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Effective Multi-Model Motion Tracking Under 
Multiple Team Member Actuators 

Yang Gu and Manuela Veloso 
Computer Science Department, Carnegie Mellon University 

USA 

1. Introduction 

Autonomous robot agents need to be able to track moving objects. When tracking is 

performed by a robot executing specific tasks acting over the target being tracked, such as a 

Segway RMP soccer robot grabbing and kicking a ball, the motion model of the target 

becomes dependent on the robot's actions. The robot's tactic provides valuable information 

in terms of the target behavior. We introduced a play-based motion modeling and tracking 

in such scenarios (Gu & Veloso, 2006). Observations from the sensors might consist of 

multiple measurements due to the moving objects and the clutter. Generally the clutter has 

similar color as the targets we are interested in and it causes multiple hypotheses for the 

true targets. Our previous approach does not perform well once incorrect measurements 

originating from clutter or false alarms exist, which causes multiple hypothesis of the 

tracked target. Recently, a hybrid approach for online joint detection and tracking for 

multiple targets was proposed (Ng et al., 2005). This approach does not assume the 

knowledge of true targets (without clutter) is given. It first uses a deterministic clustering 

method that searches for regions of interest (ROIs) based on the observations and monitors 

these ROIs for target detection, then performs multi-target tracking by Sequential Monte 

Carlo (SMC) methods. 

In this chapter, we extend the contributed play-based tracking by introducing a multi-target 

dynamics model. We also take use of an improved proposal function for the PBPF based on 

the ROIs. We construct two multi-target trackers in the system, for the ball and the team 

member respectively. We use multi-target tracker instead of single target tracker because we 

can keep track of the true target and the false positive at the same time without losing any of 

them and perform ball (or team member) recognition from a pool of tracked objects later. 

This chapter is organized as follows. We give a brief description of our robots and two main 

components of the control architecture. We describe the multi-target dynamics model. We 

describe the clustering algorithm we used to continuously monitor the appearance and 

disappearance of regions of interest (ROIs) on the field. The ROIs is used to deterministically 

obtain the number of targets. The ROIs is further used to get better proposal functions in 

particle filtering algorithm. We use an improved proposal function for the PBPF based on 

the ROIs. We contribute the multi-target tracking extension to the PBPF introduced in (Gu & 

Veloso, 2006). O
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2. Segway RMP soccer robot 

The Segway platform is unique due to its combination of wheel actuators and dynamic 

balancing (Browning et al., 2005). Segway RMP, or Robot Mobility Platform, provides an 

extensible control platform for robotics research. It imbues the robot with the novel 

characteristics of a fast platform and travel long ranges, able to carry significant payloads, 

able to navigate in relatively tight spaces for its size, and provides the opportunity to mount 

sensors at a height comparable to human eye level (Searock et al., 2004).  

In our previous work, we have developed a Segway RMP robot base capable of playing 

Segway soccer. We briefly describe the two major components of the control architecture, 

the sensor and the robot cognition, which are highly related to our multi-model motion 

tracking.  

2.1 Vision sensor and infrared sensors 

The goal of vision is to provide as many valid estimates of targets as possible. Tracking then 

fuses this information to track the most interesting targets (the ball and the team member, in 

this paper) of relevance to the robot. We use one pan-tilt camera as the vision sensor. We do 

not discuss the localization of the robot in the sense that a lot of soccer tasks (known as 

tactics and plays described in section 2.2) can be done by the Segway RMP robot without 

localization knowledge. Also we use global reference for position and velocity in this paper 

which means it is relative to the reference point where the robot starts to do dead reckoning. 

We have equipped each robot with infrared sensors to reliably detect the objects located in 
the catchable area of the robot. Its measurement is a binary value indicating whether or not 
an object is there. In most cases, this is the blind area of the pan-tilt camera. Therefore, the 
infrared sensor is particularly useful when the robot is grabbing the ball. 

2.2 Robot cognition 

A control architecture, called Skills-Tactics-Plays, was proposed in (Browning et al., 2005) to 

achieve the goals of responsive, adversarial team control. The key component of STP is the 

division between single robot behavior and team behavior.  

Play, P, is a fixed team plan consisting of a set of applicability conditions, termination 

conditions, and N roles, one for each team member. Each role defines a sequence of tactics 

T1, T2, … and associated parameters to be performed by that role in the ordered sequence. 

Assignment of roles to team members is performed dynamically at run time. Upon role 

assignment, each robot i is assigned its tactic Ti from the current step of the sequence for 

that role. 

A tactic, T, encapsulates a single robot behavior. Each robot i executes its own tactic as 

created by the current play P. A tactic Ti determines the skill state machine SSMi to be 

executed by the robot i. 

