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1. Introduction     

Two important tasks of machine learning are the statistical learning from sample data (SL) 
and the unsupervised learning from unlabelled data (UL) (Hastie et al., 2001; Theodoridis & 
Koutroumbas, 2006). The synthesis of the two parts – the unsupervised statistical learning 
(USL) – is frequently used in the cyclic process of inductive and deductive scientific 
inference. This applies especially to those fields of science where promising, testable 
hypotheses are unlikely to be obtained based on manual work, the use of human senses or 
intuition. Instead, huge and complex experimental data have to be analyzed by using 
machine learning (USL) methods to generate valuable hypotheses. A typical example is the 
field of functional genomics (Kell & Oliver, 2004).  
When machine learning methods are used for the generation of hypotheses, human 
intelligence is replaced by artificial intelligence and the proper functioning of this type of 
‘intelligence’ has to be validated. This chapter is focused on the validation of cluster analysis 
which is an important element of USL. 
It is assumed that the data set is a sample from a mixture population which is statistically 
modeled as a mixture distribution. Cluster analysis is used to ‘learn’ the number and 
characteristics of the components of the mixture distribution (Hastie et al., 2001). For this 
purpose, similar elements of the sample are assigned to groups (clusters).  
Ideally, a cluster represents all of the elements drawn from one population of the mixture. 
However, clustering results often contain errors due to lacking robustness of the algorithms. 
Rather different partitions may result even for samples with small differences. That is, the 
obtained clusters have a random character. In this case, the generalization from clusters of a 
sample to the underlying populations is inappropriate. If a hypothesis derived from such 
clustering results is used to design an experiment, the outcome of this experiment will 
hardly lead to a model with a high predictive power. Thus, a new study has to be performed 
to find a better hypothesis. Even a single cycle of hypothesis generation and hypothesis 
testing can be time-consuming and expensive (e.g., a gene expression study in cancer 
research, with 200 patients, lasts more than a year and costs more than 100.000 dollars). 
Therefore, it is desirable to increase the efficiency and effectiveness of the scientific progress 
by using suitable validation tools. 
An approach for the statistical validation of clustering results is data resampling 
(Lunneborg, 2000). It can be seen as a special Monte Carlo method that is, as a method for 
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finding solutions to statistical problems by simulation (Borgelt & Kruse, 2006). The choice of 
a suitable resampling method for any cluster validation task is not trivial. On the one hand, 
such a method is expected to simulate random samples that have the same structure that 
underlies the original sample – even though the true structure is unknown. On the other 
hand, it is undesired that the method introduces any additional structure into the simulated 
data, because this kind of error can not be recognized from the clustering results in the 
absence of the ground truth.  
Once, clustering results (partitions) have been generated for a set of resamples, three steps 
are usually performed. i) The stability of the partitions under the influence of resampling is 
calculated. When desired, stability scores can be obtained also for single clusters and 
individual assignments of data points to clusters. ii) A consensus partition is determined that 
best possible represents the characteristics which are common to the resample partitions. iii) 
The number of clusters is estimated, typically based on the maximization of a partition 
stability score. For methods that can be used to perform the steps i) to iii) see, for example, 
(Strehl & Gosh, 2002; Topchy et al., 2005; Fred & Jain, 2006 and Ayad & Kamel, 2008). 
Resampling-based cluster validation is not yet common standard. In many software tools for 
cluster analysis, resampling methods are missing. Some new methods were published only 
recently. The choice of the appropriate resampling technique depends on the data 
properties, the goal and constraints of the study and on the clustering methods used. The 
purpose of this contribution is to review available techniques, to summarize existing 
benchmark results and to give recommendations for the selection and use of the methods. 
Furthermore, a new method called nearest neighbor resampling is presented. 
In statistics resampling schemes are subdivided into parametric and non-parametric 
methods. The use of parametric methods for cluster validation will be briefly characterized 
in section 2. In section 3 non-parametric methods will be reviewed. Section 4 is a summary 
of benchmarking tests of different resampling techniques. Section 5 refers to results of the 
new resampling method previously described in section 3.5. Finally, section 6 contains a 
discussion of the described methods and conclusions for their future application. 

2. Parametric resampling 

Parametric resampling is also known as parametric bootstrapping. Methods of this type are 
used to fit a parametric model to the data. That is, the hypothesis is made that the data 
follow a theoretical distribution and certain parameters of this distribution (mean, variance 
etc.) are estimated. Then resample data sets are sampled from the distribution with the 
parameter values set to the obtained estimates. In cluster analysis a mixture distribution P = 

ΣiεiPi is assumed, where Pi, i = 1,…,C, are the C distributions generating C “true” clusters 

respectively, and εi is the probability that a sample point from Pi is drawn. 
In principle, this approach has attractive properties. Examples for the validation of 
clustering results obtained from gene expression data are contained in (McLachlan & Khan, 
2004). However, there exist also arguments against the use of parametric resampling for 
cluster validation. One argument concerns the lack of justification for the (more or less 
arbitrary) selection of a particular theoretical distribution as a model for real data with an 
unknown distribution (Yu, 2003; Lunneborg, 2000). Hennig (2007) argued that parametric 
bootstrapping does not suggest itself for the aim of cluster validation, because parametric 
methods discover structures generated by the assumed model much better than patterns in 
real data for which the model does not hold.  This could lead to overoptimistic assessments 
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of the stability of clustering structures. If the original sample has clearly more dimensions 
than data points, model fitting may be impaired by the “curse of dimensionality”. Further 
arguments can be found in (Tseng & Wong, 2005). In the sequel, we consider non-
parametric resampling methods that may be used in cluster analysis. 

