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1. Introduction    

Due to the rapid development of Intelligent Transportation Systems (ITS), more and more 
different types of sensors are employed to detect traffic state information, so as to serve 
traffic agencies and travelers. However, each type of traffic detectors has its inherent 
drawbacks. For instance, loop detectors, as a kind of economical and efficacious detectors, 
have been widely used in most advanced cities. However, lots of errors are often induced by 
their high failure ratio and inaccurate traffic state conversion arithmetic. Similarly, probe 
vehicles are another type of popular detectors, which also has some problems, such as poor 
statistical representation and errors in the map matching. Therefore, how to make full use of 
the data from these detectors to obtain more accurate and comprehensive traffic state 
information becomes a new urgent problem need to be solved.  
Recent years, information fusion as a new technology has been introduced to solve this 
problem, expecting to get better results by integrating information from multiple types of 
detectors. In this field, some researchers advanced their fusion methods on how to combine 
the data from loop detectors and GPS probe vehicles, and achieved good effectiveness to 
some extent. For example, R.-L. Cheu et al. developed a neural network based model to 
perform the fusion (Cheu et al., 2001); K. Choi and Y. Chung presented a fusion algorithm 
based on fuzzy regression (Choi & Chung, 2002); T. Park and S. Lee researched this problem 
using Bayesian approach, who got good effect in simulation data (Park & Lee, 2004); H.-S. 
Zhang et al. proposed an architecture to manage, analyze and unify the traffic data (Zhang 
et al., 2005).  
More recently, pointing to the incompleteness and inaccurateness of traffic detector data, El 
Faouzi and Lefevre originally put forward a classifiers fusion method based on Evidence 
Theory (El Faouzi & Lefevre, 2006), which provided a new idea toward solving this 
problem. Also, a prospect to build an adaptive and dynamic fusion scheme was given at the 
end of their article. According to this prospect, we introduce a new fusion model in this 
article to meet the requirement of real-time fusion. This model advances over D-S Evidence 
Theory (Dempster, 1967; Shafer, 1976) in temporal domain, and the idea comes from some 
thought of the Federated Kalman Filter initially proposed by N. A. Carlson (Carlson, 1988; 
1990). Therefore, we call it the Federated Evidence Fusion Model (FEFM). It can be used to 
fuse not only the two kinds of detectors referred above, but also other information sources O
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(cameras, mobile phones etc.). In addition, sensor reliability is considered in this model by 
the form of evidence reliability to increase the accuracy of estimation. In the experiments, a 
simulation test is first assumed to explain the advantage of the proposed model, in 
comparison with conventional D-S Evidence Theory and the other two transformed models. 
After that, an application case is presented to embody the validity of the model in 
engineering practice, using the real-world data from the SCATS loop detectors and GPS-
equipped taxies in Shanghai. 

2. A brief review of Evidence Theory 

Evidence Theory was initially introduced by Dempster (Dempster, 1967), and then Shafer 
(Shafer, 1976) showed the benefits of belief functions for modeling uncertain knowledge. In 
this section, some mathematical elements of Evidence Theory are recalled. 

2.1 Basic concepts 

Let { }= …1 2, , , Nω ω ωΩ  be a frame of discernment, in which all elements are assumed to be 

mutually exclusive and exhaustive. The power set of Ω is denoted by { }2 |= ⊆Ω
A A Ω . 

Basic Probability Assignment (BPA) is a function that can be mathematically defined by 2Ω  
in [0, 1], such that ( ) =Φ 0m  where Φ  denotes an empty set, and ( ) 1m

⊆

=∑
A Ω

A .  

The belief function (bel) and the plausibility function (pl) are defined as follows: 

                                               
( ) ( )

( ) ( )
≠ ⊆

∩ ≠

⎧ = ∀ ⊆
⎪
⎨

= ∀ ⊆⎪
⎩

∑

∑
Φ

Φ

bel m

pl m

B A

B A

A B A Ω

A B A Ω
  (1) 

in which ( )bel A  represents the sum of masses in all subsets of A, whereas ( )pl A  
corresponds to the sum of masses committed to those subsets which don’t discredit A. 

