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1. Introduction      

A tactile sensor is a device that can measure a given property of an object or contact event 
through physical contact between the sensor and the object. Traditionally, tactile sensors 
have been developed using measurements of strain produced in sensing materials that are 
detected using physical quantities such as electric resistance and capacity, magnetic 
intensity, voltage and light intensity (Nicholls, 1990). Research on tactile sensor is basically 
motivated by the tactile sensing system of the human skin. In humans, the skin’s structure 
provides a mechanism to simultaneously sense static and dynamic pressure with extremely 
high accuracy. Meanwhile in robotics, several tactile sensing principles are commonly used 
nowadays, such as capacitive, piezoelectrical, inductive, piezoresistive, and optoelectrical 
sensors (Schmidt et al., 2006, Lee & Nicholls, 1999). 
In our research lab, with the purpose to establish object manipulation ability in robotic 
fingers, we developed a hemispherical shaped optical three-axis tactile sensor capable of 
acquiring normal and shearing forces to mount on the fingertips of robot fingers. This tactile 
sensor uses an optical waveguide transduction method and applies image processing 
techniques. Such a sensing principle is expected to provide better sensing accuracy to realize 
contact phenomena by acquiring the three axial directions of the forces, so that normal and 
shearing forces can be measured simultaneously. This tactile sensor is designed in a 
hemispherical dome shape that consists of an array of sensing elements. This shape is to 
mimics the structure of human fingertips for easy compliance with various shapes of objects. 
For miniaturization of the tactile sensor, measurement devices are placed outside the sensor. 
The small size of the sensor makes it easy for installation at robotic fingers.  
The optical three-axis tactile sensor developed in this research is designed in hemispherical 
shape, and the sensing elements are distributed in 41-sub region. Due to this structure, the 
acquired images by CCD camera, except for sensing element at the sensor tip area, are not 
the actual image of contact pressure at the sensing elements. Therefore, to compensate with 
the sensor structure, it is necessary to conduct coordinate transformation calculations for 
each sensing element except for the element at the sensor tip area. In this chapter, we O
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present calculations to define coordinate transformation of the sensing elements on the 
sensor’s hemispherical shape dome. Meanwhile, in the tactile sensor controller, since the 
image was warped due to projection from a hemispherical surface, image processing 
software Cosmos32 installed in the computer modifies the warped image data based on the 
coordinate transformation formulations, and calculates the integrated gray-scale value and 
displacement of gray-scale distribution to obtain the applied three-axis forces at the sensing 
element. Finally, we conduct experiment to evaluate the performance of the optical three-
axis tactile sensor system using 3-dofs robotic fingers. We analyze the performance of tactile 
sensing feedback on the robot finger system to define optimum grasp pressure on the object 
surface. Figure 1 shows the robotic fingers mounted with the optical three-axis tactile 
sensors on each of its fingertips.  
 

 

Fig. 1. Robotic fingers with optical three-axis tactile sensor. 

2. Motivations and current state-of-the-art survey 

The sense of touch is one of the five main sensing modalities in humans besides sight, 

sound, smell, and taste. It will play an important role in robotic paradigms toward effective 

manipulation and collaboration with humans in built-for-human environments. Research on 

tactile sensor is basically motivated by tactile sensing system of human skin. In daily life, 

humans regularly apply tactile sensing to support motions and perform tasks. However, in 

a developmental robot, tactile sensors are especially appropriate sensing devices that have 

too often been neglected in favor of vision-based approaches.  

To date, while much research has developed visual and auditory sensors, comparatively 
little progress has been made on sensors that translate the sense of touch. This apparent 
neglect reflects the complexity of tactile sensing itself, because tactile sensing through the 
skin is not a simple transduction of one physical property into electronic signals. 
Furthermore tactile sensing is difficult to imitate, unlike sight and sound, which are well-
defined physical quantities. In addition, the fact that a tactile signal is distributed over a 
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much wider area and lacks such localized sensory organs as eyes and ears complicates the 
developmental of artificial sensory devices. 
Nonetheless, realizing that the development of intelligent tactile sensors will help advance 

the evolution of human and robots working together in real life is encouraging (Ohmura et 

al., 2006, Kuniyoshi et al., 2004, Natale & Torres-Jara, 2006, Ohmura & Kuniyoshi, 2007). 