3. Non-parametric resampling 

3.1 Sampling from a sample 

Several methods can be referred to as re-sampling in the literal sense according to the 
common (non-statistical) definition of the word sample 1. In such methods the data points of  
a resample are drawn from the set of data points contained in the original sample. 
Bootstrapping. The non-parametric version of bootstrapping is usually described as 
“drawing with replacement”. That is, each bootstrap sample is obtained by drawing N data 
points randomly and with replacement from the original sample, where N is the number of 
data points in this sample. If the population size Np is finite and relatively small compared 
to N, (i.e., NP / N < 20), another procedure is conventionally used (see Lunneborg, 2000). 
This procedure guarantees that the empirical distribution of the union of all bootstrap 
resamples agrees accurately with the empirical distribution of the original sample. In any 
case some original data points are likely represented more than once in a bootstrap sample, 
while accordingly, other original points are missing in the resample. 
It has been shown that for increasing values of N, the percentage of original data which are 
not contained in a bootstrap sample converges to about 37%. If this information loss is 
considered to be too large for an adequate recognition of the data structure, the bootstrap 
scheme could be applied to M randomly selected points of the sample X (M < N), while the 

resample is completed by the N−M points of X not used for the bootstrapping. This 
modification would allow to control the degree of information loss associated with the 
bootstrap scheme (Möller & Radke, 2006a). Moreover, this resampling version could be 
performed by using random numbers Mr for the generation of r = 1, 2, … bootstrap samples 
with reasonable boundaries of the interval from which the values Mr are drawn. This 
selection could make the results less depending on the heuristic choice of parameter M. 

Subsampling. The original data set X is used to draw random subsets Yr ⊂ X, r = 1, 2,…  The 
size of a drawn subset, S = card(Yr), is a control parameter. Usually, S is fixed for all 
subsamples to be used in an application. If S is not much smaller than the original sample 
size N, clustering results of different subsamples may be very similar and not informative. 
The choice of S clearly smaller than N can be recommended if the information retained on 
average in a subsample is sufficient to obtain reasonable estimates of the unknown 
underlying distribution. Resampling-based clustering methods have been introduced 
including the subsampling of 70% (Tseng & Wong, 2005), 80% (Monti et al., 2003) and 90% 
(Fred & Jain, 2006) of the data. It may not be easy to select an optimal subsample size in a 
particular application. To avoid an inappropriate choice for this parameter, the subsample 
size could be varied from subsample to subsample. For example, the subsample size is 
uniformly drawn from an interval that represents 75-90% of the size of the original sample. 

                                                 
1 A sample of things is a number of them that are chosen at random out of a larger group 
and then used to test ideas or to provide information about the whole group (Collins 
Cobuild Dictionary, 1987). 
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An alternative way, without an explicit specification of the subsampling size, would be to 
generate a bootstrap sample and to discard the identically replicated points (Hennig, 2007). 

Subdivision. The original sample X is split into two disjoint subsets Y ∪ Z = X. Clustering is 

used to generate the partitions πY and πZ, from Y and Z, respectively. In addition, a classifier 

CY is build from the subset Y and the label set πY. Then CY is applied to the subset Z 

providing the partition πYZ. Finally, the predictability of πZ based on πYZ is assessed. For the 
success of this strategy it has to be ensured that in general each subset Y and Z contain 
sufficient information about the underlying distribution necessary to infer a reasonable 
model from the data. Dudoit and Fridlyand (2003) presented an example, where the 
‘training’ set Y and the ‘test’ set Z consist respectively of 2/3 and 1/3 of the original sample. 

3.2 Jittering 

Real data samples contain random measurement errors. Even if the same objects were 
observed multiple times under the same experimental conditions, the data are likely to be 
different. These differences can be simulated by generating copies of the original sample 
and adding random values to each of these data sets. The normal distribution with zero 
mean is traditionally used for this purpose. If estimates of the measurement error exist, 
these information can be utilized to define the parameters of the error distribution. 
Otherwise, heuristic rules can be applied. 
Hennig (2007) defined such a resampling scheme as follows. 1) For all p dimensions of the 

original sample data X = (x1,…, xN), compute the N−1 differences dij between neighboring 

data values in dimension p: for i = 1,…, N−1, j = 1,…, p, dij is the difference between the (i+1)-
th and the i-th order statistic of the j-th dimension. For j = 1,…, p, let qj be the empirical 
quantile of the dij, where q is a tuning constant. 2) Draw noise en, n = 1,…, N, independent 
and identically distributed from a normal distribution with a zero mean and a diagonal 

matrix as covariance matrix with diagonal elements σ12 = q12,…, σp2 = qp2 and compute the 
resample points yn = xn + en for n = 1,…, N. (For an example see section 4).  

3.3 Combination of bootstrapping and jittering 

When using the (non-parametric) bootstrapping scheme, about one third of the resample 
points will be identical replicates of original sample points. Each group of such identical 
points could be seen as a mini-cluster. The occurrence of these artificial clusters, generated 
by a statistical analysis tool, may induce inappropriate models of the true data structure. In 
particular, when clustering the resample data, the artificially replicated data points may be 
misinterpreted as true clusters (Monti et al., 2003). Moreover, for some implementations of 
clustering and multidimensional scaling methods the identical bootstrap replicates may 
cause numerical problems. Hennig (2007) proposed the combination of bootstrapping and 
jittering as a way to avoid or to reduce these problems. 