2.2 Combination of belief functions 

Multiple evidences can be fused by using Dempster’s combination rules, shown in equation 
(2), which also is known as the orthogonal sum. This sum is both commutative and 
associative. 

                                 ( ) ( ) ( )
∩ = ∀ ⊆

∩ =⎧
⎪= ⎨ ⋅ ∩ ≠⎪ −⎩

∑
, ,

0, Φ
1

, Φ
1 i j

m
m m

K A B C A B Ω

A B

C
A B A B

  (2) 

with 

                                                      ( ) ( )
∩ = ∀ ⊆

= ⋅∑
Φ , ,

i jK m m
A B A B Ω

A B   (3) 

where the term K is called the conflict factor between two evidences, which reflects the 
conflict degree between them. 
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2.3 Evidence reliability 
When the information provided by sensors is not totally reliable to result in the belief 
functions, a coefficient a is used to discount the belief. This coefficient will transfer the belief 
into the set Ω. Thus, the discounted belief function ma can be obtained by the following 
formula: 

                                                     
( ) ( )
( ) ( ) 1

ǂ

ǂ

m ǂm
m ǂm ǂ
⎧ =⎪ ⊂⎨

= + −⎪⎩

A A
A Ω

Ω Ω
  (4) 

where [ ]0,1ǂ∈ . 

2.4 Evidence distance 

A. L. Jousselme et al. presented a principled metric distance between two BPAs (Jousselme 
et al., 2001). The authors treat BPA as a vector in a 2 Ω  linear space, where Ω  denotes the 
cardinality of Ω . Then, they define the distance between im  and jm  as 

                                                 ( ) ( ) ( )1
,

2

T

BPA i j i j i jd m m m m m m= − −D
G G G G

  (5) 

in which D is a matrix with size of 2 2×Ω Ω , whose elements can be calculated by formula (6). 

                                                       ( ), ,
∩

= ∀ ⊆
∪

A B
D A B A B Ω

A B
  (6) 

Furthermore, the evidence distance satisfies the below restriction:  

                                                                 ( )0 , 1BPA i jd m m≤ ≤   (7) 

3. Federated evidence fusion model 

In this section, we introduce the FEFM in three steps: first, the reliability matrix is discussed; 
then, we build the frame of the FEFM; finally, the fusion algorithm is presented. Besides, the 
other two models with different forms are also given like the Federated Kalman Filter. 

3.1 The improved evidence reliability 
From engineering practice, we find that different evidence sources have different reliabilities 
in estimating the same state; similarly, the same evidence sources also have different 
reliabilities in measuring different states. Therefore, we define a reliability weight 

( ), ,0 1i j i jw w≤ ≤ , which is used to reflect the degree of the reliability that one evidence 

corresponds to each state. The reliability matrix W is shown in (8). 

                                               

1 2

1,1 1,2 1,1

2 ,1 2 ,2 2 ,2

,1 ,2 ,

N

N

N

M M M NM

S S S

w w wE

w w wE

w w wE

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

W

"
"
"

# # % ##
"

  (8) 
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where [ ] ( ), 0,1 , 1,2, , ; 1,2, ,i jw i M j N∈ = =… … ; jS  denotes the jth independent state to be 

recognized; iE  denotes the ith independent evidence. 
In some sense, the reliability that the evidence corresponds to different states can be deemed 
as the probability that the evidence exactly estimates the state, because it accords with the 
definition of probability. Thus, we can draw a conclusion that, a reliability matrix W* 
between evidences and all of the subsets of Ω  is defined as follows:  
 

 

