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USA 

1. Introduction 

Sensor networks are designed to satisfy specific signal processing objectives, such as target 
recognition and identification, industrial quality control, community health sensing, 
multimedia systems & applications, etc. The satisfaction of each objective first requires careful 
stochastic modeling of the environment and deployment of the pertinent performance 
criterion; a optimal or best centralized (or coherent) signal processing procedure can be then 
determined, whose rate of convergence to the deployed performance criterion will be 
predictable. The centralized procedure utilizes unconstrained raw data, it is performed by a 
fusion center  and attains the best possible convergence rate.  In the distributed environment of 
sensor networks, however, the transmission of raw data to the fusion center induces a high 
communication cost (both in transmission power and bandwidth), where raw data are 
collected by local sensors. To reduce the communication cost, raw data are preprocessed by 
the local sensors.  Reduced pertinent information is subsequently transmitted by the local 
sensors to possibly first cluster heads which in turn process the received information  and 
transmit further reduced information to a fusion center. The fusion center executes the final 
steps of the now termed decentralized (or non-coherent) procedure for the satisfaction of the 
network objective. The arising issues here are: (a) The performance versus communication cost 
tradeoff arising when the centralized and the decentralized procedures are compared and (b) 
the effect of feedback on the convergence rate of the decentralized  procedures. 
We select as signal processing objective the monitoring of changes in operational scenarios.  
Such monitoring has numerous applications, including detection of anomalies in 
community health and industrial quality control. We propose, analyze and evaluate a 
sequential monitoring algorithm, including convergence, power and false alarm, as well as 
performance comparison with the corresponding centralized system. 
The problem of detecting rapidly and accurately a change in the stochastic process that 
generates observation data has long history and numerous applications. The applications 
include industrial quality control, detection of edges in images, network quality control and 
traffic monitoring in data and sensor networks. The search for algorithms that detect 
changes in the underlying process which generates observation data has taken two distinct 
directions: Bayesian and non Bayesian. Since the assumed knowledge of prior probabilities 
in the Bayesian approaches is considered here unreasonable and unrealistic, we exclusively 
focus on non Bayesian solutions to the problem. O
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Motivated by the application of industrial quality control, (Page 1954) first proposed a 
sequential algorithm to detect a possible change from a given stationary and memoryless 
process to another given such process, where it was only assumed that such a change may 
occur randomly in time. (Lorden 1971) analyzed Page’s algorithm and proved its asymptotic 
optimality in the sense of stopping time. (Bansal et al 1986) extended Page’s algorithm for 
stationary and ergodic processes with memory and proved optimality in the sense of 
asymptotic expected stopping time. (Bansal et al 1989) also “robustified” the algorithm for 
resistance to data outliers. Burrell et al (1998) extended the algorithm in (Bansal et al 1986) to 
sequentially detect reoccurring possible changes within a given set of stochastic processes, 
and analyzed asymptotic performance. (Lai 1995) considered a scenario similar to that in 
(Burrell et al 1998). (Veeravalli et al 1993) adopted the algorithm of (Page 1954) and that of 
(Bansal et al 1986) to analyze the effect of a fusion center processing outputs from a set of 
distributed-data collecting sensors. Some modification of the latter scenario where 
considered by (Mei 2005). (Burrell et al 2004) considered a distributed modification of the 
algorithm presented in (Burrell et al 1998), to monitor traffic in sensor networks, where 
partial decisions from neighboring sensors are incorporated into the sequential algorithmic 
processing at each sensor.  
 In this chapter, we consider the existence of a fusion center which processes partial 
decisions by distributed local sensors, to make the final decision as to the change of the 
underlying data generating process. The processes model adopted is that of (Burrell et al 
1998). Feedback from the fusion center to the sensors is implicit and utilized in the 
algorithmic steps of the overall system. 
The chapter is organized as follows: In Section 2, the system model is presented. In Section 
3, preliminaries about the basic algorithms deployed by a centralized system are presented. 
In Section 4, the algorithmic system is presented and analyzed and the comparison of its 
performance with that of the centralized system is discussed.  In Section 5, numerical 
evaluation scenarios are included.  In Section 6, some conclusions are drawn.        

2. System  model 

We consider discrete-time processes and we let time start at zero. Let 
1

nx  denote the 

sequence  x1, … , xn of n observations after time zero and let { μ i ; i = 0, 1,  … , m-1} denote 
the measures of m distinct and parametrically defined stochastic processes. The 
assumptions in the problem we consider are then as follows: the observation sequence is 
initially generated by the process μ 0 , while it is possible that a shift to any one of the m-1 
processes μ i ; i = 1, … , m-1 may occur at any point in time, where if a μ 0 → μ i shift occurs, 
then the process μi remains active thereafter. The objective is to detect the occurrence of a μ 0 
→ μ i shift as accurately and as timely as possible, including the detection of the process μ i 
which μ 0 changed to. Let us denote by f i  ;  i = 0,1, .., m-1 density or probability functions 

induced by the processes μi ; i = 0, 1,  … , m-1 and let us denote by 1

1
( | ) ; 0,1,..., 1n

i n
f x x i m− = −  

conditional density or probability functions at x n , given the sequence 1

1

nx − . 

