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1. Introduction  

Process sensors form an essential component of modern industrial production processes. 

They usually have to be operated under stringent environmental, safety, and cost 

constraints. Some of the key requirements on process instrumentation are: operation under 

harsh and varying environmental conditions, high reliability, fault tolerance, and low cost. 

The failure of process sensors may cause high losses due to plant breakdowns or out-of-

specification products. Therefore it is important to know as much as possible about the 

momentary states of a production process. In addition, the estimates need to have low 

uncertainty and high reliability.  

Sensor and data fusion can be key techniques to economically reach these goals and achieve 

higher performance than with isolated single point sensors alone. These methods enable the 

quantification of otherwise inaccessible quantities that cannot be deduced from a single sensor 

or management principle. Examples are the concentration measurement of ternary solutions or 

the tomographic estimation of spatially distributed material parameters from arrays of single 

point sensors. Industrial processes are usually operated within a defined environment, 

although there may be very harsh conditions like temperature variations, aggressive fluids, 

and high humidity. There are certain limits of operation. The nominal parameters, like desired 

product specifications as well as normal or acceptable fluctuations are known in advance 

while unknown encounters like in classical sensor fusion for target tracking, autonomous 

guidance, and battlefield surveillance are not within the scope of operation.   

This fact potentially establishes a precise and specific model of the industrial process at 

hand. The knowledge then contained in the process model can be fruitfully exploited in 

model-based data fusion. Generally, model-based approaches reach beyond straightforward 

methods like physical redundancy with majority votings or heuristic filtering operations.  

The achievable measurement precision as well as decision making reliability is usually 

higher in model-based approaches due to the additional regularization of the state or 

hypotheses space that is achieved with an appropriate model. However, at the same time 

special care needs to be taken to choose a model that allows for sufficient and representative 

variation. This is the only way the inherent variability of a process can be adequately 

represented.  O
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The well-known JDL (Joint Directors of Laboratories) data fusion process model is a popular 
and useful conceptual framework for the classification and comparison of data fusion 
approaches (Hall & Llinas, 1997), (Varshney, 1997), (Macii et al., 2008). It was originally 
developed with military applications like surveillance and target tracking in mind. It has 
been pointed out that the JDL model does not fully address data fusion problems from non- 
military areas, like image fusion. However, a classification of such fusion algorithms may be 
useful for a common understanding. After a preprocessing stage the JDL model 
distinguishes four levels of processing:  

• Object refinement (level 1) 

• Situation refinement (level 2) 

• Threat refinement (level 3) 

• Process refinement (level 4) 
Due to the frequent availability of a well-defined process description, the model-based data 
fusion approaches in industrial process instrumentation are classified as level 1 processes in 
most cases. In this object refinement stage parametric, locational, and identity information 
are combined. Major functions are the transformation and alignment of data to a suitable 
reference frame, and the estimation and prediction of states. In terms of process 
instrumentation, the desired output of the object refinement process are quantitative and 
unambiguous figures. Due to the precise knowledge of the desired target quantities these 
figures can be straightforwardly used for an objective assessment of the industrial process. 
Therefore the higher levels of the JDL model do not play an as important role in industrial 
as in military applications. 
According to another popular characterization of data fusion approaches the fusion can take 
place at different stages of the signal processing chain. A common categorization uses three 
levels (Varshney, 1997), (Hall et al., 1999):  

• Data-level fusion 

• Feature-level fusion 

• Decision-level fusion 
In data-level fusion the raw data from each of the sensors are combined. In this context raw 
data are single measurements like temperature or pressure readings. All further processing 
is based on the totality of data. This approach is able to yield the most accurate results, but it 
requires the sensors to be commensurate, i.e. that the different data can be processed in a 
common framework. If the data are in different regimes they have to be registered first, e.g. 
through coordinate transformations. Data-level fusion requires centralized data processing, 
since the totality of raw data has to be simultaneously available. A high communication 
bandwidth is necessary since all raw data have to be transferred. In feature-level fusion the 
raw data of each sensor are processed locally. A feature vector is generated from the 
corresponding observations. Features can, e.g., be volume fractions of materials, flow rates, 
or flow profiles, which are derived from multiple single point measurements. The different 
vectors are then fused to give a single feature vector. The necessary communication 
bandwidth is reduced compared to data-level fusion. However, the generation of the single 
feature vectors results in some data loss in general. Finally, in decision-level fusion, each 
sensor derives higher-level decisions from its own data and features. A decision could be 
whether there is a process malfunction or not. The individual decisions are finally fused by 
some sort of voting to give the final inference. The high required bandwidth in data-level 
fusion may be a severe disadvantage in large scale distributed target tracking applications, 
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but is not regarded as a major issue in process instrumentation. Sensors that share a 
common or similar state space or reference frame are usually installed in close vicinity. In 
distributed production environments the derived feature and decision information is passed 
on to the control room. 
This chapter is intended to give an overview of applications of model-based data fusion in 
the context of industrial instrumentation and process monitoring. The diverse examples 
addressed are grouped according to a classification in: uniquely determined, 
overdetermined, underdetermined, or sequential data fusion (Tanner, 2003). Data fusion 
may already take place in instruments that are received as single sensor installations from 
an outside perspective (Ruhm, 2007). Examples are sensors that rely on additional measured 
quantities to compensate for unwanted cross-sensitivities. Internal temperature 
compensation of the primary measurand, e.g., is indispensable in many instruments. A next 
step is data fusion of multiple independent and non-redundant sensors to compensate for 
cross-sensitivities among the primary measurands that can be explicitly modelled. A typical 
application is the concentration measurement in ternary or multinary solutions. A 
characteristic feature of this class of sensor fusion problems is that the number of unknown 
parameters can be uniquely determined from the number of input quantities of the fusion 
process. 
A concept more easily perceived as data fusion is the combination of identical parallel 