Indeed, researchers have recently agreed that a tactile sensor system is an essential sensory 

device to support the robot control system, particularly for object manipulation tasks 

(Omata et al., 2004, Kerpa et al., 2003, Lee & Nicholls, 1999). This agreement reflects the 

tactile sensor’s capability to simultaneously sense normal force, shearing force, and 

slippage, thus offering exciting possibilities for determining object shape, texture, and 

property. 

To date, several basic sensing principles are commonly in use in tactile sensor, such as 

capacitive sensor, piezoelectrical sensor, inductive sensor, optoelectrical sensor and 

piezoresistive sensor (Lee & Nicholls, 1999). In this research, with the aim of establishing 

object manipulation ability in real humanoid robot, we have developed an optical three-axis 

tactile sensor using optical waveguide transduction method, applying image processing 

techniques. This type of sensing principle is comparatively provides better sensing accuracy 

to detect contact phenomena from acquisition of three axial directions of forces, thus normal 

force and shearing force can be measured simultaneously (Ohka et al., 2004, Hanafiah et al. 

2006, Hanafiah et al. 2007). The proposed three-axis tactile sensor has high potential 

compared to ordinal tactile sensor for fitting to a dextrose robotic arm to perform robot 

manipulation tasks. 

3. Hardware structure 

The optical three-axis tactile sensor developed in this research is designed in a 
hemispherical dome shape that consists of an array of sensing elements. This shape is to 
mimics the structure of human fingertips for easy compliance with various shapes of objects. 
For miniaturization of the tactile sensor, measurement devices are placed outside the sensor. 
The small size of the sensor makes it easy for installation at the robotic fingers.  
The hardware novelty is shown in Fig. 2. It consists of an acrylic hemispherical dome, an 
array of 41 pieces of sensing elements made from silicon rubber, a light source, an optical 
fiber-scope, and a CCD camera. The optical fiber-scope is connected to the CCD camera to 
acquire image of sensing elements touching acrylic dome inside the tactile sensor. At this 
moment, light emitted from the light source is directed toward the edge of the 
hemispherical acrylic dome through optical fibers. A total of 24 pieces optical fibers are 
used; 12 pieces each at left and right side of the sensor, transmitting halogen light from the 
light source. The light directed into the acrylic dome remains within it due to total internal 
reflection generated, since the acrylic dome is surrounded by air having a lower reflection 
index than the acrylic dome. This make the acquired image by the CCD camera become 
clear even the sensor is hemispherical shape. 
Meanwhile, the silicone rubber sensing element is comprised of one columnar feeler and 
eight conical feelers which remain in contact with the acrylic surface while the tip of the 
columnar feeler touches an object. The sensing elements are arranged on the hemispherical 
acrylic dome in a concentric configuration with 41 sub-regions. Such orientation is expected 
to provide good indication of contact pressure during performing object manipulation. 
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Fig. 2. Structure of hemispherical dome shaped optical three-axis tactile sensor. 

 

Fig. 3. Sensing principle of optical three-axis tactile sensor system. 

4. Sensing principles 

The optical three-axis tactile sensor is based on the principle of an optical waveguide-type 

tactile sensor. Figure 3 shows the sensing principle of the optical three-axis tactile sensor 

system. The light emitted from the light source is directed towards the edge of the 

hemispherical acrylic dome through optical fibers. When an object contacts the columnar 

feelers, resulting in contact pressure, the feelers collapse. At the points where the conical 

feelers collapse, light is diffusely reflected out of the reverse surface of the acrylic surface 

because the rubber has a higher reflective index. Contact phenomena consisting of bright 

spots caused by the collapse of the feelers are observed as image data, which are retrieved 

by the optical fiber-scope connected to the CCD camera and transmitted to the computer. 