A skill, S, is a focused control policy for performing some complex action. Each skill is a 

member of one, or more, skill state machines SSM1, SSM2, … Each skill S determines what 

skill it transitions to S' based upon the world state, the time skill S has been executing for, 

and the executing tactic for that robot. 

We construct the robot cognition using a similar architecture. Plays, tactics, and skills, form 

a hierarchy for team control. Plays control the team behavior through tactics, while tactics 
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encapsulate individual robot behavior and instantiate actions through sequences of skills. 

Skills implement the focused control policy for actually generating useful actions. Figure 1 

shows the SSMs and transitions for an example tactic: CatchKickToGoal, which contains six 

skills. Each node in the figure is a skill and the edges show the transition between skills. 

 

Search Ball

Aim at Ball

Grab Ball

Aim
at Goal

Kick

Search Goal

ball is close goal found

ball not seen

ball seen

ball lost

ball lost

goal lost

 

Fig. 1. Skill state machines (SSMs) for an example tactic: CatchKickToGoal.  

Segway soccer is a team sport, and therefore the building of our game strategy required not 

only execution of single robot behaviour, but also coordination with the team member, the 

human player. The current coordination is simple and basically based upon two fixed plays 

for offensive and defensive situation respectively. Our offensive play is shown as follows, in 

which the termination condition is either play aborted or the situation changed (a turn-over 

of ball possession announced by the referee). There are two roles in this play, one passes the 

ball to the other who positions down field and waits for receiving a pass. Once the 

positioning is done (e.g., the other is closer to the opponent goal), the passing is performed. 

 

PLAY Naive Offense 
APPLICABLE offense 
DONE aborted OR !offense 
ROLE 1 
  pass 2 
  none 
ROLE 2 
  position_down_field 
  receive_pass 

Table 1. The example play: Naive Offense. 

Our current coordination is purely observation based. Each player assigns role from his own 

eyeshot without communication. For example, should the robot think the team member is 

closer to the ball, the robot (ROLE 2) would choose to position and receive the ball from its 

team member (ROLE 1). Furthermore, the robot knows which side gains possession of the 

ball from the referee announcement, therefore it tells offensive from defensive situation 

clearly and thus it has deterministic idea of which play the team is using. The robot makes 
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an assumption that its team member is performing the same game play as itself. The robot 

infers what tactic the team member is executing from the team play. For example, after 

receiving the ball from the team member, as a passer the robot would assume the team 

member go forward to a tactically advantageous position to receive a pass. The predefined 

play for team coordination helps motion modeling, which will be further discussed in 

section 3. 

3. Play-based motion modeling 

In this section, we take a multi-target tracking problem as a detailed example to show the 

extension of the tactic-based motion modeling method in general when the team 

coordination knowledge (play) is incorporated. First we give an introduction of the 

environment and targets under the Segway soccer setup. Second, we describe detailed 

motion models for both the ball and the team member. Third, we extend the tactic-based 

motion modeling to the play level when both the ball and the team member are included 

into the tracking. We show how we model the play-dependent interactions between the 

team member, the robot and the ball and set up a base for giving the multi-model tracking 

algorithm in the next section. Although we present the Segway soccer domain as an 

example, the formalism is general. 

3.1 Tracking scenario 

Many tracking scenarios involve multiple moving targets. In a Segway soccer game, we 

need to track the ball, the human team member and the two opponents. Each team is 

identified by their distinct color. The ball is orange (Veloso et al., 2005). An observation from 

the sensors might consist of multiple measurements due to the moving objects and the 

clutter. Generally the clutter has similar color as the targets we are interested in and it 

causes multiple hypotheses for the true targets. Therefore, we construct two multi-target 

trackers in the system, for the ball and the team member respectively. We use two separate 

trackers instead of one because we can differentiate the ball with the team member thanks to 

the color-based vision system. We use multi-target tracker instead of single target tracker 

because we can keep track of the true target and the false positive at the same time without 

losing any of them and perform ball(or team member) recognition from a pool of tracked 

objects later. 

3.2 State space and dynamics 

Let 
,1, 2,

[ , , , ]
t

T T T T

t t t K t
x x x x= A  denote a combined target state vector for Kt unknown and time-

varying number of targets. The general parameterized system process for the kth target xk,t 

at time t is given by:  

 xk,t = fk (xk,t-1, uk,t-1, vk,t-1) (1) 

Where fk is the parameterized state transition functions for the kth target; x, u are the state 

and input vectors; v is the process noise vectors of known statistics. Given the number of 

targets at t-1 and t, the state transition can be represented as follows: 
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The prior p(xk,t|xk,t-1) can be evaluated from Equation (1). The function p0(xKt,t) is the initial 
distribution of a new target state and k* is a target that vanishes at t. We assume at most one 
target appears or vanishes in each time step. The number of targets is obtained 
deterministically (see section 4.1 for the details). 