In a centralized system, the problem objective is satisfied by a single processor which 
collects all the data and processes them sequentially via the algorithm in (Burrell et al 1998). 
Here, a decentralized system is considered, however, where M physically distributed 
processors collect local data, in conjunction with possible feedbacks from a fusion center. 
(See Figure 1). The M sensors are identical, placed in identical stochastic environments; that 
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is, possible changes of the local data generating processes occur simultaneously at all sensor 

sites. Each sensor deploys a sequential algorithm to detect a possible μ 0 → μ i , i = 0,1, .., m-1 
change and transmits its local decisions to the fusion center. The fusion center makes the 
final decision as to a possible change in the data generating process, while it may be 
implicitly notifying the sensors as to its decision status at all times. 
 

Fusion Center

Sensor 1 Sensor j Sensor M 

{vn} 

{vn} 
)(1 Mxn

)1(1
nx )(1 jxn
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Fig. 1. Fusion Center 

Let 
1
( )nx i denote a n-dimensional local to sensor i data sequence. Let ( )j

n
u  denote the input of 

sensor j to the fusion center at time n. Note that sensor j does not transmit anything to the 

fusion center, until it makes a decision; if it makes a decision in favor of a μ 0 → μ i shift at 

time n, it then transmits ( )j

n
u = i ; which also implies ( )j

k
u = i ; for all k > n ; before n the fusion 

center simply deduces that ( )j

l
u = 0 , l  ≤ n-1, which means that senor j has not yet decided 

that a change from μ 0 has occurred. Let vn denote the feedback of the fusion center to the 

sensors, at time n. Then, vn = 0 ; for all n before a shift decision is made by the fusion center. 

Note, that the fusion center does not need to transmit any feedback to the sensors before it 

makes its shift decision: the sensors simply deduce then that vn = 0 during such periods. At 

the time when the fusion center makes its decision, it simply “orders” the sensors to stop 

their local processing.  

3. Preliminaries 

Let us assume that all the processes μ i ; i = 0, 1,  … , m-1 are ergodic and stationary, where 

1 1

,

0 1

( )
log

( )

n

i

i n n

f w
L n

f w

Δ
−=  

1 0 1

0,

1

( )
log

( )

n

n n

i

f w
L n

f w

Δ
−=  

,0 ,
lim

i i n
n

I L
Δ

→∞
=  
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0, 0,
lim

i n
n

I L
Δ

→∞
=  

and 

1, ,
( ) ( )

i n i n
p v P L vμ

Δ

= <  

0

'

0, 0,
( ) ( ')
n n

p v P L vμ

Δ

= <  

and where the following conditions are satisfied, for all i = 1, …, m-1: 

Ii 0 and I 0 i exist (Ii 0 , I 0 i  < ∞) and 

{ }
{ }

i

0 0

0 i 0

0 0 i

I I      a.s.   (P )

I I      a.s.   (P )

ii

i

μ μ

μ μ

= Ε

= Ε
 

For v ∈  (0 , Ii 0)  

 
n i ,

n 1

lim  ( ) 0   and    
i n

n
n p v p

→∞ ≥

= < ∞∑   ( A ) 

For v’ ∈  (0 , I0 i ) 

 
0 n 0 ,

n 1

lim  ( ) 0   and    
n

n
n p v p

→∞ ≥

′ = < ∞∑   ( A’ ) 

Then, denoting by x infinite generated sequences, we have from (Bansal et al 1986) the 

following results, regarding the centralized detection of a μ0 to μi shift : 

Defining the stopping variable 

{ }0

0 1
( ) inf : ( )i n

i n
N x n T xδ δ

Δ

= ≥  

for 

1

0 i

n 1 11 1
0

( | )
T ( ) max log

( | )

ln
n i l k

lk n
l k

l k

f x x
x

f x x

−Δ

−≤ ≤ + =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  

we have that, 

{ }
0

0
E ( ) as 

2
i

N xδ
μ

δ δ> →∞  

 { } { }
_

0

0

log
E ( ) ~ as 

E
i

i

i

i

N x
I

δ
μ

μ

δ δ →∞  (1) 

If the μi ; i = 0,1, ….,m-1 stochastic processes possess in addition Lai’s (1977) mixing 

conditions, then the stopping variable { }0
( )
i

N xδ  can be closely approximated by the 

following stopping variable ' ( )N xδ  which possesses sequential properties while ( )N xδ does 

not.  
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1

' 1

0 10
1

0 1

( | )
( ) max log

( | )

ln
i l

i lk n
l k

l

f x x
N x

f x x

δ
−

−≤ ≤ = +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  

 '0 1 '0 1 1

1 1 1 1

0 1 1

( | )
( ) max 0 , ( ) log

( | )

n

i n i n i n

n n n

n

f x x
T x T x

f x x

+ +
+ +

+

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
  (2) 

where   1 1

0 1 1

( | )
log

( | )

n

i n

n

n

f x x

f x x

+

+

 represents the algorithmic updating step at time n+1. 

Denoting I i j as I 0 i , when μ0  and  μi  are respectively substituted by μi and μj , and assuming 
that Lai’s (1977) mixing conditions hold, we have from Burrell et al (1998): 

 
[ ]

⎪⎩

⎪
⎨
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−

−
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j
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1

0
1

0

1-m ..., 1,=i
1m .., 1, 0,

'
0

δ

δ
μδ δ  (3)   

 { } { } [ ]
{ }⎪

⎩

⎪
⎨

⎧

<≠∀≥<

>≠∀−Ε<
Ε∞→

−

−
−

jijji

jijjijji
jjj

jixNE

jix
x

II:;2|)(

II:;logII~|)(N
:logI~|)(N, As

0
1'

0

0

1

0
'
01

0
'
0

δμ

δμ
δμδ

δ

δ
δ (4) 

Expressions (1), (3) and (4) represent the asymptotic performance of the centralized system, 
where m-1 parallel algorithms as in (2) operate, with a common threshold δ, and where the 
first algorithm to cross this threshold determines the system decision: if the μ0 →  μk 
algorithm first crosses the threshold, then a μ0 →  μk shift is decided and the algorithmic 
system stops.  