sensors to provide redundant information. This leads to a higher degree of security and 

reduces measurement uncertainty. The use of such redundant sensor arrays has a long 

tradition in industrial process instrumentation as sensor breakdowns and false decisions can 

have dramatic implications. Even single sensor failures may be able to cause malfunctions of 

large-scale facilities like power plants if security issues are not properly addressed in the 

system architecture. A slightly different approach than redundancy maximization is the use 

of identical sensors in a specific spatial configuration. By using appropriate models it is then 

possible to deduce quantities that cannot be measured with a single point sensor of the same 

measurement principle. Further benefits are increased accuracy of the estimates and 

powerful error compensation without additional sensors. This approach is convincing if 

very simple and cost-efficient elements can be used and will be illustrated by means of 

capacitive and magnetic sensors for angular position measurement. In these cases the 

number of measurement values exceeds the number of unknown parameters to be 

determined. 

The third class of data fusion applications covers the converse case where the number of 
independent measurements from a homogeneous sensor array is actually smaller than the 
number of unknown parameters. This occurs when spatially varying material parameters 
are to be determined using industrial process tomography. The number of measurements 
obtained at the boundary of a problem domain is limited compared to the appropriate 
discretization of the domain. This leads to ill-posed inverse problems. The incorporation of 
additional prior knowledge through the process model is essential in order to obtain a 
meaningful solution of the problem. Here the concept of model-based measurement peaks 
in its relevance as a framework for multi-sensor data fusion. Solution strategies for 
tomographic problems are introduced in the corresponding section and the importance of 
the process model is discussed. Besides single-modality tomographic data fusion, multi-
modality fusion is also addressed. For this case a sequential fusion process is proposed.  
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In subsequent sections, grouped according to uniqueness of the data fusion solution, several 

model formulations will be introduced. These model formulations range from static to 

dynamic, ideal to those including nuisance effects and noise, and explicit to implicit. Also 

different fusion algorithms including response surfaces, stochastic filters, and sequential 

fusion will be addressed within the respective applications. 

2. Non-redundant measurement processes 

2.1 Error compensation 

Measurement processes and the superordinate fusion algorithms can be modelled in various 
ways. Depending on the actual situation and the aim of the measurement they may be 
formulated as static or dynamic systems. For certain applications a static model may be 
sufficient although virtually every sensor shows some kind of dynamic behaviour. For the 

following considerations we assume a vector ( )...21 zzzT =  of two or more 

measurements as input to a nonlinear static fusion equation f . 

 )(zfx =  (1) 

The output of the fusion process is the scalar variable x . This kind of data fusion can 

already be found in most of modern process instruments. In the simplest case a single input 

variable is directly related to the output of the fusion relation and defines the primary 

measurement equation. An illustrative example that can be found throughout the process 

industries is density measurement. A classical instrument for that purpose is the vibrating 

tube densimeter (Ihmels et al., 2000) (Laznickova & Huemer, 1998). The operating principle 

based on a spring-mass system is sketched in figure 1 using a U-shaped tube.  The process 

fluid under test flows through a metal or glass tube that is decoupled from the surrounding 

through a base mass. In order to measure the fluid density the tube is excited by a force 

acting on the bend. The tube then vibrates at its resonant frequency, which is sensed by the 

pick-up mechanism.  
 

 

Fig. 1. Principle of the vibrating tube densimeter. 

The resonant frequency depends on the mass Tm  of the tube and the mass of the fluid Fm  

inside the tube. With the spring constant  c  the relation for the resonant frequency Rf  and 

the period of oscillation Rτ  can be obtained.  

Vibrating tube 

Base mass

Pick-up

Excitation
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As the volume of the tube is constant and known the measurement is proportional to the 
fluid density. Equation (2) can be reformulated to give the density ρ as a function of the 
period of oscillation, where A and B are constants. 

 BA += 2τρ  (3) 

In practice equation (3) is not sufficient to obtain accurate results over a wide operating 
range as there are several other factors influencing the period of oscillation. Temperature 
changes lead to changes in the tube volume and the spring constant. The same holds for 
changes of the fluid pressure p . To compensate for these effects a polynomial expansion 

can be applied to the constants in the measurement equation. 

 ∑∑ +=
j

j
j

j

j
j pbTaA  (4) 

 ∑∑ +=
j

j
j

j

j
j pdTcB  (5) 

For increased accuracy also mixed terms can be included. Combining equations (3) – (5) we 
obtain the fusion equation to compensate for the nuisance effects of temperature and 
pressure on the density reading. 