3.3 Observation model 

We assume that measurements are independent of each other and either originate from true 
targets or clutter. Furthermore, each target generates at most one measurement in each time 
step but may not be detected by the sensor. 

Let 
, 1, 2, ,

[ , , , ]
t

T T T T

c t t t M t
z z z z= A denote an observation vector for Mt measurements. The 

observation equation for modeling the cth measurement originating from the kth target is 
given as: 

 Zc,t = hk (xk,t, nc,t) (3) 

where nc,t is a zero-mean observation noise with a known covariance Σn. The measurement 
originating from a clutter is modelled to be uniformly distributed within the entire visible 
region (observation volume V) of the camera. We use a deterministic method to perform 
measurement-to-target association. Let αt denote the association vector which indicate the 
measurement-to-target assignment, whose ith element αi,t is set to j if the ith measurement 
originates from the jth target, or zero if it originates from clutter. Let NCt denote the number 
of clutter points, and ΩD denote the set of measurements indices corresponding to the 
detected targets, the likelihood function for measurement zt can be written as: 

 ∏
Ω∈

α⎟
⎠
⎞

⎜
⎝
⎛=α

D

t,l

tC

l

t,t,l

N

tttt )x|z(p
v

1
),K,x|z(p , (4) 

where )x|z(p t,t,l t,lα
 is evaluated from (3). 

3.4 Ball motion modeling 
In our Segway RMP soccer robot environment, we define five models to model the ball 
motion (for the rest of this paper, for simplicity, we use xt to represent the ball state, and use 
x’t to represent the team member state).  
• Free-Ball, Robot-Grab-Ball, Robot-Kick-Ball. We use the same models as Free-Ball, 

Grab-Ball, Kick-Ball introduced in (Gu, 2005) respectively. 

• Human-Grab-Ball. The ball is held by the team member. We can infer the ball position 
similarly if we know the team member position well. 

• Human-Grab-Ball. The ball is kicked by the team member and it is supposed to be 
either a pass to the robot or a shoot at the goal. 

In general, we will have n motion models m1, m2, …, mn.  
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3.5 Team member motion modeling 

We define four models to model the human team member's motion. 

• Random Walk. The team member is wandering in the field. So the state at the new time 
is the state at the current time with some additive zero-mean (assumed Gaussian) noise. 

• Holding Ball. The team member is holding the ball without moving and waiting for the 
robot to receive the ball. Should the robot know the ball position well, it can infer the 
team member position by the ball position in a similar way as Robot-Grab-Ball for ball 
motion modeling. 

• Accelerating (Decelerating). The team member dashes (stops) to obtain (lose) a velocity 
in a short time. 

• Positioning. The team member is going to a predefined tactical position with a constant 
speed. This case happens mostly after the team member passing the ball to the robot 
and moving down the field toward opponent's goal. 

3.6 Play based model transitions 

Given the knowledge of the team coordination plan (the play Pt-1 at time t-1), the robot can 

infer what tactic the team member is executing (T’t-1), which provides valuable information 

about the motion model of the team member (m’t). Both the robot and the team member act 

over the ball in a Segway soccer game. The motion model of the ball (mt) is therefore 

affected by what tactic the robot (Tt-1) and the team member (T’t-1) are executing. 

From the previous subsection, we know that the model index m determines the present 

model being used. For our team member tracking example, m’t = i, i = 1, …, 4$. In our 

approach, it is assumed that the team member motion model index, m’t, conditioned on the 

previous tactic executed T’t-1 by the team member, and other useful information v’t (such as 

ball state), is governed by an underlying Markov process, such that, the conditioning 

parameter can branch at the next time-step with probability. 

 '
j,i

'
t

'
1t

'
1t

'
t h)v,T,jm|im(p === −− , (5) 

where i, j = 1,… ,Nm’. Since T’t-1 can be determined by P’t-1, we get 

 )v,P,jm|im(ph '
t1t

'
1t

'
t

'
j,i −− === . (6) 

 

Since we can draw )j=m|i=m(p '
1t

'
t  in an Nm’ ×Nm’ table, we can create a table for 

Equation (6) with a third axis which is defined by the ba v,P  as shown in Figure 2. Here 

the play Pa, is the primary factor that determines whether mi transits to mj and what the 

transition probability is, while the information Vb determines the prior condition of the 

transition. Each layer in the graph is conditioned on a particular combination of the tactic 

executed and the additional information obtained. 

For our ball tracking example, mt = i, i = 1, …, 5. Similarly,  

 )v,T,T,jm|im(ph t
'

1t1t1ttj,i −−− === , (7) 

 

where i, j = 1, …, Nm. Since Tt-1, T’t-1 can be determined by Pt-1, we get 
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 )v,P,jm|im(ph t1t1ttj,i −− ===  (8) 

Suppose the current team play is the Naive Offense in Section 2.2, we can obtain the 

corresponding motion model transitions for both the ball and the team member using the 

play-based method (Figure 3). 
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Fig. 2. Play-Based motion modeling. Each layer in the graph is conditioned on a particular 
combination of the play executed and the additional information obtained. 