4. The algorithmic system 

We assume identical sensors collecting mutually independent local data. We denote by xn(i) 

the nth local datum at the ith sensor. We denote by n-1

1
x ( )i the (n-1)th dimensional data 

sequence collected locally at senor i from time 1 to time n-1. The algorithms deployed by the 
sensors are identical, and utilize conditional densities or distributions. In addition to its local 
data, each sensor also utilizes the implicit fusion centers feedbacks {vk = 0 }k throughout its 

operation. Let ( )1

j 1 1 1
( ), 0 | ( ),{ 0}n

n n k k n
f x i v x i v−

≤ ≤ −= =  denote the conditional density or 

distribution of the data at sensors i, given that the acting data process is μj . It is clearly seen 

that the {Vn} sequence is a Markov Chain and that the data sequence n

1
X ( )i  is independent of 

{Vn}. We can thus write,  

( )1

j 1 1 1
( ), 0 | ( ),{ 0}n

n n k k n
f x i v x i v−

≤ ≤ −= = =  

 ( ) ( )1

j 1 1 j 1
0 | 0, ( ) ) ( ) | ( )n n

n n n
f v v x i f x i x i−

−= = =  (5) 

We observe that the {vk} sequence is based only on the { }( )i

k
u  sequences of the sensor 

outputs rather than the data sequences collected by the sensors. We thus substitute 
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( )j 1 1
0 | 0, ( ))n

n n
f v v x i−= =  by ( )( )

j 1
0 | 0, 0i

n n n
f v v u−= = = . Since the sensors are identical we 

drop the index i and we write,    

( )1

j 1 1 1
, 0 | ,{ }n

n n k k n
f x v x v−

≤ ≤ −= =  

( ) ( )1

j 1 j 1
0 | , 0 | n

n n n n
f v v u f x x −

−= = =  

 
( )
( ) ( )j 1

j 1

j 1

0 | 0
|

0 | 0

n n n

n

n n

f v u
f x x

f v u

−

−

= =
= =

  (6) 

( )
( )

1

j 1 1 1

1

0 1 1 1

, 0 | ,{ }
log

, 0 | ,{ }

n

n n k k n

n

n n k k n

f x v x v

f x v x v

−
≤ ≤ −

−
≤ ≤ −

=
=

=
 

 
( )
( )

( )
( )

( )
( )

1

j 1 j j 1

1

0 1 0 0 1

| 0 | 0 0 | 0
log log log

| 0 | 0 0 | 0

n

n n n n n

n

n n n n n

f x x f v u f v u

f x x f v u f v u

−
−

−
−

= = = =
+ −

= = = =
  (7) 

The expression in (7) represents the updating step of the μ0 →  μj shift detecting algorithm in 

(2) at time n, at any one of the M sensors, where n

1
x  are the locally collected data. As 

compared to the centralized scheme, the terms  

( )
( )

( )
( )

j j 1

0 0 1

0 | 0 0 | 0
log and    -log

0 | 0 0 | 0

n n n n

n n n n

f v u f v u

f v u f v u

−

−

= = = =

= = = =
 

are added to the updating step. Due to the latter terms, the algorithmic systems across the 
different sensors are mutually dependent, while the locally collected data are mutually 
independent, instead.    
At the Fusion Center, m-1 parallel algorithms are operating, with a common threshold T, 
each monitoring a μ0 →  μj possible shift, for j = 1, … , m-1. These algorithms utilize the 

vectors 
__

(1) ( ),...,
T

m
n n n

U u u= ⎡ ⎤⎣ ⎦ , where ( )i

n
u  is the output of sensor i at time n. If at time n the 

sensor has not made a decision yet, then ( ) 0i

n
u = . If at time n the senor decides in favor of the 

process shift μ0 →  μj , then ( )i

n
u j= , and this value remains unchanged for all times after n. 

Due to the above discussed evolution of the { }( )i

n
u  outputs, it is clear that the process { }__

nU  

is a Markov Chain. Thus,
__ __ __ __

1| ,1 1 |n k n nj j
f U U k n f U U −
⎛ ⎞ ⎛ ⎞≤ ≤ − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, where, in addition, the 

conditional probability 
__ __

1|n nj
f U U −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is determined solely by the transitions of the zero-

valued components of  
__

1nU − . In fact, due to the identical nature of the sensors, 
__ __

1|n nj
f U U −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

is determined by the number of sensors whose algorithms are still running at time n-1, and 
among them, from the numbers which transition to the states un = 1, … , m-1, at time n. For 

sensor i, let us denote the variable ( )i

n
d  as, ( ) 0i

n
d =  if   ( ) 0i

n
u =  and  ( ) 1i

n
d =  if  ( ) 1,2,..., 1i

n
u m= − . 
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Let 
__

n
D  be the vector whose components are ( ); 1,2,...,i

n
d i M= . Then, we can first write 

__ __

1|n nj
f U U −
⎛ ⎞
⎜ ⎟
⎝ ⎠

=
__ __

1| nnj
f U D −
⎛ ⎞
⎜ ⎟
⎝ ⎠

=  
__ __ __

1| ,n nnj
f U D D −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
__ __

1|n n
j
f D D −
⎛ ⎞
⎜ ⎟
⎝ ⎠

and,  

 