3.4 Perturbation 

Data sets for applications of statistical machine learning are usually generated with a 
precision that is high enough to measure intra-population variability. Therefore, any data 

point of a sample is likely to be different from any data point of another (disjoint) sample − 
even if the measurement error was zero. This type of inter-sample differences is not 
realistically simulated when using the above non-parametric methods. (Sampling from a 
sample provides highly overlapping data sets that all consist of random selections from the 
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same set of original points, while jittering leads to data sets that simulate differences 
comparable to those caused by measurement errors.) Another resampling strategy may be 
desired for a better (non-parametric) simulation of inter-sample differences due to intra-
population variability. Estimates of intra-population variability that could be used for such a 
simulation are usually unavailable prior to cluster analysis. Under these circumstances, a 
simple simulation is the addition of random values onto the data. Here this approach is 
called ‘perturbation’.  

Let X∈ℜN×p be the original p-dimensional sample consisting of N data points. Then for r = 1, 

2, …, resample r is obtained as follows. Yr = X + ξr, where ξr ∈ℜN×p is a sample of size N 
from a p-dimensional distribution. The parameters of this distribution, such as variance, can 
be specified based on an estimate obtained from the original sample. For example, the 

random variable ξ may be selected to have a normal distribution with zero mean vector and 

c⋅σ ∈ℜp, where c denotes a constant, σ = (σ1,…, σp) is an empirical estimate of the variability 

of the data. Bittner et al. (1999), chose c = 0.15 and σ being the median standard deviation of 
the entire sample. Möller and Radke (2006a) used several values of c equal to 0.01, 0.05 and 

0.1, where σ represented the standard deviation from the grand mean of the data. 
Perturbation and jittering are conceptually similar resampling techniques. However, their 
implementation may differ quantitatively in the values of statistical parameters used to 
simulate intra-population variability and measurement error based on external knowledge, 
estimates or assumptions. 

3.5 Nearest neighbor resampling 

The perturbation technique has two shortcomings in a cluster validation study. First, the 
method will induce inappropriate inter-resample differences if the true intra-population 
variability differs between several populations of the mixture population. The reason is that 
the random values used to perturb every data point are drawn from the same distribution. 
Therefore, the data points originally drawn from some populations are perturbed too 
strongly or too weakly or both types of error may occur simultaneously. Second, even if the 
intra-population variability is constant across all populations within the mixture, it is 
difficult to adjust the parameter(s) of the distribution used for drawing the random values. 
An overestimation of the proper perturbation strength would have the consequence that 
true data structures which are present in the original sample may not be retained in any 
resample. Otherwise, an underestimation of the perturbation strength would lead to very 
similar resamples and spurious, high cluster stability. To avoid false interpretations of a 
perturbation-based clustering study, it may be appropriate to repeat the analysis with 
different values of the perturbation strength (e.g., Möller & Radke, 2006a). A non-parametric 
resampling approach where the choice of the perturbation strength is less critical is nearest 
neighbor resampling (NNR). 
The idea behind NNR can be explained as follows. A high intra-population variability is 
characterized by a wide distribution and a low probability of drawing a point from the 
respective part of the hyperspace. Accordingly, the distances between sample points  in this 
part of the hyperspace are high. For low intra-population variability the opposite is true. 
Clearly, if two or more populations of a mixture population have overlapping distributions, 
the total probability is increased and sample points will have decreased inter-point distances 
compared to those obtained from any single population. The relationship between 
population variability and inter-point distances can be utilized to simulate random samples, 
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where the advantages of a perturbation approach are utilized and knowledge, estimates or 
assumptions about the distributions of existing populations are not required. 
Here we consider the following strategy for NNR. 1) For each original sample point xn, n = 

1,…, N, an estimate of the inter-point distances in the neighborhood of xn is obtained. This 

neighborhood is defined by the k nearest neighbors of xn according to a user-selected metric. 

2) The direction vector for the perturbation of xnr with respect to xn is selected. 3) Resample 

point xnr is generated by adding a random vector to xn with the direction as selected in step 

two and the vector length being a function of the estimated inter-point distances in the 

neighborhood of xn. The rationale underlying the choice of a k-NN approach is the same as 

in supervised learning. Most of the k nearest neighbors of data point xn are assumed to 

belong to the same class (population) as xn. Therefore, the neighboring points of xn are 

assumed to provide an estimate of intra-population variability. Below, two versions of NNR 

are described. 

Nearest neighbor resampling 1 (NNR1). (Möller & Radke, 2006b) 

0. Let X = (x1,…, xN) ⊂ ℜp be the original sample. Chose k ≥ 2 and a metric for calculating 
the distance between elements of X.  

1. For each sample point xn, n = 1,…, N, determine Yn, that is, the set containing xn and its k 
nearest neighbors. Calculate dn, the mean of the distances between each member and 
the center (mean) of the set Yn. 

2. For each resample r, r = 1, 2, …, and each sample point xn, n = 1,…, N, perform the 
following steps. 

3. Chose a random direction vector ξnr in the p-dimensional data space (i.e., ξnr is a p-

dimensional random variable uniformly distributed over the hyper-rectangle [−1, 1]p). 