 ),,( pTf τρ =  (6) 

As the accuracy requirements are increased even further influences need to be compensated 
for. Fluid viscosity, as an example, is known to have a small effect on the period of 
oscillation (Krasser & Senn, 2007).  

2.2 Multidimensional parameter estimation 

In the error compensation case several auxiliary measurands act on individual scalar output 

quantities in a unidirectional way. A more complex fusion process can be introduced if a 

vector of output quantities ( )...21 xxxT =  is introduced in equation (1). Then the input 

parameters can interact with all of the outputs simultaneously. This allows for the use of 

more flexible and powerful fusion methods. Figure 2 shows flow charts of the scalar and 

multidimensional data fusion approaches. The data fusion process 12f  can range from a 

matrix in the linear case to arbitrary response surface methods, e.g. based on polynomial 

expansions.  
The concentration measurement of ternary and multinary solutions is a typical problem in 
this class of fusion procedures. The density measurement introduced in section 2.1 is often 
used for concentration measurement of binary solutions. However, if there are more than 
two components only the sum of contributions of the individual components can be 
measured. The measurement problem may be resolved by fusing suitable methods for 
binary concentration measurement. As a representative application the measurement of 
extract and alcohol concentration in beer production is presented (Vasarhelyi, 1977). Beer is 
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basically a ternary mixture of water, extract and alcohol. So density measurement alone is 
not sufficient. The same is true for sound velocity and refractive index measurements, which 
are also classical methods for density and concentration determination (Hauptmann et al., 
2002). If the response curves of two measured quantities to extract and alcohol variations are 
linearly independent in a certain range the problem can be solved with data fusion. Then 
both quantities can be uniquely determined from the primary measurements. The procedure 
is sketched in figure 3. 
 

 

Fig. 2. Data fusion by means of unidirectional error compensation (left) and multi-
dimensional parameter transformation (right). 
 

 

Fig. 3. Determination of extract and alcohol concentration in beer from density and sound 
velocity measurements. 

The example qualitatively shows the extract and alcohol determination from density and 
sound velocity measurements. It can be seen that an extract change increases both sound 
velocity and density. On the contrary, a change of the alcohol concentration increases sound 
velocity and decreases density. This orthogonality allows for the unique determination of the 
target quantities. The inversion procedure corresponds to the transformation of a point in the 
Euclidean density/sound velocity space to a different, in general curvilinear, coordinate system. 

3. Redundant measurement processes 

3.1 Sensor fault detection and isolation 

One of the most prominent applications of data fusion in industrial process instrumentation 

is sensor fault detection and isolation (FDI). It is of fundamental importance in all safety-
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critical processes where the reliability of sensor data needs to be assured. Typical examples 

are nuclear power plants and other assets processing dangerous materials or handling very 

high power. In such cases false sensor readings may cause expensive and harmful damage. 

The central step in FDI is the generation of residuals. Residuals are functions of sensor 

outputs and must rise in case of a sensor fault (Betta & Pietrosanto, 2000) (Dorr et al., 1997) 

(Simani, 2000). Faults can then be detected by comparing the residuals with thresholds that 

are suitably defined with respect to the normal sensor operation. Finally the faulty sensors 

are isolated by analyzing the different residuals.  

Physical and analytical redundancies are the two possible types of redundancy necessary for 

the calculation of residuals. Physical redundancy means the use of several sensors 

measuring the same physical quantity in parallel. Analytical redundancy is concerned with 

the application of analytical models in order to produce estimates of sensor signals from 

other sources of data. It requires the precise knowledge of the underlying process. Typically 

applied in this category are stochastic filters and observers like the Kalman filter. The 

application study in section 3.2 treats a sensor system using an extended Kalman filter with 

integrated FDI functionality. 

Physical redundancy is more general as it does not rely on such information. However, it is 

more expensive to implement as multiple sensors for every quantity to be measured need to 

be employed. Residuals for a redundant set of sensors are computed by comparing each 

sensor signal with an estimate of the true value of the measured physical quantity ς . A 

straightforward linear measurement and fault model can be used to relate the true value to 

the measurement jz  of sensor j . 

 jjj vz δς ++=  (7) 

Each of the n sensor readings is corrupted with a random noise component v . The 

component jδ is considered the contribution of an abnormal degradation or fault of sensor 

j . The individual sensor fault  contributions are assumed independent. The estimate of the 

true value ς is obtained from a weighted sum of the sensor readings. Constant weights are 

used if the random contributions v  are uncorrelated white Gaussian noise with the same 

variance. There are many different possibilities to derive and analyze the residual vector r  

for the redundant instruments. The proper choice depends on the assumed fault 

mechanisms and effects. A good choice for the introduced linear fault model is the 

difference of the individual sensor values and the calculated mean of the respective 

remaining measurements.  

 ∑
≠=

−
−=

n

jkk

kjj z
n

zr

,1
1

1
 (8) 

In the fault-free case the expectation of the residuals is zero and the standard deviation 

depends on the individual sensor standard deviations and the number of sensors. 