__ __ __ __ __ __ __

1 11

__ __ __ __ __ __ __

1 110 0 0

| | , |

log log log

| | , |

n n n nn n nj j j

n n n nn n n

f U U f U D D f D D

f U U f U D D f D D

− −−

− −−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠= +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  (8) 

From the discussion above, it is evident that the sufficient statistics for the term 
__ __

1

__ __

10

|

log

|

n nj

n n

f D D

f D D

−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

 are 1 ( ) ( )

1
1

(1 )
M

i i

n n
i

M d d−
−

=

−∑  and 1 ( ) ( )

1
1

(1 )(1 )
n

i i

n n
i

M d d−
−

=

− −∑ . As to the conditional 

probability 
__ __ __

1| ,n nnj
f U D D −
⎛ ⎞
⎜ ⎟
⎝ ⎠

, j=0,1, … , m-1, it represents the probability of the number of 

sensors deciding in favor of the 
0

; 1,.., 1
k
k mμ μ→ = −  shifts at time n, given that their 

algorithmic systems stop at time n; this probability equals 1 if m=2, since then,  
__ __

n nD U= .  

The sufficient statistics for the probability 
__ __ __

1| ,n nnj
f U D D −
⎛ ⎞
⎜ ⎟
⎝ ⎠

 and the term log 

__ __ __

1| ,n nnj
f U D D −
⎛ ⎞
⎜ ⎟
⎝ ⎠

/
__ __ __

10
| ,n nnf U D D −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 in (8) are, 1 ( ) ( )

1
1

(1 )
M

i i

n n
i

M d d−
−

=

−∑  and 

1 ( ) ( ) ( )

1
1 1 1

(1 ) ( ) ;1
M

i i i

n n n
i k m

k l

M d d u k l m−
−

= ≤ ≤ −
≠

− − ≤ ≤∑ ∏ . The expression in (8) represents the updating step 

of the μ0 →  μj shift detecting algorithm in (1) and (2) at time n, as implemented by the fusion 
center. Let now us denote, 

j

n
j 1,...,m-1

p
=

:   The probability that the algorithmic system at a sensor stops at time n ( the common 

threshold is first crossed at time n), given that the data generating process is μj .  
j

n k
k,j ;1,...,m-1

p : The probability that, given the data generating process μj, the algorithmic system at 

a senor stops at time n, where the μ0 →  μk shift detecting algorithm is the one that 
first crosses the threshold at n.  

j

n
j 1,...,m-1

β
=

:  The probability that the algorithmic system at a sensor stops before or at time n, 

given that the data generating process is μj.  

αn: The probability that the algorithmic system at a senor stops before or at time n, 
given that the data generating process is μ0.   

We note that p pj j

n n k
=  ; if m=2. Also,  

1
p j j j

n n n
β β −= −  ; j =1, …, m-1 and 0

1
p
n n n

α α −= − . 

We now express a theorem, whose proof is in the Appendix. 
Theorem 1: 

Let the probabilities ( )j
0 | 0 ; 1,..., 1

n n
f v u j m= = = −  and ( )0

0 | 0
n n

f v u= =  be such that there 

exist constants 0n  , cj ; j=1, …, m-1 and c0 such that  
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 ( )j
0 | 0

n n
f v u= = /  ( )j 1 1

0 | 0
n n

f v u− −= = = cj ; j=1, …, m-1, 
0

n n∀ >  

 ( )0
0 | 0

n n
f v u= = /  ( )0 1 1

0 | 0
n n

f v u− −= = = co ; 
0

n n∀ >   (9) 

Then, the algorithmic systems across different scenarios are mutually independent for all 

0
n n> . In addition, if the μj ; j=0,1, …,m-1 processes are stationary, ergodic and satisfying 

conditions (A) and (A’) in Section III, as well as (Lai’s 1977) mixing conditions, then the 

performances of the sensors algorithmic systems are asymptotically (
0

n n> ) identical and 

as in (3) and (4). Finally, the updating step of the μ0 → μj shift detecting algorithm at the 

fusion center in (8) takes then the following form : 

 
1

1 ( ) ( ) ( )

1 0 0
1 1 1 1

p / p
( 2) (1 ) ( ) log

p / p

j jm M
n j i i i nl n

F S n n n
l i k m

nl n
k l

S U m M d d u k
−Δ

−
−

= = ≤ ≤ −
≠

= − − −∑ ∑ ∏  

1 ( ) ( ) 1 ( ) ( )1 1

1 10
1 1

1 1

p | (1 ) (1 ) | (1 )
(1 ) log (1 )(1 ) log

p | (1 ) (1 ) | (1 )

j j j jM M
i i i in n n n

n n n n
i i

n n n n

M d d M d d
β β β
α α α

− −− −
− −

= =− −

− − −
+ − + − −

− − −
∑ ∑ ;

0
n n>  (10) 

; where  
1 ; n  0 

U(n)  
0 ; n  0

>⎧
= ⎨ ≤⎩

                                                                                                               □ 

The expected value of the updating step in (10), subject to the data generating process being 
μi is found by straight substitution as follows:  