{ } { } { } { } { } { } { }1 2 1 2 1 3 2 3

1,1 1,2 1, 1, 1, 1, 1, 1,1,2 1,3 2 ,31

2 2,1 2 ,2 2 , 2 , 2 , 2 , 2 , 2 ,1,2 1,3 2 ,3

,1 ,2 , ,1,2 1,3

, , , |N j

N j j j j j
j j j j N j

N j j j j j
j j j j N j

M
M M M N M j

j j

S S S S S S S S S S j N

w w w P w P w P w P w P wE

E w w w P w P w P w P w P w

E w w w P w P w

= = = ≠

= = = ≠

= =

≠

=

Ω

W*

" " "

" " "

" " "
# # # % # # # % # % # #

" , , , ,2 ,3M j M j M j M j
j j N j
P w P w P w
= ≠

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" "

 (9) 

 

When 1i = , we have 
 

, ,1 ,2 ,1 ,2 ,1 ,21,2

, ,1 ,2 ,3 ,1 ,2 ,1 ,2 ,1 ,3 ,2 ,3 ,1 ,2 ,31,2 ,3

, ,1 ,2 ,1,2 , ,

ˆ

ˆ ˆ

ˆ ˆ ˆ

i j i i i i i i
j

i j i i i i i i i i i i i i i i
j

i j i i i N
j N

P w w w w w w w

P w w w w w w w w w w w w w w w

P w w w w

=

=

=

= + = + − ⋅⎧
⎪
⎪ = + + = + − ⋅ − ⋅ − ⋅ + ⋅ ⋅⎪
⎨
⎪
⎪ = + + +⎪⎩ …

#
"

 (10) 

 

where +̂  denotes the addition operation in probability theory. 
Likewise, when = …2, ,i M , we can also obtain the above conclusions respectively. This 
issue comes from the addition formula in probability theory, as the N states are irrelevant 
with each other.  
Representing every weight with , 'i jv , a reliability index matrix V can be shown as: 

 

{ } { } { } { } { } { } { }1 2 1 2 1 3 2 3

1,1 1,2 1, 1, 1 1, 2 1,21 1,2 2 1,2 1

2 2,1 2 ,2 2 , 2 , 1 2 , 2 2 ,2 2 ,2 2 2 ,2 1

,1 ,2 , , 1 , 2 ,2 ,2 2 ,2 1

, , , |

N N

N N

N N

N j

N N N N

N N N N

M
M M M N M N M N M N M M

S S S S S S S S S S j N

v v v v v v v vE

E v v v v v v v v

E v v v v v v v v

+ + − −

+ + − −

+ + − −

≠

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢
⎢
⎢⎣ ⎦

Ω

V

" " "

" " "

" " "
# # # % # # # % # % # #

" " "

⎥
⎥
⎥

  (11) 

where [ ] ( ), ' 0,1 , 1,2, , ; ' 1,2, ,2 1N
i jv i M j∈ = = −… … . 

In this case, the modified BPA can be shown in equation (12): 

                                                
( ) ( )
( ) ( )

, '

, '

' ,

' 1 ,
i i j i

i i j i

m v m

m v m
⊂

⎧ = ⋅⎪ ⊂⎨
= − ⋅⎪⎩ ∑A Ω

A A

A Ω
Ω A

  (12) 

where  ( )'im  indicates that the BPA has been modified by the reliability index of evidences.  
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The proposed reliability index matrix V can also be generalized to denote other weight 
meanings, such as measure accuracy or evidence importance. Among them evidence 
importance was referred in (Fan & Zuo, 2006). For example, 1,1 2 ,1v v>  indicates that 

evidence 1 is more reliable than evidence 2 to judge state 1. We can also think that evidence 
1 is more important than evidence 2. All of the other generalizations can be explained as the 
same. 
By considering evidence reliability, the uncertainty and inaccuracy of evidences are greatly 
decreased. Meanwhile, the conflict between two evidences may be weakened to some degree.  