(a)

Random

Walk

Position-

ing

Hold

Ball

(b)

Free

Human

Grab

Robot

Grab

Robot

Kick

Human

Kick

Acc

 

Fig. 3. Object motion modelling based on the play: Naive Offense. Each node is a model. 
Models transit to one another according to the predefined probabilities (not shown in the 
figures). (a) Ball motion model. (b) Human team member motion model.  
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4. Multi-model motion tracking 

In this section, we first describe the clustering algorithm we used to continuously monitor 

the appearance and disappearance of regions of interest (ROIs) on the field. We then use 

dynamic Bayesian networks to represent the whole system. We give the detailed sequential 

Monte Carlo methods of tracking in a multi-model multi-hypothesis scheme finally. 

4.1 Clustering algorithm 

The idea of this algorithm is to group a set of ROIs, tJ
1=j

)j(
tt }S{=S , within a buffer of 

observations, t
tt′t }z{=Z τ- ,where τ is the length of the sliding window (Ng et al., 2005). If the 

current targets are widely separated, the measurements originating from them will be 

clustered in the locations where the targets had visited from t-τ to t. Therefore the distance 

between two measurements within two successive time steps can be taken as the clustering 

criteria. Let )t′,1+t′(d l,c  denote the normalized distance between the cth and lth 

measurements of zt’+1 and zt’. 

 ∑
1

e l,c
T

l,cl,c )t′,1+t′(e)t′,1+t′(e=)t′,1+t′(d t (9) 

where }M,,1{∈c 1+t′A  and }M,,1{l t′A∈ , 't,l1+t′,cl,c zz=)t′,1+t′(e -  and 2
e n
=∑ ∑ . For 

all measurements of zt’+1, we have a set of normalized distances .)}t′,1+t′(d{ 1+t′M
1=cl,c  The c*th 

measurement zc*, t'+1 will be grouped with zl, t' in the same cluster 
)j(

tS  if 

 1t
*

M
1cl,cl,c

)}t,1t(dmin{arg)t,1t(d +′
=′+′=′+′  (10) 

and 

 zl,c
)t,1t(d * ε≤′+′ , (11) 

where zε  is a threshold. If none of the measurements of zt’+1 can be grouped with zl, t', the 

search procedure continues and uses zt’+b, 1 < b ≤ τ until (10) and (11) are both satisfied. 

Meanwhile the algorithm propagates through time to group other measurements in the 

remaining observations. Since the detected regions obtained via (10) and (11) possibly arise 

from clutter points, another threshold is set to examine the number of measurements in the 

region to eliminate the false positives. That is, if the number of measurements in the jth 

region 
)j(

tS  is less than τmin, defined as the minimum number of clustered measurements in a 

region required to identify a target, it is discarded; otherwise, the jth region is classified as 

originating from a target. Once a set of ROIs tJ
1=j

)j(
tt }S{=S  is obtained, it is necessary to 

determine which region belongs to which existing active track or a new track 

deterministically. Let T
t,Kt,2t,1t ],,,[=

t
γγγγ A  denote the track-to-region association vector. 

t,kγ  is used to indicate the association between the ROIs and the active tracks. t,K t
γ  is 

evaluated as j if track k can be associated with )j(
tS , otherwise it is zero. Refer to (Ng et al., 

2005) for more details of the clustering algorithm. 
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4.2 DBN representation 

Following the play-based motion model, we can use dynamic Bayesian networks (DBNs) to 

represent the whole system for team member and ball tracking in a natural and compact 

way as shown in Figure 4 and Figure 5 respectively. In the two graphs, the system state is 

represented by variables (play P, tactic T, infrared sensor measurement s, ball state x, ball 

motion model index m, vision sensor measurement of ball z, team member state x’, team 

member motion model index m', vision sensor measurement of team member z), where each 

variable takes on values in some space. The variables change over time in discrete intervals, 

so that e.g., xt is the ball state at time t. 

Furthermore, the edges indicate dependencies between the variables. For instance, in Figure 

5 the ball motion model index mt depends on mt-1, Tt-1, T’t-1, st and xt-1, hence there are edges 

coming from the latter five variables to mt. For the rest of this section, we give the ball-

tracking algorithm following Figure 5. The team-member-tracking algorithm can be 

obtained similarly following Figure 4. 

 

x'k-1

x'k

z'k-1

z'k

m'k-1

m'k

Vision

Measure-

ment

  StateTeam Member

Motion

Model

x'k+1 z'k+1m'k+1

Pk-2

Pk-1

Play

(shared)

Pk

T 'k-2

T'k-1

Team

Member

Tactic

T'k

 

Fig. 4. A dynamic Bayesian network for team member tracking. Filled circles represent 
deterministic variables with are observable or are known as tactics or plays that the robot is 
executing. 