{ }
1

1

0 0
11,..., 1 1 1

| | (1 )
| ( 2) log log

| 1 | (1 )

i j j i j jm
n j nl nl n n n n

F S i i i o
li m n nl n n n n

p p p p p
E S U m

p p p p

βμ
β α

−
−

== − − −

−
= − + +

− −
∑  

                           1

1 1

(1 ) (1 ) | (1 )
log
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1
−

−

−
−−
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−

−
+

nn

j
n

j
n

n

n

αα
ββ

α

α
0; nn >   (12)     

 

For asymptotically many sensors ( M → ∞), the updating step in (10) converges to the 

expected values in (11) and (12), depending on the acting data generating process. Let 

K(p|q) denote the Kullback-Leibler information number of a Bernoulli trial with parameter 

p, with respect to a Bernoulli trial with parameter q. Let 
1 1 1 1

K({p } |{q } )
l l m l l m≤ ≤ − ≤ ≤ −  denote the 

Kullback-Leibler number of a distribution with probabilities 
1 1

{p }
l l m≤ ≤ − , with respect to a 

distribution with probabilities 
1 1

{q }
l l m≤ ≤ − . Then, from expressions (11) and (12), we easily 

deduce the expressions (13) and (14) below. 
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{ }
0

0

1,..., 1 1 1 1 1

p p
| ( 2)[K

i

n j nl nl

F S i i

i m n nl m l m

E S U m
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= − ≤ ≤ − ≤ ≤ −

⎛ ⎞⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎜ ⎟= − −⎨ ⎬ ⎨ ⎬⎜ ⎟⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎝ ⎠
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n nl m l m
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j
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j
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  (14)  

We note that the quantities 
1 1

pi
nl

i

n l m
p

≤ ≤ −

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

; i = 0,1, …, m-1, 
1

1

1

i

n

i

n

β
β −

−
−

; i = 1, …, m-1 and (1-αn) / (1-

αn-1) in expression (13) and (14)  all represent performance metrics per single sensor.  We 
now state a theorem whose proof is included in the Appendix. 
Theorem 2 

Let the sequences   
1 1

pi
nl

i

n l m
p

≤ ≤ −

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

; i = 0,1, …, m-1, 
1

1

1

i

n

i

n

β
β −

−
−

 ; i = 1, …, m-1 and   (1-αn) / (1-αn-1) 

converge asymptotically. Then, the algorithmic system at the fusion center has the following 

asymptotic performance characteristics, where 
0

T

j
N  denotes the stopping variable of the 

0 j
μ μ→ shift monitoring algorithm in the system when the common threshold is T, and 

where { } { }limj nj

FS k FS k
n

E S E Sμ μ
Δ

→∞
= .   

                     { } { } { }
{ }⎪⎩

⎪
⎨
⎧

<≥

>
∞→

−

0   E if                          ; T2 

 0    E if  ;TlogE~
:NE,T As

1-

1
T
oj

i
j
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i
j
FSi

j
FS

i
S

SS

μ

μμ
μ  (15) 

                             { } { } jijj ≠∀<∞→ μμ T
0i

T
0j

NENE,T As   (16) 

In addition, the conditions in Theorem 1 for mutual independence across the various 
sensors hold, for asymptotically many sensors.                                                                              □ 
From the results in Theorem 2, we clearly observe that the asymptotic performance of the 
algorithm deployed at the fusion center is determined by the performance of the algorithms 
deployed by the individual sensors, which are determined, in turn, by the Kullback-Leibler 
numbers among the various acting processes. Furthermore, each individual sensor may be 
viewed as a representation of a centralized system; thus, comparison between a decentralized 
and a centralized systems translates to comparison of the fusion center performance to that of 
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a single sensor.  The asymptotic performance of the fusion center is controlled by the limits of 
the expectations in expressions (13) and (14), which are, in turn, determined by the limits of 
Kullback-Leibler numbers among  power and false alarm quantities induced at a single sensor; 
the latter numbers are functions of the Kullback-Leibler numbers among the various acting 
processes. The asymptotic performance of a single sensor, on the other hand, is directly 
controlled by the Kullback-Leibler numbers among the acting processes. As the latter numbers 
increase, both sensor and fusion center performances enhance. 

5. Numerical evaluations 

In this section, we examine metrics for the non-asymptotic performance of the algorithms in 
the system. We first state the general experimental setup. Then, we present numerical 
results, for a specific scenario.      

5.1 Experimental setup 
In the construction of our experimental setup, we follow the steps listed below : 
1. We select specific processes, μ1,  … , μm-1.   
2. We construct the specific updating step for each of the parallel algorithms   

μ0 → μk; k = 1,..., m - 1that are ran at each sensor, as per expression (7) in Section IV. 

3. Via the construction in step 2, we compute numerically the quantities 
0

{P ( )}j

k
n ,    

0
{ ( )}j

k
nβ and 

0
{ ( )}

k
nα  in a recursive fashion, where : 

0
{P ( )}j

k
n : Given that the data generating process is μj , the probability that the            

                
0 k

μ μ→  monitoring algorithm crosses the threshold at n. 