4. Rescale the direction vector ξnr to have the vector length equal to dn (calculated in step 
1). 

5. Generate point n of resample r: xnr = xn + ξnr. 
The fixed point-wise perturbation strength (dn) has been selected to ensure an effective 

perturbation of each sample point (i.e., to avoid spurious high cluster stability). The method 

NNR1 can be used to simulate random samples from an unknown mixture population with 

different intra-population variability and a diagonal matrix as covariance matrix of each 

population. However, the latter assumption may be too strong for a number of real data 

sets. For example, the NNR1 method may simulate resample clusters with a hyper-globular 

shape also in cases where the corresponding clusters in the original sample have a hyper-

ellipsoidal shape. (This is a consequence of the fixed perturbation strength in conjunction 

with the uniformly distributed direction vector.)  

Therefore, the user should have other choices for calculating the amount and direction of the 

perturbation. Experiments have shown that the unintentional generation of artificial outliers 

by the resampling method may prevent reasonable clustering results of the resamples, while 

the original sample may have been clustered appropriately.  For example, in some cases the 

fuzzy C-means (FCM) clustering algorithm provided ‘missing clusters’ for NNR1-type 

resamples, but not for the original sample (data not shown). Missing clusters were 

introduced in (Möller, 2007) as being inappropriate clustering results of the FCM. As a 

conclusion, another method, NNR2, was developed for the analysis of high-dimensional 

data sets. In NNR2, a data point can be ‘shifted’ only towards and not beyond one of its 

nearest neighbors (i.e., into a region of the feature space that  actually contains some data). 
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Furthermore, the mean-based estimate dn in step 1 of the NNR1 method could be biased if 
the neighbors of xn contain outliers or if they contain data points which have been drawn 
from a population different than the one from which xn has been drawn. This source of bias 
can be reduced or avoided by using a robust estimate of the typical inter-point distance such 
as the median. 
Nearest neighbor resampling 2 (NNR2). 

0. Let X = (x1,…, xN) ⊂ ℜp be the original sample. Chose k ≥ 2, two constants c1 ≥ 0 and c2 > 
c1 for a data-specific calibration of the perturbation strength and a metric for calculating 
the distance between elements of X. 

1. For each sample point xn, n = 1,…, N, determine the k nearest neighbors of xn and 
calculate dn, the median distance between all pairs of these k neighbors. 

2. For each resample r, r = 1, 2, …, and each sample point xn, n = 1,…, N, perform the 
following steps. 

3. Chose one of the k nearest neighbors of xn at random. This data point is denoted by xm.  

The direction vector from xn to xm is used as the direction vector ξnr for the perturbation 
of the sample point xn to generate the resample point xnr. 

4. Draw the value cnr from the uniform distribution over the interval [c1, c2]. Calculate the 
distance dnm between the sample points xn and xm. If dnm is larger than dn, set the amount 

of perturbation |ξnr|= cnr⋅dn, otherwise set |ξnr| = cnr⋅dnm, where |.|denotes the vector 

length. Briefly, |ξnr|= cnr ⋅ min(dn, dnm).  

5. Generate point n of resample r: xnr = xn + ξnr. 
The NNR2 method restricts the positions of simulated (resample) points to the set of points 

that lie on the lines interconnecting an original sample point and its k nearest neighbors. 

Real samples are not constrained in this way. However, the application of this constraint 

leads to the simulation of resample points that cover only those regions of the feature space 

which are actually occupied by observed data. NNR2 has two advantages in cluster 

validation studies. Artificial outliers and resulting biases of resample clusterings can be 

largely avoided. More importantly, there may be data structures which are recognized from 

a clustering of the original sample, but are no longer separable after a perturbation like that 

in section 3.4 or that induced by the NNR1 method. The constrained perturbation by the 

NNR2 method is likely to simulate samples in which such (weakly separable) structures are 

preserved. 

NNR2-type perturbation can be calibrated by adjusting the parameters k, c1 and c2. A higher 

maximal perturbation strength is achieved by increasing the values of k and/or c2. When 

choosing c2 = 1 the maximum amount of perturbation for each point equals the median 

distance between the k nearest neighbors of the respective point. The minimum amount of 

perturbation of each point can be adjusted by choosing c1 > 0. 

3.6 Outlier simulation 

Real data sets may contain outliers – even though the data has been processed by a method 

for the detection and removal of outliers. Therefore, it is desirable to know how robust the 

result of a clustering algorithm is with respect to the presence of outliers. This knowledge 

can then be used to select a robust result among a number of candidate results obtained by 

different clustering algorithms or the same algorithm with different settings of a control 

parameter (especially, the number of clusters). 
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For the investigation of cluster stability with respect to outliers Hennig (2007) proposed the 
replacement of a subset of data points by noise, where “noise points should be allowed to lie 
far away from the bulk (or bulks) of the data, but it may also be interesting to have noise 
points in between the clusters, possibly weakening their separation”. The author cited 
Donoho’s and Huber’s concept of the finite sample replacement breakdown point as a 
related methodological basis. 
Replacing points by noise. Choose M, the number of data points to be replaced by noise, 
where 1 ≤ M < N with N being the size of the original sample X. Select a noise distribution 
and replace M elements of X by points drawn from the noise distribution. For example, the 
uniform distribution on a hyperrectangle [-c, c]p ⊂ ℜp , C > 1, may be used, where X had 
been transformed before the replacement to have a zero mean vector and the identity matrix 
as covariance matrix. 
Addition of noise points. The replacement of original points by noise causes a loss of 
information which may impair the modeling of the data structure based on a resample 
clustering. Therefore, an alternative method is proposed here. The M points drawn from the 
noise distribution could also be added to the data set (i.e., without eliminating any original 
point). The artificial increase of the resample size in comparison to the original sample size 
may be less problematic for the purpose of cluster validation than it could be for other 
resampling applications. It is also possible to find a balance between the artificial increase of 
the resample size and the information loss: MR points are replaced, while MA points are 
added, where MR + MA = M. Reasonable choices for MR and MA may have to be sought 
experimentally by the user. 