3.2 Federated evidence fusion frame 

The combination rule proposed by Dempster provided a convenient tool for us to fuse 
multi-source information. In our case, we are going to fuse the data obtained from multiple 
types of traffic detectors in real-time. Therefore, we build the FEFM in a structure with 
feedback, which was inspired by the theory of Federated Kalman Filter first proposed by 
Carlson (Carlson, 1988; 1990). The proposed fusion frame with feedback is illustrated in 
figure 1. As the figure shows, the whole fusion system consists of four parts, which are the 
input level, the feature extracting level, the fusion level and the output level. Among them, 
the fusion level can be further divided into two components: main fusion system and sub-
fusion system.  
 

 
Fig. 1. Frame of the FEFM. 

3.3 Federated fusion algorithm 

In this algorithm, we use ( ), , 1,2, ,i i tm i M=A …  to represent the BPA extracted from the data 

from the ith type of detectors at time t.  
For the sub-fusion systems, the fusing rule makes use of the combining formula (2). It is 
shown as follows: 

                                         

( ) ( ) ( )
( )( ) ( )
( )( ) ( )

−

−

−

−∩ =

−∩ =

= ⊕

×
=

− ×

∑
∑

1 , ,

1 ,

, 1 ,

1 ,

1 ,Φ
1

t i t i t

t i t

i i t t i i t

t i i t

t i i t

m m m

g m m

g m m

C A B

C A

B C A

C A

C A

  (13) 
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where ( ) = …, , 1,2, ,i i tm i MB  denotes the fusion result of subsystem i at time t, and ( )1tm C −  
represents the fusion result of the main system at time 1t − . They both are in the form of 
BPA. The function ( )g  is the operation shown as follows: 

                                                   
( )( ) ( )
( )( ) ( )

−

− −

−⊂

⎧ =⎪
⎨

= −⎪⎩ ∑
1

1 1

11
t

t t

t

g m λm

g m λm
C Ω

C C

Ω C
  (14) 

where λ  is a variable, which represents the degree that ( )1tm C −  is weakened, and its value 
satisfies the restriction 0 1λ≤ ≤ . The value of this parameter can be determined under the 
condition that the fusion result is identical with the real state at all time in the training set. 
By this means, we can weaken the feedback, i.e. avoid the feedback leading the fusion result 
at this time. 
For the main fusion system, the fusion rule also use the combining algorithm of D-S 
Evidence Theory, which is  

                                          

( ) ( ) ( ) ( )

( )

( )
=

=

=
=

=
=

= ⊕ ⊕ ⊕

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

∑ ∏

∑ ∏

"

∩

∩

,
1

,
1

1 1, 2 2 , ,

,
1

,Φ
1

1

M

i t t

i

M

i t

i

t t t M M t

M

i i t
i

M

i i t
i

m m m m

m

m

B C

B

C B B B

B

B

  (15) 

where m(Ct) denotes the integrated result of the main fusion system at time t, which also is 
the final fusion result at time t.  
Then, we can obtain the conclusion of state estimation at that time through a certain decision 
rule: the maximum belief or the maximum plausibility etc. 

3.4 The other two structures 
Similar to the Federated Kalman Filter, the FEFM also has the other two transformed 
structures. They are named the Distributed Feedback Fusion (DFF) and the no feedback 
fusion (NFF). 

3.4.1 Structure of the distributed feedback fusion 
The distributed feedback fusion structure is shown in figure 2. In this structure, feedback 
information to every subsystem does not come from the main fusion system any more, but 
be produced by themselves. After every fusion cycle, the fusion results obtained by the sub-
fusion systems are all sent back to their inputs to be integrated with the inputted state 
features at the next time. The detailed algorithm is given as follows: 
For the sub-fusion systems,  

 ( )
( )

−

−

−

−∩ =

−∩ =

= ⊕

×
=

− ×

∑
∑

, 1 , ,

, 1 ,

, , 1 ,

, 1 ,

, 1 ,Φ

( ) ( ) ( )

( ) ( )

1 ( ) ( )
i t i t i t

i t i t

i i t i i t i i t

i i t i i tB A B

i t i i tB A

m B m B m A

g m B m A

g m B m A

  (16) 

in which, − = …, 1( ), 1,2, ,i i tm B i M  denotes the feedback information from the output of 

subsystem i, which is the fusion result of this subsystem at time − 1t .  
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As to the main fusion system, the formula is the same as the standard FEFM algorithm. 
 