4.3 Importance sampling function 

We use the sequential Monte Carlo method to track the motion model m and the multi-

target state x. Particle filtering is a general purpose Monte Carlo scheme for tracking in a 

dynamic system (Doucet et al., 2001). It maintains the belief state at time t as a set of 

particles )N(
t

)2(
t

)1(
t

sp,,p,p A ，where each )i(
tp  is a full instantiation of the tracked variables 
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{ )i(
t

)i(
t w,p } , )i(

tw is the weight of particle )i(
tp  and Ns is the number of particles. In our case, 

)i(
t

)i(
t

)i(
t m,xp = . To make our notation more concrete, a particular particle )i(

tp , which is 

tracking Kt multi-target state vector xt and motion model mt, is given as (Kreucher et al., 

2003):  

 

( ) ( ) ( )

1, 2, ,

( ) ( ) ( )

1, 2, ,

( ) ( ) ( )( )

1, 2, ,

( ) ( ) ( )

1, 2, ,

( ) ( ) ( )
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t

t

t

t

i i i
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t t K t
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t t K tt

i i i

t t K t

i i i

t t K t

m m m

x x x

y y yp

x x x

y y y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

…
A
A

$ $ $A
$ A

 (12) 

We sample the ball motion model following the ball-tracking DBN as below: 

 )T,T,s,x,m|m(p~m 1t1tt
)i(

1t,k
)i(

1t,kt,k
)i(
t,k −−−− ′  (13) 

Note that Tt-1 and T’t-1 are inferred deterministically from Pt-1 instead of sampling. 

Conditioned on the ball motion model )i(
t,km , we then use the importance function 

introduced in (Ng et al., 2005) to sample ball state )i(
t,kx : 

 
⎪⎩

⎪
⎨
⎧

Ψ∈

Ψ∉

−

−

t

t

S
)j(

t
)i(

1t,k
)i(
t,kt,kDS

S
)i(

1t,kt,kD)i(
t,k k,S,x,m|x(q

k),m|x(q
~x ,  (14) 

where 
tsk Ψ∈  are those tracks with jt,k =γ and Dj Ω∈ , and qD( ⋅ ) and qDS( ⋅ ) are the 

proposal functions for xk,t without and with an associated ROI )j(
tS , given as follows, 

respectively,  

 )x,m|x(p)x,m|x(q )i(
1t,k

)i(
t,kt,k

)i(
1t,k

)i(
t,kt,kD −− = , (15) 

 )S,x,m|x(q)1()x,m|x(p)S,x,m|x(q )j(
t

)i(
1t,k

)i(
t,kt,k

)i(
1t,k

)i(
t,kt,k

)j(
t

)i(
1t,k

)i(
t,kt,kDS −−− μ−+μ= , (16) 

 

where 10 ≤μ≤  and q( ⋅ ) is a uniform sampling from the associated ROI )j(
tS . If 1=μ , the 

importance sampling function is reduced back to the dynamic prior. If 0=μ , all particles are 

generated from the data-dependent importance function. If 0 < μ  < 1, this proposal 

combines the dynamic prior and the current ROIs to generate representative particles. 

4.4 Birth, death and update moves 

Assuming that there are  b
tK  ROIs that cannot be associated with any existing track, we will 

initiate a new track in each time step from one of these regions instead of initiating b
tK   

tracks simultaneously in order to fit the birth move with the assumed system process model 

in (2). When an existing track cannot be associated with a region at a given time, the target 

being tracked by the tracker may have disappeared or temporarily experience a short period 
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of data loss. Thus we may remove the track for the target only if it has failed to associate 

with any ROI with τd time steps. Refer to (Ng et al., 2005) for the detailed algorithm of birth 

move and death move. 

In the update move, there is no change in terms of the number of ROIs. We only need to 

update the target states with a common value of number of targets )i(
1t

)i(
t KK −= , using the 

sequential importance sampling method as follows: 
 

]T′,T,s,z,}w,m,x[{PBPFMT=]}w,m,x[{ 1t1ttt
N

1=i
)i(
1t

)i(
1t

)i(
1t

N
1=i

)i(
t

)i(
t

)i(
t

ss -  

for i = 1: Ns 

    for k = 1: Kt 

        draw )T′,T,s,x,m|m(p~m 1t1tt
)i(

1t,k
)i(

1t,kt,k
)i(
t,k  

        if track k has corresponding ROI )j(
tS  

            draw )S,x,m|x(q~x
)j(

t
)i(

1t,k
)i(
t,kt,kDS

)i(
t,k  

        else  

            draw )x,m|x(q~x
)i(

1t,k
)i(
t,kt,kD

)i(
t,k  

        end if 

    end for 

    set ),K,x|z(pw=w tttt
)i(
1t

)i(
t α  

end for 

calculate total weight: ∑ sN

1=i

)i(
tw=w  

for i = 1: Ns 

    normalize: w/w=w
)i(

t
)i(

t  

end for 

resample 

Table 2. The Multi-Target Play-Based Particle Filtering algorithm (MT-PBPF). 