Conical feeler (cone shape) 

Columnar feeler 
(cylinder shape) 
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Figure 4 shows the real image data of contact phenomenon inside the tactile sensor acquired 
by the CCD camera where some bright area resulted from contact pressure can be observed 
at the sensing elements. Referring to Fig. 3, for normal force detection, when load is applied 
vertically to sensing elements, the conical feelers will collapse on acrylic dome surface. At 
this moment, the image retrieved by CCD camera shows brightness change at the area 
where conical feelers are collapse. The normal force is calculated based on the brightness of 
this area. At this moment, centroid point of the sensing element is remaining unchanged. 
Meanwhile, in shearing force detection, when tangential force is applied to the sensing 
element, the sensing element is collapse according to the applied load direction. In the same 
time, the centroid point of the sensing element also shifted. Therefore, the shearing force can 
be calculated based on horizontal displacement of this centroid point.  
The system conception of the optical three-axis tactile sensor system is shown in Fig. 5. As 
explained previously, when contact pressure is applied on the tactile sensor elements, a 
bright spot areas are appeared inside the tactile sensor which then captured as image data 
by a CCD camera. The image data retrieved by the CCD camera are delivered to PC via PCI 
bus of image processing board Himawari PCI/S. Then the image data are saved in an 
internal buffer area that created inside the PC internal memory space.  
 

 
Contact phenomenon and 41 sub-regions of sensor elements inside the optical three-axis 
tactile sensor 

  
                     No force applied                                                      When force applied 

Fig. 4. CCD camera images of contact phenomenon in the hemispherical shaped optical 
three-axis tactile sensor. 
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The image capture cycle was initially fixed at 1/30 seconds. Sensing program inside the PC 

is using Visual C++ and we utilized image analysis software Cosmos32 to analyze and 

measure the image data. During measurement process, the dividing procedure, digital 

filtering, integrated gray-scale value and centroid displacement are controlled on the PC 

using sensing program which created based on the software Cosmos32 functions.  

Figure 6 shows system conception diagram of the sensing program which consists of image 

analysis module and connection module. This sensing program embedded a user interface 

and a tactile information structure which designed for both modules to share the tactile 

sensing data. The image analysis module uploads the image data from internal buffer and 

performs image analysis and measurement to define forces that applied to the sensing 

elements and also centroid point displacement. The upload cycle was fixed by the operator 

so that it not less than the image captured cycle.  

 
 
 

 

Fig. 5. System conception diagram of tactile sensor system. 

Personal computer with image analysis 

software Cosmos32 
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Fig. 6. System conception of sensing program. 

5. Measurement principles  

In measurement process, the normal force of the Fx, Fy and Fz values are calculated using 
integrated gray-scale value G, while shearing force is based on horizontal centre point 
displacement. The displacement of gray-scale distribution u is defined in (1), where i and j 
are the orthogonal base vectors of the x- and y-axes of a Cartesian coordinate, respectively. 
This equation is based on calibration experiments, and material functions are identified with 
piecewise approximate curves (Ohka et al. 2006, Takata, 2005). Consequently, each force 
component is defined in (2). 

 u = uxi + uyj  (1)  

 Fx = f(ux), Fy = f(uy), Fz = g(G)  (2) 

The optical three-axis tactile sensor developed in this research is designed in hemispherical 
shape, and the sensing elements are distributed in 41-sub region. Due to this structure, the 
acquired images by CCD camera, except for sensing element at the sensor tip area, are not 
the actual image of contact pressure at the sensing elements. Therefore, to compensate with 
the sensor structure, it is necessary to conduct coordinate transformation calculations for 
each sensing element except for the element at the sensor tip area.  