 
Fig. 2. Frame of the distributed feedback fusion 

3.4.2 Structure of the no feedback fusion 
 

 

Fig. 3. Frame of the no feedback fusion 

As is shown above, this type of structure has neither any feedback information from the 
main fusion system, nor from the sub-fusion system. Therefore, in this model, the fusion 
outputs of the sub-fusion systems are directly sent into the main fusion system. This fusion 
outputs are attained by combining the inputs of the sub-fusion systems at this time and 
those at the last time. The difference of this algorithm lies in: 
For the sub-fusion systems,  

 ( )
( )

−

−

−

−∩ =

−∩ =

= ⊕

×
=

− ×

∑
∑

, 1 , ,

, 1 ,

, , 1 ,

, 1 ,

, 1 ,Φ

( ) ( ) ( )

( ) ( )

1 ( ) ( )
i t i t i t

i t i t

i i t i i t i i t

i i t i i tA A B

i i t i i tA A

m B m A m A

g m A m A

g m A m A

  (17) 

in which, − = …, 1( ), 1,2, ,i i tm A i M  denotes the BPA of state feature put in sub-fusion system i 

at time t-1.  
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Likewise, in the main fusion system, the fusion algorithm also is the same as the standard 
FEFM algorithm. 

4. Implementation of fusion algorithm 

In the last section, we have introduced the core algorithms of the FEFM; however, it still 
needs more procedures, if we want to veritably apply the whole model to the practice. They 
will be presented in this section. 

4.1 Determination of reliability matrix  

In Reference (Guo et al., 2006), reliability was divided into static reliability and dynamic 
reliability. Herein, we only consider the static one. Thus, reliability weight ,

s
i jw  can be 

calculated by (18). 

                                                          ( )( ), , ,,s s o
i j BPA i j i j

BPA

w f d m m

f b a d

⎧ =⎪
⎨

= − ⋅⎪⎩
  (18) 

in which BPAd  is the evidence distance that can be computed by (5); ,
s
i jm  denotes the BPA 

output of the sensor i about the state class j in the training set; ,
o
i jm  represents the BPA of 

what we have known about the class membership of the same data; a=1 and b=1, due to the 
boundary condition: [ ], 0,1i jw ∈ . 

4.2  Creation of masses 
Above all, we use the negative exponential proposed by Denoeux (Denoeux, 1995) to create 
the masses, shown in (19). 

       { }( ) ( )exp ǃ
i n i im ω Ǆ d= −   (19) 

where di is a type of distance between the data detected by the i th kind of detectors and the 
prototype of each state class. The prototype can be designated artificially or be obtained by 
clustering the historical data. The parameters ǃ and ri are decided depending on the real-
world data in the training set. 
Afterward, we define the conversions below to create the BPAs. 

                                          

{ }( )( ) { }( )( )
{ }( )( )

{ }( )( ) { }( )( )
{ }( ) { }( )( )

*

1

*
,

1

max
max

max

max ' max

' 1 max '

i k

i k kth

i l
l th

s
i k i k i k

N

i i k
k

kth m ω
kth m ω

m ω

kth m ω v kth m ω

m kth m ω

=

=

⎧
⎪ =
⎪
⎪
⎪⎪
⎨
⎪ = ⋅⎪
⎪
⎪ = −
⎪⎩

∑

∑Ω

  (20) 

in which the maxkth  denotes the kth  maximum value in all the masses derived from the 
results computed by (19); k  is a natural number in the range from 1 to N ; N  is the total 
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number of elements in the frame of discernment; ,
s
i kv  represents the static reliability index 

weight, which has been computed beforehand. 