0
( )
k
nα : 0

0
1

P ( )
n

k
l

l
=
∑  

0
( )j

k
nβ : 

0
1

P ( ) , 1, ..., 1
n

j

k
l

l j m
=

= −∑  

4. Via the computed quantities in step 3, we compute the quantities P j

nk
, P j

n
, 

n
α  and 

j

n
β defined in Section IV, as follows : 

j

n k
k,j ;1,...,m-1

P = ( )0 0
1 1

P ( ) 1 ( ) ; 0,1, ..., 1j j

k l
l m

l k

n n j mβ
≤ ≤ −
≠

− = −∏  

P j

n
 = 

1

1

P ; 0,1, ... , 1
m

j

nk
k

j m
−

=

= −∑  

n
α  =  0

1

P
n

l
l=
∑  

j

n
β  =  

1

P ; 1, ..., 1
n

j

l
l

j m
=

= −∑  

5. The quantities  computed in step 4 are used to compute the updating steps of the 
parallel algorithms ran by the Fusion Center, as the former are determined by 
expression (10) in Section IV. 

6. The number of sensors is selected. Data are independently generated at each senor by 
the same process μl, where μl is one of the processed selected in step 1. Given μl, the 
overall system-sensors/fusion center – is simulated, where the system algorithmic 
thresholds have been a priori selected. The performance metrics computed are metrics 
at the Fusion Center. In particular, the computed metrics for each given μl are:   
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k n
1 k m-1

h 
l

≤ ≤

: Given that the data at the sensors are generated by the process μl, the percentage 

of simulated runs that led the Fusion Center to decided at time n that μk started acting. 

k 
1 k m-1

T 
l

≤ ≤

: The average time to decided in favor of process μk, given  that the data 

generating process is μl, where the decision is by the Fusion Center. 

k n
r l : Given that the data generating process at the sensors is μl, the probability that the 

Fusion Center decides in favor of process μk before or at time n.   
where,  

k n
r l  =  

n

k n
p 1

h l

=
∑   and  

k
T l =

n

k n
p 1

n  h l

=

⋅∑  

m-1 sets of simulations are ran, each corresponding to one of the processes μl; l = 1, … , m-1 

that generate the actual data at each sensor. □ 
In step 6, we stated that the algorithm thresholds of the system are a priori selected. The 

methodology for this selection is as follows. 

A. The thresholds across different sensors are identical, since the sensors are considered 

identical. Per sensor, we test a number of different thresholds, 
1
,...,

p
δ δ . For each given 

threshold, 
i

δ , we evaluate numerically the metrics 
0

{ ( )}
k
nα  and 

0 1 1
{ ( )}k

k k m
nβ ≤ ≤ − , where 

the latter metrics are defined in step 3. Given 
i

δ , we plot the m-1 pairs of curves  

0
{ ( )

k
nα , 

0 1
( )}k

k n N
nβ ≤ ≤  for some pre-selected N. We then decide on a value no and select 

a lower bound βo for powers and a upper-bound  αo for false alarms. We select as the 

operational algorithmic threshold, the minimum among the tested thresholds such that 

all powers at  are above βo and all false alarms at no are below αo. That is, operational 

selected thresholds attains :  

0 0 0
1 1
min ( )

k

k
k m

nβ β
≤ ≤ −

≥  and   
0 0 0

1 1
max ( )

k
k m

nα α
≤ ≤ −

≤ . 

B. The thresholds for the Fusion Center are evaluated and selected, as in (A). 

5.2  Specific simulation scenario 

We selected homogeneous Poisson processes μ0 ,  … , μm-1 with specific different rates. The 
simplification of the updating step in (7), Section 4, in this case, as well as the computation 

of the quantities 
0

{P ( )}j

k
n  , 

0
{ ( )}j

k
nβ  and 

0
{ ( )}

k
nα  in Step 3, Section 5.1, was included in 

(Burrell et. al. 1998a) and is also included in the Appendix. 
We specifically selected six homogenous Poisson processes, μ0 , μ1 , μ2 , μ3 , μ4 , μ5 , with 
corresponding rates per unit time : r0 = 0.1, r1 = 0.25, r2 = 0.35, r3 = 0.5, r4 = 0.65, r5 = 0.8. We 
tested several thresholds for the algorithm systems ran by the sensors, and finally selected a 
common threshold equal to 300. For the latter threshold, all induced powers attained values 
above 0.97 at time 200 and all false alarms remained below the value 0.005 at the same time.   
We simulated the overall system, for 30 and 50 sensors and for fusion center threshold 
values 10, 20, 100 and 300.  To exemplify our results, we plot some power and false alarm 
curves in Figures 2 and 3 below.  Specifically, in Figure 2, we plot the power and false alarm 
curves induced by the algorithm that monitors a change from Poisson rate 0.1 to Poisson 
rate 0.25 at the fusion center, when the number of sensors is 30 and the algorithmic 
threshold values are 10. 20, 100 and 300.  In Figure 3, we plot the same curves when the 
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number of sensors is 50.  From studying the two figures, we observe that, as the number of 
sensors increases from 30 to 50, low false alarm and high power are simultaneously attained 
for less than 100 data, when the threshold value at the fusion center is 10.  
 

