to 60
ab

θ =
c
 

The plot of the force sensitivity isotropy distributes beeline approximately in the area of the 
physical model as shown in Fig. 8 and Fig.9. The force sensitivity isotropy will change 
rapidly by the x axis in the physical model. The corresponding structure parameters should 
be eliminated in design. In the upper most area, the index of the force sensitivity isotropy is 
smaller. The force sensitivity isotropy distributing resembles the torque isotropy 
distributing of the force sensor.  
 

 

Fig. 9. Force sensitivity isotropy planar atlas with respect to 60
ab

θ =
c
 

The plot of the torque sensitivity isotropy distributes parabola approximately in the area of 
the physical model as shown in Fig. 10 and Fig. 11. The torque sensitivity isotropy will 
becomes higher in the middle part of the physical model. The corresponding structure 
parameters can be selected, when the index should be attached importance to design. 
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Fig. 10. Torque sensitivity spacial isotropy atlas with respect to 60
ab

θ =
c
 

 

Fig. 11. Torque sensitivity planar isotropy atlas with respect to 60
ab

θ =
c
 

4. Optimization design of sizable parallel 6-axis force sensor 

4.1 Optimization objective function 

In the sensor’s practical application, the request for the performances indices varies with the 
practical application cases. Some performance index should be considered principally in 
some cases, while the comprehensive performance index is pivotal in some cases. The paper 
optimizes the existing sensor’s structure parameters in nonlinear single objective and multi-
objective respectively, in order to obtain better performances than that of the initial ones. As 

the restriction of mechanical special model, the constraint equation 0≤
ab

θ ≤120° should be 

applied. In the single objective optimum, the objective functions are chosen as following 

 ( ) 2/1

11min

2/1

11max
)]([)]([ GGGG

TT ⋅⋅= λλθ
abbaFD

HRRf  (8) 

 ( ) 2/1

22min

2/1

22max
)]([)]([ GGGG

TT ⋅⋅= λλθ
abbaMD

HRRf  (9) 
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 ( ) 1/ 2 1/ 2

max 1 1 min 1 1
[ ( )] [ ( )]

T T

FS a b ab
f R R H θ λ λ= ⋅ ⋅J J J J  (10) 

 ( ) 2/1

22min

2/1

22max
)]([)]([ JJJJ

TT ⋅⋅= λλθ
abbaMS

HRRf  (11) 

The objective functions in the above equation (8)-(11) are the reciprocals of the force isotropy 
u1, the torque isotropy u2, the force sensitivity isotropy u3 and the torque sensitivity isotropy 
u4, respectively. When the objective function reaches the minimum, the corresponding 
performance index attains the maximum. When the comprehensive performance is pivotal, 
the multi-objective optimum would be executed to obtain the sensor with the high 
performances. The corresponding objective function can be expressed as 

 ( ) =
abbaG

HRRf θ ( )
MSMSFSFSMDMDFDFD
fkfkfkfk ⋅+⋅+⋅+⋅min  (12) 

where, 
FD
k , 

MD
k , 

FS
k , and 

MS
k  are the weights of the corresponding indices. During the 

practical optimization, the weight matrix [ ]FD MD FS MS
k k k k=k  can be set as the weights of 

the corresponding performances indices. 

4.2 Optimization numerical examples 

Considering the practical structure parameters of the sizable parallel 6-axis force sensor, the 

initial parameters are set as 720
a
R = mm, 360

b
R = mm, 120H = mm, 60

ab
θ = c

. With 

the Matlab optimization toolbox and the defined objective functions, the corresponding 

optimal design parameters are obtained. Based on the force isotropy single objective 

optimization, the optimal parameters can be obtained as 692
a
R = mm, 378

b
R = mm, 

228H = mm and 17
ab

θ = c
. The force isotropy of the sensor with the optimal parameters 

1
1.0000u =  with respect to the initial 

1
0.3804u = . Based on the torque isotropy single 

objective optimization, the optimal parameters can be obtained as 715
a
R = mm, 

360
b
R = mm, 144H = mm and 16

ab
θ = c

. The torque isotropy 
2
u  of the sensor with the 

optimal parameters improves to 1.0000  from the initial 
1

0.2357u = . When the force 

sensitivity isotropy is optimized, the optimal parameters can be obtained as 713
a
R = mm, 

373
b
R = mm, 95H = mm and 60

ab
θ = c

. Whereafter, the force sensitivity isotropy 
3
u  

improves to 1.0000  from the initial 0.4714 . When the torque sensitivity isotropy is 

optimized, the optimal parameters can be obtained as 634
a
R = mm, 424

b
R = mm, 

357H = mm and 31
ab

θ = c
. Whereafter, the torque sensitivity isotropy 

4
u  improves to 

1.0000  from the initial 2116.0 . 
In the multi-objective optimization, the comprehensive performances indices should be 
taken into account synthetically. With the weight matrix k=[1111], the optimal performance 
indices with respect to the comprehensive parameters and the corresponding initial indices 
are shown in Table 1. It is obvious that the performances of the sizable parallel 6-axis force 
sensor are improved. The corresponding performance indices of the initial structure 
parameters in Table 1 are shown in the planar atlas Fig. 5, Fig. 7, Fig. 9, and Fig. 11 with the 
“∗” symbol.  
 

 Ra Rb H θab u1 u2 u3 u4 

Initial 720 360 120 60° 0.380 0.235 0.471 0.190 

Optimal 614 450 418 85° 0.701 0.712 0.701 0.712 

Table 1.  Contrast multi-objective optimal result with the initial design 
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5. A novel sizable 6-axis force sensor with flexible joints 

Based on the above analysis, optimization design and considering the machining technics 
synchronously, we design the a novel sizable 6-axis force sensor structure with flexible joints 
as shown in Fig. 12. Each branch is composed of UUR flexible joints and a standard pull and 
press force sensor. The axe of the flexible R joints go through the near U flexible joint, which 
can be considered as a sphere joint. The flexible joints here are the novel flexible joints which 
can carry the biggish loading. The six branches are divided the same 3 groups. The first U 
joints of the branches in some group are made in a whole material, similary as the last R 
joints of the branches in  some group. Another design project with the same 6 unitary 
branch is shown as in Fig. 13.  
 

 

Fig. 12. A novel sizable 6-axis force sensor prototype with flexible joints 

 

 

Fig. 13. Another sizable 6-axis force sensor prototype with flexible joints 

6. Future research 

The performance indices of the 6-axis force sensor based on Stewart platform shouled be 

further analyzed, especially dynamic performance index. The novel sizable 6-axis force 

sensor with flexible joints should be futher optimized, especially the stucture parameters of 

the flexible joints. The manufacture and calibration of the sizable 6-axis force sensor with 

flexible joints are also the future research. 
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7. Conclusion 

The paper plots the indices atlases based on the screw theory and definition of the 
performances indices, and summaries the law how structure parameters affect the indices. 
With the constructed optimization objective functions, the sizable parallel 6-axis force 
sensor’s structure parameters are optimized in nonlinear single objective and multi-objective 
respectively. The corresponding optimal structure parameters are obtained. A novel sizable 
6-axis force sensor with flexible joints is developped. So, the powerful basis and method are 
raised for design and optimization of sizable parallel 6-axis force sensor based on Stewart 
platform.  
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