5.1 Calculation of contact pressure and centroid position 
As explained in previous section, when force is applied to columnar feeler of the tactile 
sensor element, the conical feeler collapsed on the acryl dome surface which created a bright 
spot retrieved by the CCD camera. To measure the applied forces, we measure the 
integrated gray-scale value of the bright area and also centroid point displacement.  
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According to current research (Ohka et al, 2006), integrated gray-scale value of the contact 
area g(x,y) is proportional with contact force p(x,y), as shown in (3). 

 p(x,y)= CvΔg(x,y)  (3) 

Here, Cv is a transformation coefficient, Δg(x,y) is increment of the integrated gray-scale 
value. According to this relationship, we define normal force from gray-scale distribution of 
the contact area. Measurement of contact force P is defined from the following integration, 
where S is size of the gray-scale measurement area. 

 ∫= S
dSyxpP ),(   (4) 

Here, when equation (3) is applied to equation (4), we can define measurement of contact 
force P as following equation (5). 

 ∫ Δ=
Sv dSyxgCP ),(   (5) 

Next, we calculate the centroid position. The centroid position is measured according to 

center point of the bright spots area, which equal to center position of integrated gray-scale 

measurement area. When tangential force is applied to the sensor element, contact area of 

conical feeler at the sensor element with acryl surface is shifted horizontally. To define 

shearing force, we measure the horizontal centroid point displacement at x and y axes. At 

first, by applying the increment of integrated gray-scale value Δg(x,y), the centroid positions 

at xy-axes which described at as xG and yG are define within the measurement area of  

integrated gray-scale value as shown in (6) and (7), respectively. 
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According to the above equations, displacement of centroid point at x y-axes in time t are 
defined as following equations. 
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5.2 Coordinate transformation on hemispherical shaped dome 
The optical three-axis tactile sensor developed in this research is designed in hemispherical 
shape, and the sensing elements are distributed in 41-sub region as shown in Fig. 4. Due to 
this structure, the acquired images by CCD camera, except for sensing element at the sensor 
tip area #0, are not the actual image of contact pressure at the sensing elements. Therefore, 
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to compensate with the sensor structure, it is necessary to conduct coordinate 
transformation calculation for each sensing element except for element #0. 
 

 

Fig. 7. Diagram of hemispherical dome indicates measurement area of integrated gray-scale 
value for coordinate transformation calculation. 

Referring to Fig. 7, where dS is a measurement area of integrated gray-scale value, 
coordinate transformation is described in equation (10). Here (gx,gy,gz) is integrated gray-
scale value before coordinate transformation, meanwhile (g’x,g’y,g’z) is after the 
transformation. 
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If dS is put on the sensor tip area, equation (10) is become like equation (11), where the 
increment of the integrated gray-scale value can be described as Δg(x,y)= gz(x,y). 
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Here, equation (11) is solved as following equations: 

 φθ cossin' zx gg =   (12) 

 φθ sinsin' zy gg =   (13) 

 θcos' zz gg =   (14) 

Hence, when measurement area of integrated gray-scale value is put on the sensor tip area, 
the integrated gray-scale value after coordinate transformation is coincide with gz(x,y) as 
shown in the following equation. 
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       θφθφθ 22222 cossinsincossin'''' ++=++ zzyxx ggggg  

 θθ 22 cossin += zg   (15) 

                                                             zg=  

Here, from (14), the increment of the integrated gray-scale value is define as follows: 

 
θcos

),( zg
yxg =Δ   (16) 

From equation (16), the coordinate transformation for measurement of contact force P from 
equation (5) is described as follows: 
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Consequently, the captured image by CCD camera for measurement area dS’ on the 
hemispherical dome is corrected to measurement area dS by defining integrated gray-scale 
value g’z using equation (17).  

6. Application in robotic fingers system 

The hemispherical shaped optical three-axis tactile sensors are mounted on fingertips of 
robotic finger. The robotic finger system is comprised of two articulated fingers, each of 
which has 3-dofs with micro-actuators that are used in each joint. This system is comprised 
of two main controllers: finger controller and tactile sensor controller. Each of these 
controllers is connected to each other using TCP/IP protocols via the internet.  