 )(
1

)( jj z
n

n
r σσ

−
=  (9) 
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In the case of a single instrument error the residual of this sensor has a mean equal to the 

fault amplitude, while the other residuals show a mean that is lower by a factor )1/(1 −n . 

With this information suitable thresholds for the detection of occurring faults can be easily 
established.  
Other possibilities for the detection of faults include the calculation of statistical, spectral, 
and temporal characteristics of the residuals and artificial intelligence methods. The use of 
fuzzy logic allows for a flexible integration of different aspects of failure modes with 
empirical knowledge, for which analytical models are difficult to define (Park & Lee, 1993). 
Input quantities of the system like differences of sensor values and other characteristics are 
fuzzified using linguistic variables.  An example is shown in figure 4. 
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Fig. 4. Membership functions used for fuzzy-based fault detection and isolation. 

The differences of sensor readings are normalized according to the standard uncertainties of 
the sensors. In the shown example three membership functions ‘small’, ‘medium’, and 
‘large’, based on Gaussian and spline functions, are employed for the fuzzification (Steiner 
& Schweighofer, 2006).  Further input variables can be elaborated from other observations 
related to error and fault occurrence. The actual fault model is contained in the rule base 
that is used for fuzzy inference. Rules are formulated as if-then relations. 

IF residual 1=small AND residual 2=small THEN 
operation=normal

(10)

The de-fuzzification stage of the Mamdani-type fuzzy system finally yields quantitative 
measures of the output fault parameters. Fuzzy systems have the advantage that they can be 
easily extended with more detailed application-specific process knowledge. 

3.2 Integrated sensor arrays 

With suitably designed sensor arrays and data fusion algorithms the tasks of error 
compensation and fault detection and isolation can be readily combined within a single 
instrument. Another potential feature is the highly accurate estimation of quantities of 
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interest through the combination of multiple low accuracy sensing elements. The achievable 
performance is illustrated in the following by means of an integrated smart capacitive 
sensor array for the determination of angular position and speed (Watzenig et al., 2003) 
(Watzenig & Steiner, 2004). The approach is based on the use of the extended Kalman filter 
(EKF), which is frequently used for data fusion in applications like target tracking. It offers a 
powerful framework also for industrial applications of data fusion. In contrast to the 
methods introduced in this chapter it is based on dynamical state space models and allows 
to monitor and exploit dynamical effects of the involved sensors and processes. 
The capacitive angular position sensor consists of a rotor mounted coaxially between two 
stator plates. One stator plate corresponds to the transmitter. It is divided into 16 segments, 
the other stator contains the receiving electrode. The 16 segments of the transmitting 
electrode are electrically isolated from each other. The two stator plates are both bounded by 
an inner and an outer guarding ring connected to ground potential. The electrically 
conductive rotor is also grounded. It affects the coupling capacitances between the 
transmitter segments and the receiving electrode, dependent on its angular position. The 
used sinusoidal rotor shape yields a sinusoidal capacitance distribution. Segment driver and 
receiver electronics ensure that the received voltage signal amplitude is linearly dependent 
on the coupling capacitances. Figure 5 illustrates the axial view of a capacitive angular 
position sensor with approximately sinusoidal capacitance variation. In particular, a four-
blade rotor in front of the transmitting electrode with 16 segments is shown. The receiving 
electrode is similar to the transmitting electrode, but without segmentation. Thus, the sensor 
array consists of 16 simple low resolution measurement channels which acquire data at 
different spatial orientations. The sensible combination of the channel data allows for the 
accurate estimation of angular position. The same principle can be applied to the 
measurement of other quantities like inclination angle, torque, liquid level, and flow. It can 
also be used with other physical sensing effects. 

 

Fig. 5. Axial view of a capacitive angular position sensor. A four-blade rotor with a 
sinusoidal rotor shape is placed in front of the transmitting electrode, which is divided into 
16 segments. The receiving electrode above the rotor is not shown. 
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The data fusion algorithm is based on the EKF. Therefore a discrete-time state space model 

of the sensor array is introduced. It is derived from a continuous second order system using 

a sampling interval T . The state vector kx  at time step k  is composed of the angular 

position kϕ  and the angular speed kω . 

 11
110

1
−− ⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
= kkk w

T
x

T
x  (11) 

The measurement equation (12) relates the state vector to the vector kz  containing the 16 

segment readings through the nonlinear measurement function h . Due to the special shape 

of the rotor the segment voltages are basically phase-shifted sinusoids as a function of the 

angular position. Both state and measurement equations are corrupted by process and 

measurement noise sequences w  and v , respectively. They are assumed to be uncorrelated 

white Gaussian sequences with covariance matrices Q  and R . 

 kkk vxhz += )(  (12) 

The EKF recursively estimates the process states based on the current values of the states 

and the state error covariance matrix kP . The algorithm can be grouped in a prediction step 

and a correction step. First the states and covariance are projected to the next time step 
based on the process model. The projected values are indicated by the superscript ‘-’. The 
correction uses the current measurement to update the projected states. The central equation 

is the calculation of the Kalman gain matrix  kK . It is based on a linearization of the 

measurement equation using the Jacobian kH  of h . 