3.7 Feature resampling 

Data randomization schemes can also be applied to the set of features used to characterize 
the population. Such methods will be subsumed below under the term ‘feature resampling’. 
Two of the subsequently described methods (feature subsampling and leave one feature 
out) leave the information about one or more features unused when generating a resample. 
These methods may be useful if the number of features p is larger than the number of data 
points N, where the N points in the p-dimensional coordinate system actually span a data 
space with less than p (i.e., at most N−1) dimensions. An example is the clustering of 
biological tissues based on gene expression data, where often 40 ≤ N ≤ 300 and p ≥ 1000  (cf. 
Monti et al., 2003). In such cases the clustering may become more effective (because 
redundant information are eliminated) and the computational effort of the clustering would 
decrease (owing to the dimension reduction). 
Feature subsampling. For r = 1, 2, …, select a subset of sr features randomly from the entire 

set of p features (1 ≤ sr < p). Resample r is obtained by extracting the data of the original 
sample for the selected features only. The value of sr can be fixed for generating all 
resamples (e.g., Smolkin & Gosh, 2003). Alternatively, sr can be a random variable. Yu et al. 
(2007) defined the value of sr to be uniformly distributed over the integer range between 
0.75p and 0.85p. 
Feature multiscale bootstrapping.  There exists a version of bootstrapping which is similar 
to feature subsampling with variable subsampling size. In this method bootstrap resamples 

of a variable size M ≤ N are drawn from the original sample. This method has been applied 
to the set of features (gene expression values) when clustering tumor samples (Suzuki & 
Shimodaira, 2004). An implementation of the method is available in the free statistical 
software R (Suzuki & Shimodaira, 2006). 
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Leave one feature out. Generate a set of i = 1,…, p resamples, where p is the number of all 
features. Resample i contains the original data of all features except feature i. If the number 
of features is large, the p resamples are relatively similar. Accordingly, a resample clustering 
is likely to generate p similar partitions and a cluster stability assessment of these partitions 
may not be informative. A cluster validation approach developed for ‘leave one feature out’ 
resamples is the ‘figure of merit’ (FOM), motivated by Efron’s jackknife approach. The FOM 
quantifies how well the data clustering based on all features except feature i can predict the 
clustering based on only the data of feature i. For the details see (Yeung et al., 2001). 
Feature mapping. Several methods exist for the mapping of a data set into a lower-
dimensional space. Among these methods randomized maps suggest themselves for the 
application to resampling-based cluster validation due to their attractive properties. First, 
these projections generate random variations of the input data, where the strength of 
variation can be adjusted almost arbitrarily. Second, some characteristics of the data in the 
original space, such as the distances between points, are approximately preserved in the 
projected space (i.e., metric distortions are bounded according to the Johnson-Lindenstrauss 
theory). Third, the number of dimensions of the projected space can be slightly or 
considerably smaller than the number of dimensions of the original space. The 
dimensionality of the projected subspace in which a limited distortion can be obtained 
depends only on the cardinality of the data and the magnitude of the admissible distortion. 
For details see (Bertoni & Valentini, 2006).  For potential users an implementation of some of 
these methods is available in the free statistical software R (Valentini, 2006). 
Feature weighting. The features to be included into a resample data set can also be 
randomly weighted. When using continuous positive weights, the information of every 

feature is included at a certain degree. The lognormal distribution with the mean μ = −log2 

and the variance σ2 = 2*log2 can be used for the drawing of the weights. The method can be 
interpreted as an alternative approach to bootstrapping. The use of the lognormal 
distribution can be motivated based on relationships of this distribution with the Poisson 
distribution and the binomial distribution, where the latter is the underlying distribution of 
a drawing with replacement. The authors of this method (Gana Dresen et al., 2008) called 
their approach resampling based on continuous weights. 

4. Results of benchmarking studies 

The performance of the above resampling methods is not easily predicted based on a 
theoretical analysis. Therefore, empirical comparisons of different methods provide useful 
information for the selection of a method in future applications. This section is a summary 
of main results reported in five studies which included benchmarking tests of different 
resampling schemes in a clustering context. In the next section these results will be 
discussed aiming at general suggestions for the use and choice of resampling methods 
applied to cluster validation. 
In the sequel, the term bootstrapping always refers to its non-parametric version. The 
bootstrap scheme (drawing with replacement) was always applied to the full original 
sample. To keep the reported information concise the following symbols will be used. 
Symbols / abbreviations  