4.3 Decision-making rules 

Herein, we choose the maximum belief rule as the decision-making principle. Also, some 
additional conditions are provided according to the context of traffic engineering. The 
decision-making rules are shown as follows: 

                                            max max 2 max, 1,

, ,
m m thst if st st

Dst
otherwise

− =⎧
= ⎨
⎩Ω

  (21) 

where Dst indicates the decision output of state value; max mst  denotes the state value 
corresponding to the mass with the maximum value; if the output is Ω , it means no verdict. 
In this case, we may give an output of state 0. 

5. Experiments 

5.1 Synthetic data 

First, we use synthetic traffic data to demonstrate the effectiveness of the proposed model. 
Assume the discernment framework of traffic state is 1 2 3 4{ , , , }S S S S=Ω , and the evidence set 

is { }1 2,E E=E . The BPAs based on both evidences are listed in Table 1. 

 

Time Evidence {S1} {S2} {S3} {S4} Ω 

T1 E1: m1(A1, t1) 0.7 0.1 0 0 0.2 

 E2: m2(A2, t1) 0.1 0.8 0 0 0.1 

T2 E1: m1(A1, t2) 0.25 0.55 0 0 0.2 

 E2: m2(A2, t2) 0 0.6 0.25 0 0.15 

T3 E1: m1(A1, t3) 0 0.1 0.8 0 0.1 

 E2: m2(A2, t3) 0 0 0.6 0.25 0.15 

T4 E1: m1(A1, t4) 0 0 0.2 0.7 0.1 

 E2: m2(A2, t4) 0.8 0.1 0 0 0.1 

T5 E1: m1(A1, t5) 0 0 0.1 0.8 0.1 

 E2: m2(A2, t5) 0 0 0.2 0.75 0.05 

Table 1. BPAs for the case 

Herein, we provide 5 pairs of evidences at 5 continuous times respectively, among which 
the two evidences at time T1 have a partial conflict, and the pair of evidences is completely 
conflict at time T4. Whereas, the evidences at other three times have little conflicts and only 
embody the state transferring.  
The BPAs after being fused are listed in Table 2, which shows the comparison of the fusion 
results of the five models. They are the conventional Evidence Theory, Evidence Theory 

www.intechopen.com



 Sensor and Data Fusion 

 

98 

considering reliability, standard FEFM, DFF and NFF, which are orderly denoted by m(Ct1), 
m’(Ct1), mI(Ct1), mD(Ct1) and mN(Ct1).  
 