 

Fig. 2. Power & False Alarm Curves for 0.1 → 0.25 Monitoring Algorithm at the Fusion 
Center, for 30 Sensors. Legend:  2 | 1 : False Alarm 2 | 2 : Power 

 

Fig. 3. Power & False Alarm Curves for 0.1 → 0.25 Monitoring Algorithm at the Fusion 
Center, for 50 Sensors.  Legend : 2 | 1 : False Alarm 2 | 2 : Power 
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In Tables 1 and 2 below, we include our computed  
k
T
l
 values for 30 and 50 sensors 

respectively, for the Poisson model explained above, and for fusion center threshold values 

10, 20, 100 and 300.  From the values in the tables, we note that the system approaches its 

expected asymptotic performance, as the number of sensors increases from 30 to 50, and for 

fusion threshold value 10. 

 

 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          

Threshold 300 2 0 0 0 0 0.0008 0.0077  0 

Sensors = 30 3 0 0.0037 0.0073 0.0527 0.1207 0.2117  0.0073 

 4 514.26 3.8112 0.2629 0.4904 0.4103 0.2794  0.4904 

 5 1290.03 36.1046 1.1842 0.8225 0.4612 0.2874  0.4612 

 6 27.0723 13.2926 2.4171 1.311 0.5245 0.2861  0.2861 

          

 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          

Threshold  100 2 0 0.0003 0.0044 0.026 0.0541 0.1286  0.0003 

Sensors = 30 3 0 0.0779 0.2877 0.4659 0.3382 0.2296  0.2877 

 4 398.395 2.5276 0.7833 0.7369 0.3909 0.2342  0.7369 

 5 1049.44 23.7907 2.892 1.1396 0.4044 0.2441  0.4044 

 6 247.986 33.4387 4.1832 1.207 0.4336 0.2378  0.2378 

          

 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          

Threshold  20 2 0.741587 0.2708 0.662 0.5768 0.305 0.2103  0.2708 

Sensors = 30 3 5.93519 7.8534 2.0764 0.927 0.3568 0.2206  2.0764 

 4 344.015 7.3547 3.1896 0.9682 0.3356 0.2115  0.9682 

 5 865.765 7.1572 3.2217 0.9998 0.3564 0.2233  0.3564 

 6 380.923 11.6246 3.2076 0.9974 0.3569 0.2035  0.2035 

          

 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          

Threshold  10 2 9.00174 1.422 1.7969 0.8834 0.3555 0.2188  1.422 

Sensors = 30 3 23.6324 7.3706 2.453 0.9198 0.3502 0.2176  2.453 

 4 364.822 7.7948 3.3048 1.002 0.357 0.2125  1.002 

 5 809.686 4.6126 2.8298 1.0032 0.3709 0.2204  0.3709 

 6 379.928 4.4201 2.8206 0.9947 0.3622 0.2112  0.2112 
 

Table 1. 
k 

T l Values at the Fusion Center for 30 Sensors 

Legend:  
1: Rate 0.1        2: Rate 0.25 
3: Rate 0.35      4: Rate 0.5 
5: Rate 0.65      6: Rate 0.8 
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 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          

Threshold 300 2 0 0 0 0 0 0.0013  0 

Sensors 50 3 0 0 0.0037 0.017 0.0642 0.1898  0.0037 

 4 493.968 3.2876 0.1555 0.2853 0.2617 0.2593  0.2853 

 5 1783.71 43.4664 1.1773 0.6799 0.4089 0.282  0.4089 

 6 11.1052 10.7968 2.069 1.1099 0.4433 0.2776  0.2776 

          

 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          

Threshold  100 2 0 0 0.0001 0.0072 0.0539 0.1522  0 

Sensors 50 3 0.972617 0.0393 0.1549 0.234 0.1958 0.207  0.1549 

 4 545.46 1.6381 0.8906 0.6919 0.3144 0.2224  0.6919 

 5 1247.48 20.5153 2.3331 0.7516 0.321 0.2155  0.321 

 6 220.568 39.1443 4.8733 1.0118 0.3317 0.2109  0.2109 

          

 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          

Threshold  20 2 1.19472 0.1307 0.3722 0.3605 0.2338 0.2041  0.1307 

Sensors 50 3 5.97928 5.2579 1.3822 0.5765 0.2408 0.1975  1.3822 

 4 382.187 7.9517 2.6174 0.6448 0.2468 0.2036  0.6448 

 5 1012.35 5.0408 2.5545 0.7314 0.2501 0.21  0.2501 

 6 396.057 8.7207 2.6216 0.7072 0.2418 0.1933  0.1933 

          

 k \ l 1 2 3 4 5 6  Diagonal 

T- Files          

Threshold  10 2 4.34465 0.8419 1.1619 0.545 0.2322 0.2034  0.8419 

Sensors 50 3 10.8702 4.293 1.7951 0.6618 0.2538 0.2085  1.7951 

 4 362.561 6.9178 2.5261 0.6414 0.2377 0.1919  0.6414 

 5 889.308 4.4505 2.1631 0.6447 0.2438 0.1974  0.2438 

 6 469.714 3.7693 2.215 0.6622 0.2446 0.2073  0.2073 

Table 2. 
k 

T l Values at the Fusion Center for 50 Sensors 

Legend: 
1: Rate 0.1       2: Rate 0.25 
3: Rate 0.35     4: Rate 0.5 
5: Rate 0.65     6: Rate 0.8 

6. Conclusions 

We studied a fusion center structure, for the detection of change in the underlying data generating 
process. We established the pertinent algorithms and stated conditions for the asymptotic 
optimality of the overall system. In general terms, we showed that the relevant algorithms 
converge in logarithmic time. We also established metrics for the study of non-asymptotic 
performance and presented numerical results for a specific Poisson data traffic scenario. 
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APPENDIX:  