 ( ) 1−−− += RHPHHPK T
kkk

T
kkk  (13)  

The gain matrix is then used to update the state estimate using the current measurement. 

 ( )[ ]−− −+= kkkkk xhzKxx ˆˆˆ  (14) 

The term in brackets, which is the difference between actual measurement and estimated 
measurement, is called innovation sequence. It is a sensitive indicator of differences between 
a fault-free model and the current system. If the measurements and the model are in 
agreement, it has a mean of zero. Thereby Kalman filtering can also conveniently be used for 
fault detection and isolation using analytical redundancy. For the present application the 
innovation sequence sk can be used to compensate for occurring segment offsets. The 

measurement equation (12) can be extended by offset voltages ξ for the individual 

segments.  

 kkkk vxhz ξ++= )(  (15) 

The offset values can be estimated without increasing the size of the Kalman filter equation 
systems by directly integrating the innovation sequence. 

 kkk s⋅+=+ τξξ 1  (16) 
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The choice of the integration time constant  determines the trade off between smoothness of 
the estimates and bandwidth of the offset compensation. The relation of the discrete-time 
EKF to the capacitive sensor system is illustrated in figure 6. The 16 measured segment 
voltages are used as inputs to the EKF. Based on the fusion of all signals the EKF is able to 
calculate accurate estimates of angular position and speed. 
 

 

Fig. 6. Block diagram of the capacitive sensor with the extended Kalman Filtering with 
integrated offset estimation and compensation. 

Figure 7 illustrates the performance of the EKF and the offset compensation approach. The 
first subfigure shows three of the measured sinusoidal voltages of adjacent segments. The 
second figure depicts the estimated segment offsets. There is a slight global offset at time 
step 0, which is compensated after about 10 samples. At time step 170 the voltage of 
segment 1, plotted bold, is stressed by an offset of 30% of the signal amplitude. The 
monitored innovation sequence is illustrated in subfigure 3. The sudden change in the 
amplitude of the sequence corresponding to segment 1 at time instant 170 (dashed vertical 
line) is obvious. The last chart shows the progression of the absolute angular position error.  
A further approach to perform error compensation for the capacitive sensor array that is 
capable of handling additional errors like line faults, short circuits, driver failures, and 
electromagnetic disturbances, is to use several parallel Kalman filters and integrate the 
estimates in an additional data fusion step. Decentralized Kalman filtering also drastically 
reduces the computational requirements for the signal processing of the sensor array. In the 
present case the 16 measurement signals can be pairwise used as inputs to eight parallel 
EKFs. The inputs are wired in such a way that a single EKF processes signals that have a 
phase shift of 90°. The block diagram of the whole sensor system including the final fusion 
stage is sketched in figure 8. 
All filters operate on the same process model, but use different measurement equations. 
Assuming equivalent error covariances for all filters, the decentralized fusion can be done 
by averaging the eight Kalman Filter state estimates. This assumption holds as long as no 
segment fault occurs.  

 ∑
=

=
8

1

)(ˆ
8

1
ˆ

j

j
kk ϕϕ  (17) 

By introducing fault detection with subsequent deactivation of certain filters with deficient 
state estimates the decentralized fusion can be applied for the general case. The fusion 
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Fig. 7. Readings of the first three segments, segment offsets, monitored innovation sequence 
and curve of remaining angular position error. The signal of segment 1 is stressed by a DC 
offset at time step 170. 

 

Fig. 8. Block diagram of the capacitive sensor with decentralized Kalman Filtering and 
subsequent data fusion with fault detection. 
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equation (11) does not consider the correlation of the single Kalman filter estimates due to 
the common process noise states. However, a comparison with the optimal fusion filter 
(Hashemipour et al., 1998) applied to the same problem shows only minor differences. The 
computational cost of the proposed averaging is very low compared to the optimal filter and 
numerical problems inherent in optimal fusion are avoided. 
The availability of eight state estimates in parallel can be exploited for fault detection. The 
correlation between the different outputs and the final averaged estimate provides a 
confidence figure (an estimate for the variance) for each filter output. 

 ( )
2

1

)()( ˆˆ
1 ∑

=

−=
N

j

k
j
k

j
k N
V ϕϕ  (18) 

The last N measurements are used for the calculation of the mean square difference. In order 
to exclude a faulty filter some threshold level must be defined. This threshold level should 
be adaptive in a sense that only a segment that is significantly worse than the others is 

eliminated. A possible choice is the mean of the confidence figures with a tuning parameter α. 

 ∑
=

=
8

1

)(max

8
j

j
kk VV

α
 (19) 

The performance of the decentralized filtering approach to data fusion with the capacitive 
sensor array is demonstrated with two failure modes; segment drift, and segment 
disturbance. In capacitive sensing a line break does not necessarily lead to a full breakdown 
of the segment signal, because the capacitive coupling over a break is still considerable. 
Since this coupling may depend on external influences such as temperature or vibrations, a 
noisy segment signal as shown in figure 9 may occur.  The noise contamination of one signal 
instantaneously affects the position estimate of the corresponding filter. The confidence 
figure of this filter quickly rises above the threshold, so that the corrupted EKF is excluded 
from the calculation of the final estimate. It can be included again when the variance 
estimate is below the threshold again. 
Another failure mode is demonstrated in figure 10. The offset for one segment continuously 
increases. This occurs in practical implementations when, e.g., water drops or dirt 
accumulate on a segment, because the high conductivity or permittivity of such a 
contamination lead to an amplification of the signal. Again, this error is quickly detected, 
long before even a very restrictive range checking algorithm would have the chance to 
detect this problem. Consequently the angular position estimate remains unaffected from 
the disturbance. 