Time Evidence {S1} {S2} {S3} {S4} Ω 

T1 m(Ct1) 0.37 0.58 0 0 0.05 

 m’(Ct1) 0.48 0.33 0 0 0.19 

 mI(Ct1) 0.48 0.33 0 0 0.19 

 mD(Ct1) 0.48 0.33 0 0 0.19 

 mN(Ct1) 0.48 0.33 0 0 0.19 

T2 m(Ct2) 0.06 0.82 0 0.08 0.04 

 m’(Ct2) 0.12 0.62 0.09 0 0.17 

 mI(Ct2) 0.23 0.63 0.05 0 0.09 

 mD(Ct2) 0.28 0.64 0.03 0 0.05 

 mN(Ct2) 0.18 0.64 0.06 0 0.12 

T3 m(Ct3) 0 0.02 0.92 0.03 0.03 

 m’(Ct3) 0 0.03 0.71 0.13 0.13 

 mI(Ct3) 0.05 0.19 0.57 0.09 0.1 

 mD(Ct3) 0.06 0.14 0.6 0.1 0.1 

 mN(Ct3) 0.02 0.11 0.66 0.1 0.1 

T4 m(Ct4) 0.42 0.05 0.11 0.37 0.05 

 m’(Ct4) 0.31 0.04 0.08 0.23 0.34 

 mI(Ct4) 0.19 0.1 0.34 0.18 0.19 

 mD(Ct4) 0.25 0.08 0.25 0.2 0.22 

 mN(Ct4) 0.2 0.04 0.3 0.23 0.23 

T5 m(Ct5) 0 0 0.06 0.93 0.01 

 m’(Ct5) 0 0 0.12 0.81 0.07 

 mI(Ct5) 0.02 0.01 0.17 0.76 0.04 

 mD(Ct5) 0.02 0.01 0.13 0.79 0.05 

 mN(Ct5) 0.02 0 0.11 0.82 0.05 

Table 2. Results of fusion. m(Ct1), m’(Ct1), mI(Ct1), mD(Ct1) and mN(Ct1) respectively denotes 
the conventional Evidence Theory, Evidence Theory considering reliability, standard FEFM, 
DFF and NFF. 

In figure 4(a), the bar plot of the fusion consequences at time T4 is shown to display the 
predominance of the FEFM. In the third row, the integrated feedback fusion represents the 
standard FEFM. From the figure, we can find that the former two methods can not give a 
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clear answer due to the huge conflict. However, the standard FEFM gives a definite choice. 
We can also see that the other two forms of the FEFM do not perform well at this situation, 
although a little of progress is made. This phenomenon can also be seen in figure 4(b), which 
shows us a course of estimation during the whole 5 times. Moreover, we can find a different 
determination between the first model and the other four models at time T1, which is 
because there is a partial conflict between the two evidences, whereas the reliability 
mitigates its effect to some extent. 
 

 
                                         (a)                                                                           (b) 

Fig. 4. Bar plot of the fusion results. (a) is the fusion results using the five models at time T4; 
(b) is the fusion results using these models during the 5 times. 

5.2 Data from real traffic 

In this section, we employ two types of traffic mean-speeds on an urban link in Shanghai to 
carry out the fusion estimation experiment. The two speeds were derived by estimating with 
the SCATS loop detector data and GPS-equipped taxi data. The detailed algorithms were 
provided in reference (Kong et al., 2007). The real-world data were collected at a section of 
Zhao Jia Bang Road of Shanghai through a whole day, which was from 0 o’clock to 24 
o’clock on Sep. 26, 2006, and the average speeds were computed in every five minutes. Also, 
we screened a segment of surveillance video during 2:00 PM-4:00 PM at this link on the 
same day in order to validate the model. 
The fusion consequence of the standard FEFM is shown in figure 5, from which we can 
clearly see that the traffic state is reasoned and tracked at the feature level. According to the 
verifying test by replaying the video, the estimation accuracy of our model is beyond 95%. 
Herein, we define five different traffic states, corresponding to ‘very congested’, ‘congested’, 
‘medium’, ‘smooth’ or ‘very smooth’, respectively.  
Moreover, the fusion algorithm was embedded into the Shanghai Urban Traffic Information 
System developed by our laboratory to implement the fusion estimation. The estimation 
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results were displayed on the traffic information display platform, as figure  6 shows. Figure 
6(a) and 6(b) respectively illustrates the results estimated only by the SCATS data or the GPS 
data; and figure 6(c) shows the results by fusing the two types of data. In these figures, the 
color of the road sections, red, orange, yellow, green, or dark green, represents the 
corresponding traffic states defined above respectively. 
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Fig. 5. Traffic state estimation results of the standard FEFM with the real-world data on the 
link in Shanghai through 24 hours. 

 

 
 

(a) 
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(b) 

 
(c) 

Fig. 6. Estimation results displayed on the platform. (a) is the result from the SCATS loop 
detector data; (b) is the result from the GPS-equipped taxi data; (c) is the result by fusing the 
two types of data. 

6. Conclusions 

This paper has proposed a model for real-time traffic state estimation by developing D-S 
Evidence Theory in temporal domain. As it realizes online fusion of heterogeneous detector 
data at the feature level, the method has strong application potentials in fusing data from 
many other different types of sensors (cameras, cell phones, etc.). Furthermore, the evidence 
reliability to every state is considered in the FEFM. Finally, the model shows great 
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advantages over conventional D-S Evidence Theory in the simulation test and good 
accuracy by the tests with the real-world data.  
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