N  number of observations (data points) in an original sample 
p   number of dimensions (i.e., features used to describe the members of a population) 
R   number of resamples generated by using one of the resampling schemes 
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S    subsampling size (percentage of data randomly drawn from the original data sample) 
KR  number of clusters generated when clustering each resample data set 
K   number of clusters of a consensus partition obtained from the set of resample partitions 
Kt   true (known) number of classes (populations) represented by a benchmarking data set 
Minaei-Bidgoli et al. (2004) compared bootstrapping and subsampling for five 
benchmarking data sets with N >> p. The number of resamples R varied from 5 to 1000 and 
S ∈ [5%, 75%]. All resample partitions were obtained by using the K-means clustering 
algorithm. Resampling performance was measured based on the misassignment (error) 
obtained for the clustering partitions in comparison to the a priori known class structure of 
benchmark data sets. The error rate was always calculated for a partition representing the 
consensus of the R resample partitions. Four different methods from the literature were 
used providing four consensus partitions in each case. While the generation of resample 
partitions was repeated for different pre-specified values of the number of clusters (KR ∈ [2, 
20], KR > Kt), each consensus partitions was calculated to have exactly the true number of 
clusters (K = Kt). The error was calculated after finding the optimal assignment between the 
obtained consensus clusters and the known classes. All experiments were repeated at least 
10 times and average errors were reported for some of the best parameter settings of the 
entire procedure (resampling, resample clustering and consensus clustering). 
The error rates obtained for bootstrapping and subsampling were similar. Because the 
results for subsampling were based on only 5 to 75% of the data sets (parameter S), the 
authors considered subsampling as a flexible method that can be used to reduce the 
computational cost in many data mining tasks. 
Möller & Radke (2006) compared bootstrapping, subsampling (S = 80%) and perturbation  
(with three values of the perturbation strength, see section 3.4). R = 20 was fixed in all 
experiments. Resampling performance was measured based on the rate of false estimates of 
the number of clusters obtained for the set of the R resample partitions. For each data set 458 
estimates of the number of clusters were obtained, resulting from the application of 12 
clustering techniques and 41 cluster validity indices. The clustering methods included 
different hierarchical agglomeration schemes and different metrics, a so-called K-medoid 
clustering and two versions of fuzzy C-means clustering. Only those of the 458 results were 
used for the final interpretation where the correct (a priori known) number of clusters was 
obtained for the original sample as well as for the majority of the resamples. (These 
constraints were used to exclude errors due to poor original sampling, poor cluster analysis 
and/or poor configuration of the resampling scheme.) The following data were analyzed:  
five realizations of each of the stochastic models 2, 3, 4, 6 and 7 described in (Dudoit and 
Fridlyand, 2003), three microarray data sets with the 200 most differentially expressed genes 
(Leukemia, CNS and Novartis data described in Monti et al., 2003), the data sets Iris, Liver, 
Thyroid and Wine from the UCI repository (Asuncion & Newman, 2007), and a data set of 
functional magnetic resonance imaging data. Data sets with N >> p as well as N << p were 
included.  
In general, the error rates obtained for the perturbation technique were smaller than the 
error rates for subsampling. Both perturbation and subsampling led to clearly smaller error 
rates than bootstrapping. The same ranking was obtained when considering all (about 
15.000) estimates of the number of clusters without applying the mentioned constraints. The 
occurrence of false estimates even for a perturbation with 1% noise indicated that the small 
errors obtained for the perturbation scheme are not spurious results (i.e., the perturbation 
was effective). The authors concluded that the increased errors for subsampling and 
bootstrapping may have been a consequence of the information loss (i.e., 20% and about 
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37% of the original sample were not used for the generation of a resample in the 
subsampling and bootstrapping schemes, respectively). The authors further concluded that 
resampling schemes without this information loss are more useful in cluster validation 
studies, in particular, when the original samples have a small size. 
Hennig (2007) compared bootstrapping, subsampling (S = 50%), the replacement of sample 
points by noise (M = 0.05N, c = 3 and M = 0.2N, c = 4, see section 3.6), two versions of 
jittering (parameter q was set respectively to the 0.1- and 0.25-quantiles of the values dij, see 
section 3.2), and the combination of bootstrapping and jittering (q = 0.1). R = 50 was fixed in 
all experiments. Resampling performance was measured based on several types of results. 
First, cluster stability was assessed by calculating the agreement between the partition 
generated from each resample and the partition obtained for the original sample (The 
agreement between clusters of two partitions was measured by the Jaccard index (cf. 
Theodoridis & Koutroumbas, 2006).) Second, for model data with true cluster memberships, 
it was measured how well the clustering of an original sample represented the model 
structure. (The Jaccard index was applied to the cluster memberships of each original 
sample and the true cluster memberships.) Third, the correlation between the two 
aforementioned types of results was calculated. Different clustering methods were used, 
namely, a method called normal mixture plus noise, K-means, 10% trimmed K-means and 
average linkage hierarchical agglomeration. 50 original samples were generated for each of 
two stochastic models (Kt = {3, 6}, N >> p). One model included outliers. One biological data 
set (N = 366, p = 306) was analyzed that was known to contain substructure – without exact 
knowledge about the ‘true’ cluster composition. 
Due to the choice of the analysis design, three types of results were distinguished. 1) 
partitions of original samples with a fairly good representation of the model structure and a 
stable clustering of the resample data that corresponded to this model structure, 2) 
partitions of original samples with a relatively poor representation of the model structure 
and an unstable clustering of the resample data and 3) partitions of original samples with a 
relatively poor representation of the model structure and, nevertheless, a stable clustering of 
the resample data. The results of the types 1 and 2 are desirable, because they permit 
appropriate conclusions about the performance of clustering of unknown data based on 
resample cluster stability scores. Results of type 3 are problematic. If the original sample 
does not adequately represent the true population structure, also the clustering of this 
sample may not represent the true structure. Even though it is desirable to obtain an 
indication of the poor modeling result, namely, an unstable clustering for the resample data. 
Otherwise, this kind of inappropriate modeling cannot be distinguished from proper 
clustering models when the true population is unknown. 
Based on all results, subsampling was considered as being the best method, followed by the 
combination of bootstrapping/jittering and bootstrapping alone. The replacement of data 
points by noise was also useful in a number of case, including some cases where the other 
methods did not perform well (i.e., they provided a number of type-3 results). Jittering 
showed generally a poor performance (i.e., a relatively large fraction of type-3 results for 
most of the data sets and clustering algorithms). The author concluded that a good strategy 
in practice can be the use of one of the schemes bootstrapping, bootstrapping/jittering and 
subsampling together with one scheme for replacing data by noise. 
Gana Dresen et al. (2008) compared bootstrapping and feature weighting. R = 1000 was fixed 
in all experiments. Resampling performance was measured based on the stability of branches 
of cluster trees (dendrograms) obtained from hierarchical agglomerative clustering of the 
resample data sets. Furthermore, a majority consensus tree was generated from the resample 
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cluster trees and this consensus tree was compared with the cluster tree obtained from the 
original sample (based on the Rand index; cf. (Theodoridis & Koutroumbas, 2006)). For the 
comparison, gene expression data from 24 chromosomes (p = 8 to 648 probe sets) of N = 20 
tumor patients were used. For a subset of the data, knowledge about actual clustering 
structure was available. A data set containing p = 7 features of N = 22 primates was also 
analyzed. In addition, it was investigated how well groups of simulated differentially 
expressed genes can be robustly detected based on bootstrapping and feature weighting. 
In a number of cases bootstrapping and feature weighting showed comparable performance. 
However, in several cases bootstrapping led to inappropriate consensus cluster trees. That 
is, the structure was inappropriate, many spurious singleton clusters were obtained and 
especially the false clusters proved to be stable under the bootstrap procedure.  The authors 
concluded that resampling with continuous weights is strongly recommended because it 
performed at least as well as bootstrapping and in some cases it surpassed bootstrapping. In 
particular, feature weighting was more appropriate than bootstrapping to cluster small size 
samples. 
 Möller and Radke (2006b) reported results of estimating the number of clusters based on 
two different approaches, denoted here by A and B. In approach A (Monti et al., 2003) 
resampling is performed by subsampling (S = 80%). In approach B (Möller & Radke, 2006b) 
nearest neighbor resampling (NNR1) was used. Approach B led to better results than A on 
high-dimensional gene expression benchmark data (N << p). In particular, a fairly good 
recovery of known tumor classes was possible based on just R = 10 nearest neighbor 
resamples in approach B, while approach A led to similar or worse results based on R = 200 
or R = 500 subsamples (with R depending on the clustering algorithm). These results 
indicated the usefulness of nearest neighbor resampling; however, the performance 
differences may partly be attributable to the different methods selected in the approaches A 
and B, respectively, for clustering and for estimating the number of clusters. 