4. Ill-posed measurement processes 

4.1 Industrial process tomography 

In some measurement problems the available data is not sufficient to fully characterize the 
process at hand. This is often the case in distributed scenarios where spatially varying 
quantities that cannot be measured directly need to be resolved. For example, tomographic 
measurement techniques are able to provide two-dimensional or three-dimensional 
information about internal states of industrial processes. The knowledge of the internal 
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Fig. 9. Segment readings, output of selected filters, fused result, and adaptive threshold level 
in the case of a segment disturbance caused by a crack in the line. 
 

 

Fig. 10. Segment readings, output of selected filters, fused result and adaptive threshold 
level in presence of a segment offset drift. 
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behavior of such processes can be used for process design, prediction and process control in 
order to increase product quality and process efficiency. Depending on the application, 
different tomographic sensing modalities have been developed for industrial purposes, e.g. 
electrical capacitance tomography (ECT), electrical resistance tomography (ERT), ultrasonic 
reflection tomography (URT), positron emission tomography (PET) and X-Ray tomography 
(Scott & McCann, 2005) (Plaskowski et al., 1995). These techniques have in common that the 
spatially distributed parameters are reconstructed from a limited number of measurements. 
The sensors are usually distributed around the boundary of the problem domain. The fusion 
of this boundary data in order to obtain estimates of the spatial distributions of the 
quantities of interest is an ill-posed inverse problems. This implies that there is no unique 
solution to the problem. Ill-posed problems are very sensitive to noise and special measures 
need to be taken to obtain a stable meaningful solution (Kak & Slaney, 2001). This includes 
the choice of a suitable model of the measurement process and the incorporation of available 
prior knowledge through regularization. A multitude of reconstruction algorithms has been 
proposed, ranging from simple linear backprojection methods to model-based approaches 
based on nonlinear optimization methods and stochastic filtering methods like extended 
Kalman filters and particle filters. 
Electrical capacitance tomography presents as a representative example. The objective in 

industrial ECT is to estimate the dielectric properties of heterogeneous mixtures or distinct 

transitions between occurring phases based on capacitance measurements between certain 

electrodes at the boundary of a closed container like a pipeline. Figure 11 illustrates the 

schematic of an ECT sensor based on the measurement of displacement currents (Wegleiter 

et al., 2005). The cross-section of a non-conducting pipe is used as measurement plane. 16 

electrodes are evenly spaced around the circumference of the pipe. The setup is protected 

from electromagnetic interference by a grounded outer shield.  

Every single electrode can be alternately used as a transmitter and a receiver. The front-end 
electronics of an electrode consists of a transmitting amplifier and an input stage comprising 
a current-to-voltage converter, a bandpass filter, and a high frequency peak rectifier. A 
single measurement frame consists of 16 projections, according to the 16 available 
transmitting electrodes. For one projection a specific electrode acts as transmitter while all 
the others sense the displacement current. A measurement frame consequently consists of 16 
by 15 = 240 entries. 
The reconstruction of the permittivity distribution within the pipe from the boundary 
measurements requires a mathematical model of the measurement process. This forward 
model establishes the functional mapping between the cross-sectional material distribution 

( )yxr ,ε  and the measured displacement currents q . Under the assumption of non-

conducting materials, negligible magnetic fields, and wave propagation effects it can be 
modelled as an electrostatic field problem in the interior of the screen. This leads to a 
generalized Laplace equation for the electric potential v  (Watzenig et al., 2007b). 

 ( ) 0=∇⋅∇ vrε  (20) 

Dirichlet boundary conditions 0vv =  at the transmitting electrode and 0=v at the sensing 

electrodes are prescribed. The charges at the electrodes are proportional to the displacement 

currents occurring with time-harmonic excitation. The electrode charges are determined by 

integration of the electric displacement along the electrode boundaries. The forward model 
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Fig. 11. Measurement configuration and schematic of a typical ECT sensor. The 
measurement electrodes are placed around the pipe containing the imaging domain. Every 
electrode features dedicated transmitting and receiving hardware. The acquired data is 
transferred to a PC where the signal processing is performed. 

is numerically solved using the finite element method (FEM). The problem domain is 
thereby discretized into n  triangular finite elements, where the permittivity is assumed  
constant within a single element. The discretization of equation (20) leads to a linear 
equation system for the vector v  of the potentials of the finite element nodes.  

 rvK r =)(ε  (21) 