6.1 Finger controller 
The control system architecture of the robot finger controller, which is based on tactile 
sensing, is shown in Fig. 8. This controller is comprised of three modules: connection 
module, thinking routines, and hand/finger control module. It is connected with tactile 
sensor controller by the connection module using TCP/IP protocols (Takata, 2005, Hanafiah 
et al., 2008). The most important considerations in controlling finger motions during 
performing object manipulation tasks are: what kind of information are acquired from the 
tactile sensor, how to translate and utilize this information, and how to send command to 
robot finger so that velocity of the finger motion can be control properly. These processes 
are performed inside the thinking routines module. 
As shown in Fig. 8, inside the thinking routines module, there is thinking routine chooser 
consists of pin status analyzer and velocity generator. Moreover, there is motion information 
structure which connecting to both pin status analyzer and velocity generator. The pin 
status analyzer module is functioned to receive information from the tactile sensor about 
sensing elements condition, and use this information to decide suitable motion mode. Then 
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it sends to the connection module a list of sensing elements that acquire tactile sensing 
information. Meanwhile, the velocity generator module is functioned to decide finger 
velocity based on finger information structure and motion information structure. The 
motion information structure consists of initial velocity, motion flag mode, etc, which is 
used to control finger movement. Meanwhile, finger information structure provides 
connection all modules so that they can share data of finger orientation, joint angle and 
tactile sensing data from each sensor elements.  
 

 

Fig. 8. Control system structure of robotic fingers. 

User Interface was designed for the operator to provide commands to the finger control 

system. Finger control module controls the finger motion by calculating joints velocity and 

angle. In fact, this module can move finger without using sensing feedback. Thinking 

routines module receives tactile sensing data from tactile sensor and uses it to calculate 

fingertip velocity. In addition, to obtain low force interactions of the fingers during 

exploring object surface without causing damage, rotation velocity at each joint is defined 

precisely based on joint angle obtained in kinematics calculations, whereby force-position 

controls are performed.  

6.2 Sensor controller 
Figure 9 shows layout of tactile sensor controller. In the tactile sensor controller, based on 
image data captured by CCD camera, an image processing board Himawari PCI/S (Library 
Corp.) function as PCI bus picks up the image and sends it to internal buffer created inside 
the PC main memory. Sampling time for this process is 1/30 seconds. We use PC with 
Windows XP OS installed with Microsoft Visual C++. The image data are then sent to image 
analysis module applying Cosmos32 software which controls the dividing procedure, 
digital filtering, calculation of integrated gray-scale value and centroid displacement.  
Since the image warps due to projection from a hemispherical surface as shown in Fig. 2, the 
software Cosmos32 with auto image analysis program installed in the computer modifies 

www.intechopen.com



 Sensors, Focus on Tactile, Force and Stress Sensors 

 

134 

the warped image data and calculates G, ux and uy to obtain the three-axis force applied to 
the tip of the sensing element using equation (2). These control schemes enable the finger 
controller to perform force-position control to adjust grasp pressure of the two fingers. 
 

 

Fig. 9. Control system structure of optical three-axis tactile sensor. 

6.3 Control algorithm 
To further understand about data communication process in the finger controller, we 
present a simple case study where finger touches an object and then avoid/evade the object 
by moving the finger to reverse direction. At first, the finger moving velocity to search for 
object is defined as V0. Next, we fix thresholds of normal force F1 and F2. During searching 
process, when any of sensor elements touch an object, and if the detected normal force Fn is 
exceeding normal force threshold F1 [N], the finger will stop moving. Meanwhile, if the 
detected normal force Fn is exceeding threshold F2 [N], the finger will move towards reverse 
direction of the sensing element that detects the highest force. At this moment the reverse 
velocity is defined as |Vre|. The parameters values of V0, F1, F2 and|Vre| are saved inside 
the motion information structure. The thresholds F1 and F2 are also delivered to sensor 
controller. When finger start moving, command to request status of each sensor elements 
are delivered to the sensor system according to control sampling phase of the finger system. 
Detail of data communication process for the pin status analyzer is shown in Fig. 10. 
The processes at the pin status analyzer are explained as follows: 
1. When sensor system received request command pin status analyzer, it will feedback 

status flag of each requested sensing element condition. 
2. Connection module received the feedback data and then sends this data to the pin 