The inputs of the algorithm are samples drawn from the previous posterior 
)i(
1t

)i(
1t

)i(
1t w,m,x −−− , the present vision and infrared sensory measurement zt, st,the robot's 

tactic Tt-1, and the team member's tactic T’t-1. The outputs are the updated weighted samples 
)i(

t
)i(

t
)i(

t w,m,x . In the sampling algorithm, first, a new ball motion model index, )i(
tm , is 

sampled according to (13) at line 03. Then given the model index, and previous ball state, a 

new ball state is sampled according to (14) at line 05/07. According to (4), the importance 

weight of each sample is given by the likelihood of the vision measurement given the 

predicted new ball state at line 10. Finally, each weight is normalized and the samples are 

resampled. Then we can estimate the ball state based on the mean of all the )i(
tx . Though we 

are trying to eliminate the clutter from the beginning of tracking (clustering algorithm), due 

to the property of the multi-target tracker, further recognition process might be done in 

order to figure out which tracked target is the true ball. Similarly the state of the team 

member x’t can be obtained from the team member tracker. 
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Fig. 5. A dynamic Bayesian network for object tracking. 

5. Experimental results 

From previous work we knew the initial speed and accuracy of the ball velocity after a kick 

motion. We profiled the system and measurement noise as well. In this section, we evaluate 

the effectiveness of our tracking system in both simulated and real-world tests. 

5.1 Simulation experiments 

Because it is difficult to know the ground truth of the target's position and velocity in the 

real robot test, we do the simulation experiments to evaluate the precision of tracking. 

 

Motion Model Single Model Multi-Model 

Human Position Est RMS (m) 0.0030 0.0014 

Human Velociy Est RMS (m/s) 0.42 0.025 

Ball Position Est RMS (m) 0.0028 0.0017 

Ball Velocity Est RMS (m/s) 0.4218 0.0597 
 

Table 3. The average RMS error of position estimation and velocity estimation from human 
trackers and ball trackers. 
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Experiments are done following the Naive Offense play, in which the robot acts as the 

receiver and the human team member acts as the passer. Noises are simulated according to 

the model we profiled in previous work. In the beginning, the team member holds the ball. 

After a fixed amount of time, the ball is kicked towards the robot, and the team member 

moves forward to a predefined location. 

We implement both a single model tracker and a play-based multi-model tracker for the ball 

and the team member. We simulate the experiment for 50 runs, and then compare the 

performance of the two trackers with different implementations. The average RMS error of 

position estimation and velocity estimation are shown in Table 3. The results show that the 

play-based multi-model scheme performs much better than the single model especially in 

terms of velocity estimation. Because with the play-based motion model, when the ball is 

being kicked, most particles evolving using the transition model determined by the play will 

change its motion model )i(
tm  from Free-Ball to Human-Kick-Ball, and a velocity will be 

added to the ball accordingly. 

5.2 Multi-target tracking test 

In this test, one Segway RMP robot is tracking one or more balls on the field with SearchBall 

tactic. We would like to compare solely the target detection performance between the 

proposed method and the IMM tracker. A scenario with Kt (0 ≤ Kt ≤ 3) balls appearing and 

disappearing at different times and there are a set of false positives at fixed position in the 

surroundings. 
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Fig. 6. A comparison of the target detection performance between the proposed method and 
the IMM tracker when only one target exists with surrounding clutters.  

When estimating the number of targets, 3600 particles are used in the proposed method. 
Figures 6-7 summarize the results. In both figures, the dots show the number of 
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measurements at a given time. The dotted line represents the number of the targets tracked 
by the IMM tracker. The dash dotted line represents the number of targets tracked by the 
multi-model multi-target tracker proposed in this paper. The crosses show the true number 
of the targets at any given time. As shown in the figure, the IMM tracker is sensitive to the 
number of measurements, while our approach is more robust and consistent to high clutter 
density. Since the detection is basically performed on the clustering of the observations and 
the association between the detected ROIs and the existing tracks, it is computational low-
cost. Therefore it is also practical for real-time multi-target detection and tracking. 
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Fig. 7. A comparison of the target detection performance between the proposed method and 
the IMM tracker when multiple targets exist with surrounding clutters. 