The stiffness matrix K reflects the geometry of the problem and the permittivities of the 
finite elements. Due to the sparsity of the stiffness matrix the equation system can be solved 
efficiently using specialized algorithms. However, in the context of industrial process 
tomography a compromise between the spatial resolution and accuracy of the finite element 
mesh and the computation time still has to be met. Figure 12 shows one quadrant of a 
typical finite element discretization. The domain is bounded by the outer screen. The 
interior contains the electrodes, the pipe and the imaging plane. The whole interior of the 
pipe is segmented into 316 elements, which is the number of unknown parameters to be 
reconstructed. 
The unknown permittivity distribution can be estimated from the measured displacement 
currents by inverting the known measurement relation. A key issue associated with this 
inverse problem is its ill-posedness. This basically means that there is no unique solution 
and that it does not depend continuously on the data. The available reconstruction methods 
can be generally classified in non-iterative and iterative algorithms. Non-iterative methods 
assume a linear relationship between permittivities and displacement currents through the 
sensitivity matrix S. 
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 rSq ε=  (22) 

This is an approximation since the actual relation is nonlinear. A linear reconstruction 
generates permittivity estimates from a pseudoinverse of the sensitivity matrix. 

 Dqr =ε̂  (23) 
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Fig. 12. Finite element discretization of one quadrant of the ECT problem domain. It consists 
of the electrodes (black), pipe (gray) and the imaging plane (light gray). The domain is 
bounded by the outer screen. 

The pseudoinverse can be calculated in various ways. The simplest method is to use the 
transpose of the sensitivity matrix. More elaborate approaches like the offline iteration 
online reconstruction (OIOR) use an iterative precomputation. 
More accurate results can be achieved with iterative methods that are based on the full 
nonlinear forward model. 

 ( )rfq ε=  (24) 

In this case the inverse problem can be solved by minimizing a least squares cost functional. 
The minimization can be performed using the Gauss-Newton algorithm. A flow chart of the 
procedure starting from an initial guess for the permittivity distribution is sketched in figure 
13. The minimization is terminated when the residual is below a predefined threshold. 
 
 

Forward
 problem

f( )εr

Gauss-Newton

 step δεr
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Fig. 13. Flow chart of the nonlinear least squares reconstruction for ECT. 
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 ( ) ( ) ( )rrmr RfqC εαεε +−= 2

2
 (25) 

The first term on the right hand side of equation (25) is the sum of squared errors between 
measured displacement currents qm and the simulated values. The minimization of this term 
alone would not yield sufficient results due to the ill-posedness of the inverse problem. 
Therefore a second term, the regularization term, has to be added in order to stabilize the 
solution. The relative weight of the two terms is controlled by the regularization parameter 

α. The assumptions that are placed in this term introduce prior knowledge about the 
assumed material distributions and can take various forms. A popular choice in the absence 
of specialized knowledge is generalized Tikhonov regularization. 

 ( ) 2

2rr LR εε =  (26) 

The regularization matrix L is a discrete approximation of the Laplace operator, leading to 
high values of R for jumps between neighboring finite elements. Consequently, this choice 
leads to a smoothing of the reconstructed permittivity distribution. 
Figure 14 illustrates an ECT sensor with a predefined two-phase material composition of 

gravel and air (left). The reconstructed cross-sectional material distribution based on the 

described least squares reconstruction method with Tikhonov regularization is shown on 

the right. The relative permittivity values are coded in gray scale. 

 

  

Fig. 14. ECT sensor partly filled with gravel (left) and the corresponding least squares 
reconstruction (right). 

Depending on the industrial process at hand, models of the material distribution other than 
those described may replicate the situation more accurately. This allows to incorporate more 
detailed prior knowledge and helps to obtain accurate reconstruction results. Usually the 
materials involved in a process are known in advance. This sets constraints on the 
admissible parameter range (Steiner & Watzenig, 2008). When the distribution is piece-wise 
constant, like in discrete multi-phase flow, closed contour models would be appropriate. 
Boundaries between different materials are explicitly modelled, which introduces process-
specific additional prior knowledge. Contour models can e.g. be based on polynomial 
splines, Fourier series expansions, and level set functions (Kortschak et al., 2007) (Watzenig 
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et al., 2007a). Closed Fourier contours in two dimensions can be obtained through 
parameterizations of the x and y coordinates with a period T=1. 

 ( ) ( )[ ]∑
−

=

++=
1

1

,,

0,
2sin2cos

2

1

2
)(

N

j

jbjx

x
jsajsa

a
tx ππ

π
 (27) 

The parameterization is similar for the other coordinate. The complexity of shapes that can 
be modelled can be increased by using more terms. The reconstruction can be performed by 
fitting the model parameters to the measurements, similar to the bulk model based on the 
finite element discretization.  
Another sensing modality for industrial process tomography is ultrasound reflection 

tomography (URT). A common approach records reflections of transmitted ultrasonic waves 

at material boundaries. The measured travel times of reflected waves from many different 

directions can be used to reconstruct the locations and contours of material inhomogeneities. 