5. Results of nearest neighbor resampling 

Results of a direct benchmarking of NNR and other resampling methods are currently not 
available. However, several cluster validation results based on NNR have been obtained. 
Ulbrich (2006) used the NNR1 algorithm to identify robust and prognostic gene expression 
patterns by clustering of tumor patients. Guthke et al. (2007) performed clustering to find 
co-expression patterns of genes for the subsequent utilization in systems biology. They 
showed that the NNR1-based cluster stability analysis can be used to complement and 
confirm the results of a different quality assessment, namely the vote of so-called cluster 
validity indices (Bezdek and Pal, 1998). 
The use of the NNR2 method has provided strong indications that (estrogen receptor 
positive) breast cancer can be robustly subdivided into three, perhaps four, classes which  
are represented by different prognostic gene expression profiles. This result has been 
consistently obtained for gene expression data and survival time data generated in four 
different studies based on two different DNA microarray platforms and including the data 
from more than 700 tumor patients (Iffert, 2007). 
In combination with methods presented by Fred and Jain (2006), the NNR2 algorithm was 
recently applied to the gene expression benchmark data sets of known tumor classes 
published by Monti et al. (2003). In several cases the obtained class recovery scores were 
higher than those obtained by Monti et al. based on subsampling and those obtained by Yu 
et al. (2007) who analyzed the same data based on feature subsampling (Möller, 2008). 
However, the cluster analysis methods used in these studies were also different. 
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6. Discussion and conclusions 