5.3 Team cooperation test 

We do experiments on the Segway RMP soccer robot executing the offensive play and 
coordinating with the human team member. The test setup is demonstrated in Figure 8, in 
which the digits along the lines show the sequence of the whole strategy, the filled circle at 
position B represents the robot, the unfilled circle at position E represent an opponent 
player, and the shaded circle represent the human team member. 
When each run begins, the human team member is at position A. With this team 
cooperation plan (play), the robot chooses the tactic CatchKickToTeammember to execute, in 
which the robot starts with the skill Search-Ball. When the robot finds the ball, the team 
member passes the ball directly to the robot and chooses a positioning point to go to either 
at C or D. The robot grabs the ball after the ball is in the catchable area and is detected by the 
infrared sensor (skill Grab-Ball). Next the robot searches for the team member holding the 
ball with its catcher (skill Search-Teammember). After the robot finds the team member, the 
robot kicks the ball to its team member (skill KickToTeammember) and the team member 
shoots at the goal, completing the whole offensive play. Each run ends in one of the 
following conditions. 
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• Succeed if the human receives the ball from the robot or the human does not receiver 
the ball but the pass can be considered as a “good” one.  

• Fail if the robot is in searching for the ball or the team member for more than 30 
seconds.  

• Fail if the ball is outside the field before the robot catches it. 
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C D

1

2'
2

3 3'

4 4'

 

Fig. 7. A comparison of the target detection performance between the proposed method and 
the IMM tracker when multiple targets exist with surrounding clutters. 

In the experiment over 15 runs, the robot with single model trackers fails 5 of the total. 

While the robot with play-based multi-model trackers fails 2 of the total. We also keep track 

of the mean time taken in all the successful runs. We list the result in Table 4. Using play-

based multi-model tracking saves 32.3% time in terms of completing the whole play over 

single model tracking. During the experiment, we note that when using the single model 

tracking, most time was spent on searching the team member. Incorporating the team 

cooperation knowledge known as play into the team member motion modeling greatly 

improves the accuracy of the team member motion model and therefore avoids taking time 

in searching a lost target from scratch. 
 

Motion Model Single Model Multi-Model 

Mean Time (sec) 33.4 22.6 

Table 4. The average time taken over all the successful runs. 

6. Related work 

Tracking moving targets using a Kalman filter is the optional solution if the system 

follows a single model, f and h in Equation (1) and (3) are known linear functions and the 

noise v and n are Gaussians (Arulampalam et al., 2002). Multiple model Kalman filters 

such as Interacting Multiple Model (IMM) are known to be superior to the single Kalman 

filter when the tracked target is manoeuvring (Bar-Shalom et al., 2001). For nonlinear 
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systems or systems with non-Gaussian noises, a further approximation is introduced, but 

the posterior densities are therefore only locally accurate and do not reflect the actual 

system densities. 

Since the particle filter is not restricted to Gaussian densities, a tactic-based motion 

modeling method is proposed in (Gu, 2005). Based on that approach, we further introduce 

the play-based motion modeling method when team coordination knowledge is available. 

Another related approach was proposed to track a moving target using Rao-Blackwellised 

particle filter (Kwok & Fox, 2004) in which a fixed transition table was used between 

different models. Our transition model is dependent on the play that the robot is executing 

and the additional information that matters. This model can be flexibly integrated into our 

existing STP architecture. 

There have been different strategies in multi-target tracking. In order to handle the data 

association and tracking problem, the classical Joint Probabilistic Data Association Filter 

(JPDAF) adopts the methods like the extended Kalman Filter (EKF) for multi-target state 

estimation, whose tracking performance is known to be limited by the linearity of the data 

models (Bar-Shalom & Fortmann, 1988). Another approach known as sequential Monte 

Carlo methods is able to perform well even when the data models are nonlinear and non-

Gaussian. However, almost all of these methods assume that the knowledge of true targets 

(without clutter) is given, which is not applicable in the field that Segway RMP soccer robots 

operates in. 

Recently, a hybrid approach for online joint detection and tracking for multiple targets was 

proposed (Ng et al., 2005). This approach does not rely on the clutter-free assumption. In 

this paper, based on their approach, we present a play-based multi-target tracking 

algorithm, which incorporates tactic information to eliminate the false alarms and to 

improve resampling efficiency. Compared to our method, first, existing techniques consider 

less complex dynamic systems where only one part of the state space is non-linear. In 

contrast, our approach estimates a system where multiple components are highly non-linear 

(Segway RMP robot motion, ball motion, team member motion).  Second, most existing 

techniques examine their performance with simulated experiments, while we test our 

approach in real robot experiments. Third, our approach goes beyond existing techniques by 

incorporating team cooperation information into the tracking process which further 

improves the performance.  