status analyzer, as well keeps it inside the finger information structure. 
3. Pin status analyzer will then reset the finger motion (“STOP” and “EVADE”) inside the 

motion information structure. 
4. If the pin status analyzer received data flag that exceeds F1 or F2, or both of them, it will list 

up the concerned sensor elements. The pin status analyzer will rise up “STOP” flag if any 
listed sensor element is exceeded F1, meanwhile it will rise-up “EVADE” flag if any listed 
sensor element is exceeded F2. Then it sent the lists of data to the connection module. 
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5. The connection module will create a command to request normal force data of related 
sensor elements, and send the request to sensor system. 

6. When sensor system received this request command, it will feedback normal force data 
of the requested sensor element to connection module at the finger controller. 

7. Connection module received the feedback normal force data and then sends it to finger 
information structure. Based on this data, the velocity generator module will decide the 
velocity of the finger. 

 

 

Fig. 10. Example of flowchart at the pin status analyzer for case study. 

Figure 11 shows flowchart at the motion generator for case study. The processes are 
explained as follows: 
1. If no flags “STOP” or “EVADE” rise-up, finger will move according to initial velocity 

V0. 
2. If “STOP” flag is rise-up, finger velocity becomes 0. 
3. If “EVADE” flag is rise-up, the finger will move towards reverse direction of the 

sensing element that detects the highest normal force value. To decide the finger 
velocity, when finger evading velocity is described as Vr = (Vrx, Vry, Vrz), the direction 
cosine in the frame of workspace (┙Gk, ┚Gk, ┛Gk) is calculated as equation (18). 
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Here, basically this generation of velocity is sent to hand/finger control module to solve the 

joint rotation velocity at the finger derived by kinematics-based Resolved Motion Rate 

Control (RMRC), which commonly known as an algorithm for solving path-tracking 

problem in robotic control (Umetani & Yoshida, 1989). Therefore, controls of the finger 

based on tactile sensing information are conducted. 

 

 

Fig. 11. Example of flowchart at the motion generator for case study. 

7. Performance evaluation 

We conduct object manipulation experiment using the robotic fingers system. We used a 

wood block as an object. In this experiment, at first the two fingers grasp the object to define 

optimum gripping pressure. At this moment, the grasp pressure is controlled by parameters 

of normal force thresholds. Then both fingers lift up the object to z-axis direction while 
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maintaining the optimum grasp pressure. During this motion, both normal pressure and 

slippage are concerned. Therefore the finger controller utilized parameters of normal force 

and centroid change thresholds. Here, when shearing force exceeds the centroid change 

threshold, the finger’s velocity for reinforcing the grasping pressure is calculated using 

equation (19), whereby vector velocity of the finger v+Δv is defined by finger control 

module in the finger controller. 
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Table 1 shows control parameters in the robotic fingers system. These parameters value was 

determined from calibration experiments conducted using soft and hard objects (Hanafiah 

et al. 2008). Figure 12 shows photographs of the robot arm performing object manipulation 

with wood block. In this experiment, both fingers move along x-axis direction to grasp the 

wood block. When optimum grasping pressure is defined and the robot recognized the 

hardness of the object, both fingers lift up the wood block along y-axis, and then move 

forward along z-axis. Figure 13 shows relation between normal force and fingertip 

movement at x-, y- and z-axes for left finger. Accordingly, Fig. 14 shows relation between 

amount of x-directional centroid change and fingertip movement at x-, y-, and z-axes for left 

finger.  

From these graphs, we can observe that the tactile sensor managed to detect normal and 

shearing forces applied to the sensing elements during manipulating object. Finger 

controller used this information to control grasp pressure against the object. The fingers 

movement stopped when the detected normal force reached to threshold F1. Meanwhile, 

threshold of centroid change is used to control re-push velocity of the fingers when slippage 

occurred during grasping. 