Proof of Theorem 1 
When the conditions in (9) hold, the two last terms in the updating step in (7) reduce to a 

constant, for all
0

n n> . The sensor algorithmic system becomes then identical to that of a 

centralized system, when no implicit feedback from the fusion center exists. The latter 
sensor systems are mutually independent, since the local data are. The performance of these 
independent systems are then as in (Bansal et al 1989) and (Burrell et al 1998). The 
expression in (10) is derived from (8) in a straight forward fashion, via the mutual 
independence of the sensors and the sufficient statistics at the fusion center.       
Proof of Theorem 2 

When the sequences in the Theorem converge, the Markov Chain { }__

nU  becomes 

asymptotically stationary, and the algorithmic system is optimal in the sense of (Bansal et al 
1989); expression (15) is a direct consequence of this optimality. A direct inspection of 
expression (13) leads to the conclusion expressed by (16) in a straight forward fashion. When 
the number of sensors is asymptotically large, the updating steps of the algorithms at the 
fusion converge to the expected values in (13) and (14). Via the assumptions in the Theorem, 
the latter values converge asymptotically to constants. The latter fact leads directly to the 
satisfaction of the assumptions in Theorem 1. 
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The Computation of Useful Probabilities  
In this part of the Appendix, we express the useful quantities needed in the simulation 
scenario of Section 5.2. 

Consider the algorithm which monitors a change from μ0 to μk , where the process   μ0 and 

μk homogeneous Poisson, with respective rates r0 to rk. Then, be dividing both threshold   
and the updating step of the monitoring algorithm by the scaling factor | ln (rk / r0) |, we 
obtain the following simplified form of the updating step in (7), Section 4, for 

1 ; 0
sgn

1 ; 0

x
x

x

Δ >⎧
= ⎨− <⎩

    :    k

0

r
(m s-t) sgn  ln 

r

⎛ ⎞
⋅ ⎜ ⎟

⎝ ⎠
 

where 
m  : number of arrivals within a time unit. 

t, s :    0

0

t

ln( / ) s

k

k

r r

r r

−
≈  < 1 ,   t, s, natural numbers. 

Let us denote by v the (without loss in generality) integer threshold value of the 
0 k

μ μ→  

monitoring algorithm. If V0 is an integer common threshold for the algorithmic system, then 

v = 0

k 0

V

(ln (r / r ))

⎢ ⎥
⎢ ⎥
⎣ ⎦

. Let us define : 

j

0k
P (y,n) : Given that all data are generated by the Poisson process with rate rj, the probability 

that at time n the 
0 k

μ μ→  monitoring algorithm has the  value y and it has not 

crossed its threshold before or at n-1. 

We can then express the time/value evolution of the probabilities { j

0k
P (y,n)  } as follows: 

j

0k
P (0,0) 1=  

j

 min(t,v-1)
-rj j

0 k 0 k
x 0

n  1 ;  P  ( 0,n)  P (x ,  n 1) e  
=

≥ = −∑  

 j

y  t
m

s
-rj j

0 k 0 k
m  0

( )n  1  and  v  1 t
;     ;  P  ( y , n )   P  ( y-ms t , n-1) e  

1  y  v-1-t m !

j
r

+⎢ ⎥
⎢ ⎥⎣ ⎦

=

≥ > +
= +

≤ ≤ ∑   (A.1) 

j

y  t
m

s
-rj j

0 k 0 k
y t-v 1

m  
s

( )n  1  
;     ;  P  ( y , n )   P  ( y-ms t , n-1) e  

v-t  y  v-1 m !

j
r

+⎢ ⎥
⎢ ⎥⎣ ⎦

+ +⎡ ⎤= ⎢ ⎥⎢ ⎥

≥
= +

≤ ≤ ∑  

Then, the quantities  
0

P ( )j

k
n  , 

0
( )j

k
nβ  and 

0
( )
k
nα   are computed as follows :  

 j

m
v-1

-r jj j

0k 0 k
v-y ty  0

0 m  1
s

(r )
P (n)  P (y,n-1)  1 - e  

m!+= ⎡ ⎤≤ ≤ −⎢ ⎥⎢ ⎥

⎧ ⎫
⎪ ⎪= ⎨ ⎬
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∑ ∑   (A.2) 

 
0

( )
k
nα =  0

0
 n

P ( )
k

l

l
≤
∑       and     

0
( )j

k
nβ = 

0
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Data fusion is a research area that is growing rapidly due to the fact that it provides means for combining

pieces of information coming from different sources/sensors, resulting in ameliorated overall system

performance (improved decision making, increased detection capabilities, diminished number of false alarms,

improved reliability in various situations at hand) with respect to separate sensors/sources. Different data

fusion methods have been developed in order to optimize the overall system output in a variety of applications

for which data fusion might be useful: security (humanitarian, military), medical diagnosis, environmental

monitoring, remote sensing, robotics, etc.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Papantoni-Kazakos, Titsa and Burrell, Anthony (2009). Monitoring Changes in Operational Scenarios via Data

Fusion in Sensor Networks, Sensor and Data Fusion, Nada Milisavljevic (Ed.), ISBN: 978-3-902613-52-3,

InTech, Available from:

http://www.intechopen.com/books/sensor_and_data_fusion/monitoring_changes_in_operational_scenarios_via

_data_fusion_in_sensor_networks



© 2009 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