7. Conclusions and future work 

Motivated by the interactions between a team and the tracked target, we contribute a 

method to achieve efficient tracking through using a play-based motion model and 

combined vision and infrared sensory information. This method gives the robot a more 

exact task-specific motion model when executing different tactics over the tracked target 

(e.g. the ball) or collaborating with the tracked target (e.g. the team member). Then we 

represent the system in a compact dynamic Bayesian network and use particle filter to keep 

track of the motion model and target state through sampling. The empirical results from the 

simulated and using the real robot agent show the efficiency of the multi-model tracking 

over single model tracking.  
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If the teammate is a human, not a robot, the certainty that the teammate is executing the 

expected play or tactic could be reduced. That is, the human teammate could fail to execute 

the desired play or tactic. Future work will take such uncertainty into account. A better 

human team member modeling (for example, include intercepting the moving ball, mark a 

player, covering the goal) will also help. Another interesting work is to know how the 

performance of the presented method is affected by the presence of tactics of the team 

member that are not exactly determined in the team coordination plan. 

8. Acknowledgments 

We would like to thank the members of the CMBalance Segway soccer team for their help 

with developing the infrastructure for the Segway robots. This work was supported by 

United States Department of the Interior under Grant No. NBCH-1040007. The content of 

the information in this publication does not necessarily reflect the position or policy of the 

Defense Advanced Research Projects Agency (DARPA), US Department of Interior, US 

Government, and no official endorsement should be inferred. 

9. References 

S. Arulampalam; S. Maskell, N. Gordon, T. Clapp (2002). A tutorial on particle filters for on-
line non-linear/non-gaussian Bayesian tracking. IEEE Transactions on Signal 
Processing, 50(2):174–188, Feb.2002. 

Y. Bar-Shalom & T. E. Fortmann (1988). Tracking and Data Association. Academic Press, Inc, 
1988. 

Y. Bar-Shalom; X.-R. Li, & T. Kirubarajan (2001). Estimation with Applications to Tracking and 
Navigation. John Wiley & Sons, Inc, 2001. 

B. Browning; J. Bruce; M. Bowling & M. Veloso (2005). STP: Skills, tactics and plays for 
multi-robot control in adversarial environments. IEEE Journal of Control and Systems 
Engineering, 219:33–52, 2005. 

B. Browning; J. Searock; P. E. Rybski & M. Veloso (2005). Turning segways into soccer 
robots. Industrial Robot, 32(2):149–156, 2005. 

A. Doucet; N. D. Freitas & N. Gordon (2001). Sequential Monte Carlo Methods in Practice. 
Springer-Verlag, New York, 2001.  

Y. Gu (2005). Tactic-based motion modelling and multi-sensor tracking. Proceedings of 
Twentieth National Conference on Artificial Intelligence, 2005. 

C. Kreucher; K. Kastella & A. O. H. III (2003). Multi-target sensor management using alpha-
divergence measures. pp 209–222, 2003. 

C. Kwok & D. Fox (2004). Map-based multiple model tracking of a moving object. 
Proceedings of eight RoboCup International Symposium, July 2004. 

W. Ng; J. Li, S. Godsill, & J (2005). Vermaak. A hybrid approach for online joint detection 
and tracking for multiple targets. IEEE Aerospace Conferences, 2005. 

D. Schulz; W. Burgrad & D. Fox (2003). People tracking with mobile robots using sample-
based joint probabilistic data association filters. International Journal of Robotics 
Research, 22(2), 2003. 

J. Searock; B. Browning & M. Veloso (2004). Turning Segways into Soccer Robots. In 
Proceedings of IROS’04, Sendai, Japan, September 2004. 

www.intechopen.com



 Multiagent Systems 

 

332 

M. Veloso; B. Browning; P. Rybski & J. Searock (2005). Segwayrmp robot football league 
rules. Technical report, http://www.cs.cmu.edu/ robosoccer/segway/, 2005. 

www.intechopen.com



Multiagent Systems

Edited by Salman Ahmed and Mohd Noh Karsiti

ISBN 978-3-902613-51-6

Hard cover, 426 pages

Publisher I-Tech Education and Publishing

Published online 01, January, 2009

Published in print edition January, 2009

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Multi agent systems involve a team of agents working together socially to accomplish a task. An agent can be

social in many ways. One is when an agent helps others in solving complex problems. The field of multi agent

systems investigates the process underlying distributed problem solving and designs some protocols and

mechanisms involved in this process. This book presents an overview of some of the research issues in the

field of multi agents. It is a presentation of a combination of different research issues which are pursued by

researchers in the domain of multi agent systems as they are one of the best ways to understand and model

human societies and behaviours. In fact, such systems are the systems of the future.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yang Gu and Manuela Veloso (2009). Effective Multi-Model Motion Tracking Under Multiple Team Member

Actuators, Multiagent Systems, Salman Ahmed and Mohd Noh Karsiti (Ed.), ISBN: 978-3-902613-51-6,

InTech, Available from: http://www.intechopen.com/books/multiagent_systems/effective_multi-

model_motion_tracking_under_multiple_team_member_actuators



© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