 

Category Parameter 

Sensor 100 ms 
Sampling interval 

Finger 25 ms 

F1 0.5 N 
Threshold of normal force 

F2 1.8 N 

Threshold of centroid change dr 0.004 mm 

Velocity of re-push vp 2 mm/s 

Progress time Δt 0.1 s 

 

Table 1. Control parameters in robotic fingers system. 
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This experimental result shows that the fingers managed to grasp the objects within 

optimum grasp pressure, lift it to upwards direction, and then performed some 

movements manipulating the objects. The experimental results also revealed that the 

robotic fingers system mounted with the hemispherical shaped optical three-axis tactile 

sensor managed to grasp the object within optimum grasp pressure without causing 

damage to the object and the sensor elements. In addition, the formulations applied in this 

system enabled precise control of the fingertips from determination of joint rotation 

angles and velocity. 

 

 
 

Fig. 12. Experiments of two robotic fingers manipulate wood block. 
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Fig. 13. Experiments of two robotic fingers manipulate wood block; data for left finger: (Top) 
Relation between normal force and fingertip movement at x-axis. (Middle) Relation between 
normal force and fingertip movement at y-axis. (Bottom) Relation between normal force and 
fingertip movement at z-axis. 
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Fig. 14. Experiments of two robotic fingers manipulate wood block; data for left finger: (Top) 
Relation between amount of x-directional centroid change and fingertip movement at x-axis. 
(Middle) Relation between amount of x-directional centroid change and fingertip movement 
at y-axis. (Bottom) Relation between amount of x-directional centroid change and fingertip 
movement at z-axis. 
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8. Conclusion 

In this research we developed the original hemispherical shaped optical three-axis tactile 
sensor system to mount on robotic fingers. The tactile sensor is capable of acquiring normal 
and shearing forces, which are the most important sensing elements in object manipulation 
tasks. This tactile sensor is designed in a hemispherical dome shape that consists of an array 
of sensing elements. This shape is to mimics the structure of human fingertips for easy 
compliance with various shapes of objects. This tactile sensor uses an optical waveguide 
transduction method and applies image processing techniques. Such a sensing principle is 
expected to provide better sensing accuracy to realize contact phenomena by acquiring the 
three axial directions of the forces, so that normal and shearing forces can be measured 
simultaneously.  
In this chapter, we have presented force detection and measurement principles of the tactile 
sensor for normal and shearing forces. The normal force is calculated based on brightness 
changes of visual image taken by CCD camera. To define the applied force, we measure the 
integrated gray-scale value of the bright area. Meanwhile, shearing force is calculated by 
measuring centroid point displacement of the bright area retrieved by the CCD camera.  
The optical three-axis tactile sensor developed in this research is designed in hemispherical 
shape, and the sensing elements are distributed in 41-sub region. Due to this structure, the 
acquired images by CCD camera, except for sensing element at the sensor tip area, are not 
the actual image of contact pressure at the sensing elements. Therefore, to compensate with 
the sensor structure, we conducted calculations to define coordinate transformation of the 
sensing elements on the sensor’s hemispherical shape dome. 
The optical three-axis tactile sensors are mounted on fingertips of two robotic fingers to 
perform object handling tasks. We have developed a control system consist of finger and 
sensor controllers. A control algorithm was designed in the robotic fingers system which 
applying normal and shearing forces obtained by the tactile sensors to control the 
movements of fingers during grasping tasks. The performance of this system was evaluated 
in object handling experiment using a wood block as an object. Experimental results shows 
that the robotic fingers managed to grasp the object within optimum grasp pressure and 
performed handling tasks without causing damage to the object or the sensor elements. The 
optical three-axis tactile sensor revealed good performance to use in robotic finger system.  
In this chapter, we have shown that the robotic finger system equipped with the 

hemispherical shaped tactile sensors is suited for refining grips on object surface. 

Furthermore, the applied control algorithms are capable of preventing the probability of 

damage to the sensors and the object during robust grasping tasks. It is anticipated that 

using this novel optical three-axis tactile sensor in robotic grippers, with further 

improvement on hardware structure and image processing technique, will help advance the 

evolution of real-time object manipulation based on tactile sensing in robotic systems. 
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