Bootstrapping (drawing with replacement) is perhaps the most widely known and 
recommended resampling approach, because it is a standard approach for statistical 
inference methods (Efron & Tibshirani, 1993). If the sample size is large and the true 
distribution is well represented by the data, bootstrapping may also be useful for the 
validation of clustering results. That is, other resampling schemes may not lead to more 
accurate results (cf. Minaei-Bidgoli et al., 2004). Under these circumstances the user may 
prefer bootstrapping, because no control parameter has to be set. 
However, as shown in complementary investigations (section 4), for statistical cluster 
validation it is recommended to prefer other methods than bootstrapping. When the sample 
size is large, subsampling is likely to perform as well as bootstrapping (Minaei-Bidgoli et al., 
2004; Hennig, 2007) or even better (Möller & Radke, 2006a), where the clustering of 
subsamples requires a lower computing effort. If the clustering result is to be used as the 
basis for a classifier of unknown samples, the subdivision scheme (e.g., Dudoit & Fridlyand, 
2003) may be the best choice, because it is focused on minimizing the prediction error, while 
subsampling results are commonly used for assessing cluster stability (e.g., Tseng and 
Wong, 2005; Fred & Jain, 2006). When the sample size was small, perturbation and 
resampling with continuous weights have been shown to outperform bootstrapping (Möller 
& Radke, 2006a; Gana Dresen et al., 2008). 
If the sample size is small, a further decrease by drawing subsamples prevents the 
“learning” of a good model from the resample data. In this case, perturbation methods are 
more suitable than sampling from a sample (Möller & Radke, 2006a). However, the user 
should be aware that this type of perturbation works best only if all populations of the 
hypothesized mixture population have equal variability. Furthermore, this method requires 
an estimate or guess of the proper perturbation strength. Therefore, it may be recommended 
to search for stable clusters by using different values of the perturbation strength. This could 
increase the confidence in the validity of the obtained clusters and their completeness with 
respect to the true structures. 
Nearest neighbor resampling (NNR) is an attractive alternative to the perturbation described 
in section 3.4. In the absence of prior knowledge, the parameter setting for the NNR2 method 
is less critical than the specification of a global perturbation strength. According to the author’s 
knowledge, the NNR methods were described here for the first time in detail. Especially, the 
NNR2 method has provided promising results when clustering data with complex structures 
(see section 5). Therefore, based on practical experience, the author recommends the NNR 
approach for applications of unsupervised machine learning. Even though, more 
comprehensive simulations and benchmarking studies with other methods are desired to 
know the performance of the NNR approach in a more general context. 
Feature resampling may be a way to bypass some of the problems associated with the above 
resampling schemes. However, the successful use of some of these techniques is limited to 
applications where the assumptions underlying these techniques are fulfilled. This 
argument applies, for example, to feature subsampling and leave one feature out which involve 
a loss of original information (cf. Yeung et al., 2001). Feature mapping (Bertoni & Valentini, 
2006) appears to be a promising approach due to the combination of dimension reduction 
and the distance–preserving character of the mapping. It would be interesting to have 
empirical results indicating the relative merits of this kind of mapping in comparison to 
several other methods presented above. Another promising method is resampling with 
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continuous weights (Gana Dresen et al., 2008). As stated by the authors it would be interesting 
to investigate the performance of this method in combination with other clustering 
algorithms than the hierarchical ones used. 
The resampling methods for the simulation of measurement errors (jittering) and outliers are 
useful if the user wants to confirm the robustness of the final clustering result with respect 
to these factors of influence. However, robust results of such an analysis are only a pre-
condition for a good clustering model. The fact that clusters are stable under jittering and 
the insertion of artificial outliers must not be interpreted over-optimistically as the 
indication of a real mixture population.  
Hennig (2007) argued that “Generally, large stability values do not necessarily indicate valid 
clusters, but small stability values are informative. Either they correspond to meaningless 
clusters (in terms of the true underlying models), or they indicate inherent instabilities in 
clusters or clustering methods.” Following this view, any stable cluster and any good 
prediction based on the subdivision approach (section 3.1) may have to be verified by 
repeating the cluster analysis with an increasing amount of (random) change made to the 
data. One criterion for stopping these repetitions is that some clusters ‘disappear’ under the 
influence of resampling, while other clusters can still be recovered. This observation would 
not be expected in the absence of any true structure. Another termination criterion is 
fulfilled if the clustering structures ‘disappear’ only if the amount of random change has 
become clearly larger compared to the effect of the measurement error. This fact may be 
deducible even if the measurement error can only be roughly estimated. 
An inevitable decision that has to be made by the user is the selection of the number of 
resamples, R. A proper value of R depends on both the structure of the investigated data 
and the resampling method used. In fact, compact and well separated clusters would be 
robustly detected based on fewer resamples than overlapping, noisy clusters. In addition, 
the more original sample information is utilized for generating each resample, the fewer 
resamples are likely to be required. For example, R = 10,..., 30 resamples obtained from NNR 
methods have been sufficient to robustly recover clustering structures of small high-
dimensional samples (Ulbrich, 2006; Iffert, 2007; Möller & Radke, 2006b). In contrast, R = 
100,…, 1000 resamples have often been used for the cluster validation based on 
bootstrapping or subsampling (cf. section 4). If the information loss of the mapping from the 
original sample to the resample exceeds a data specific-threshold, the lack of information in 
the individual resamples may not be compensable by any increase in the number of 
resamples.  
Computerized observation techniques in an increasing number of research areas generate 
high-dimensional data (e.g., DNA microarray data, spectral data with a high frequency 
resolution and complex image and video data). High-dimensional data sets are more likely 
than others to provide clusterings which are not significant and meaningful. Especially in 
those cases, but also when clustering any other sample data, the use of resampling methods 
is recommend as a valuable aid for a statistical model quality assessment. 
The above description and review of resampling schemes and their performance as well as 
the presentation of a new approach (NNR) may help users to select an appropriate method 
in future studies. 
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