Also for URT there are different reconstruction approaches, from simple backprojection to 

model-based approaches utilizing specific contour models (Steiner et al., 2006). Results 

obtained with simple backprojection and a B-spline-based contour model and least squares 

minimization are illustrated in figure 15. The backprojection algorithm can be more 

generally applied to a wide range of problems. However, the results suffer from noise and 

blurring. If the process can be clearly characterized a proper model can lead to much better 

results, as demonstrated in the right subfigure. 
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Fig. 15. URT reconstruction of a gas bubble in liquid. The left picture shows the results of a 
backprojection reconstruction. The right image shows the results obtained through using a 
contour model based on B-splines. The dashed ellipse shows the original bubble. The black 
curves show the evolution of the contour over the indicated iterations of the algorithm. 

4.2 Tomographic sensor fusion 

Multimodality tomography systems combine two or more different sensing modalities. The 

rationale is to increase the reconstruction accuracy by data fusion of complementary data. If 

sensibly combined, the multimodal data may contain more information about the state of 

the imaging domain than could be achieved with a single sensing modality alone. 

Multimodal sensors therefore offer the possibility to monitor complex processes that cannot 

be dealt with by single modalities. They can be fruitfully applied to three-phase flow, like 
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oil-gas-water flow occurring in oil production, where a single modality only gives good 

contrast for two of the involved materials. ECT and URT, e.g., are well suited for data 

fusion. The main motivation is that the electrical modalities are sensitive to the bulk 

properties of materials while ultrasound is sensitive to phase boundaries, yielding the 

desired complementarity. So URT can give accurate boundary information not available 

with electrical tomography and electrical tomography can give information about connected 

volumes not achievable with URT alone (Steiner, 2006). 

The most widely used principle of dual modality data fusion in terms of the data flow is 

sequential coupling of the modalities, which is illustrated in figure 16. After individual 

acquisition of the raw data with the two sensor arrays the inversion of the first modality is 

independently performed. The result is then used as additional input for the reconstruction 

of the second modality. This can be seen as providing a priori knowledge about the process 

state for the second stage. Another option for the combination of two modalities is parallel 

processing of the totality of raw data. However, this raises serious issues of data association 

(Steiner, 2007). 

 

Fig. 16. Sensor fusion of two tomographic sensing modalities through sequential coupling of 
the raw data. 

For the particular combination of sequential URT-ECT fusion the URT reconstruction can be 

used to deduce an outer approximation of the inclusion region containing the disperse 

phase of the material distribution, i.e. to uniquely assign parts of the imaging domain to the 

background region. If used in the subsequent ECT reconstruction, this information reduces 

the degrees of freedom of the inverse problem and thus the ill-posedness of the problem. 

Another approach is to use the incomplete information about object edges in the URT image 

to relax the smoothness assumption of ECT incorporated by the regularization term. This 

provides physically sound regularization as locations with a high probability of occurring 

material interfaces are allowed to show steeper permittivity gradients. A combination of 

these two sequential fusion approaches is compared to a single ECT reconstruction of two 

objects in figure 17. The left picture shows the ECT result, where the two objects cannot be 

resolved by the least squares reconstruction algorithm with smoothing Tikhonov 

regularization. ECT is least sensitive in the center of the imaging region, leading to a low 

spatial resolution. In contrast, URT offers highest sensitivity in the central region. The fusion 

reconstruction, due to the additional prior information from URT, distinguishes clearly 

between the two material inclusions.  

An URT image as prior information is able to supply information about material 

boundaries. This can straightforwardly be included in contour-based reconstruction 
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algorithms for ECT. An example result is shown in figure 18. The capacitance data was 

reconstructed using a level set approach, where the contour is generated from equipotential 

curves of a two-dimensional function. A common regularization approach in this case is to 

penalize the arc length of the contour. The URT reconstruction can be added to the 

regularization term, forcing the level set contour towards the URT reconstruction while still 

allowing for deviations. The ECT reconstruction of two bubbles in figure 18 shows some 

blurring compared to the true object contours. The URT reconstruction, containing a sparse 

collection of points located  just at the object boundaries, gives the extra information to 

allow for a close match of the true contours. 

 

Fig. 17. Comparison of single ECT (left) and sequential URT-ECT fusion (right) 
reconstructions with a FEM-based spatial discretization of the imaging domain. The black 
curves show the true phase boundaries of the two material inclusions. 

 

 

Fig. 18. Comparison of single ECT (left) and sequential URT-ECT fusion (right) 
reconstructions with a level set-based contour model. The dashed curves show the true 
phase boundaries of two material inclusions. 

5. Conclusion 

With increasing demands on the quality and efficiency of industrial processes as well as 

environmental and safety regulations, industrial process instrumentation is required to 
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acquire more accurate and comprehensive information. As the complexity of industrial 

processes increases, the same holds for the instrumentation. Data fusion techniques 

maximize the amount of useful information that can be extracted from raw sensor data.  

This chapter gives an overview of model-based data fusion methods used in industrial 

process instrumentation with several typical application examples. They are intended to 

demonstrate the wide range of data fusion applications and are grouped in ascending 

complexity; from error compensation to multidimensional parameter estimation, sensor 

fault detection and isolation, integrated sensor arrays, industrial process tomography, and 

tomographic data fusion. It is expected that the consistent use of process models and data 

fusion methods will allow for an even more comprehensive and accurate characterization of 

industrial processes in the future. 
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