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1. Introduction  

The emergence of the World Wide Web has lead to growing needs for interacting 

components capable of achieving – together – complex requests on the Web. Service 

oriented Systems (SoS) are a response to this issue, given available standards for describing 

individual services and interaction between them, and the attention to interoperability 

combined with an uptake in industry. A service is a self-describing and self-contained 

modular application designed to execute a well-delimited task, and that can be described, 

published, located, and invoked over a network (McIlraith & Martin, 2003; Papazoglou & 

Georgakopoulos, 2003). A web service is a service made available on the Internet via tailored 

technologies such as WSDL, SOAP or UDDI (Walsh, 2002). To fulfill elaborate requests that 

involve many execution steps, web services participate in web services compositions. To 

optimize such compositions, each step of the execution is achieved by the most competitive 

available web service. The most competitive web service is the one who performs the given 

task while fulfilling its functional requirements and providing the best observed values of 

quality of service (QoS). 

QoS are the nonfunctional properties of a web service and refer to concerns such as 
availability, reliability, cost or security (Menascé, 2002). The selection of all web services that 
can participate in a composition (i.e., web services that will perform at least one step of the 
execution) is under the responsibility of the service composer. To achieve QoS-aware service 
selection, we rely on a Multi-Criteria Randomized Reinforcement Learning approach 
(MCRRL). MCRRL authorizes automated continuous optimization of service monitoring 
and leads the system to respond to the variation of the availability of web services without 
human involvement. 
This paper focuses on the composition of services under the constraint of openness, resource 
distribution, and adaptability to changing web service availability w.r.t. multiple criteria. To 
enable such system characteristics, a fit between the system architecture and services 
composition behavior is needed, that is: (1) To support openness, few assumptions can be O
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made about the behavior of the web services that may participate in compositions. It thus 
seems reasonable to expect services composition responsibility not to be placed on any web 
service: the architecture ought to integrate a special set of web services, the service 
composers, that coordinate services composition. (2) To allow the distribution of web 
services, no explicit constraints should be placed on the origin of entering services. (3) To 
enable adaptability, composer behavior should be specified along with the architecture. (4) 
Since there is no guarantee that web services will execute tasks at performance levels 
advertised by the providers, composition should be grounded in empirically observed 
service performance and such observations executed by the composers. (5) The variety of 
stakeholder expectations requires services composition to be driven by multiple criteria. (6) 
To ensure continuous adaptability at runtime, composition within the architecture should 
involve continual observation of service performance, the use of available information to 
account for service behavior and exploration of new options to avoid excessive reliance on 
historical information. 
Contributions. We provide a complete composition process involving several steps: (1) The 
service user requests a service that involves several tasks that can be fulfilled by different 
web services. These tasks and all possible execution paths are described on on a statechart. 
(2) The service composer observes available web services and rejects those that can not 
achieve one of the existing task of the statechart. It then builds the resulting execution plan 
as a Directed Acyclic Hypergraph, on which it represents all services available for each task. 
(3) The service requester expresses its quality expectations with the help of our QoS model. 
(4) The composer rejects services that do no meet quality requirements and scores each 
candidate web service with our proposed QoS aggregation model to get a multi criteria 
measure of their performance. (5) This value is the one that the service composer maximizes 
in our RRL algorithm. The result of the computation gives us web services to select to get 
the most competitive composite web service. 
Organization. We present our conceptual foundations for the remaining of the paper in 
Section 2. That section covers the case study used throughout this paper and our 
composition model with its statechart representation and its Directed Acyclic Hypergraph 
derivation. It also proposes our QoS model applied by the service user to specify its 
priorities and preferences about QoS. Section 3 presents how multiple quality criteria are 
aggregated into a single measure of performance. The method is illustrated with the 
previously introduced case study. Section 4 introduces our Reinforcement Learning solution 
to the composition problem by liken it to the task allocation problem. Section 5 presents 
experiments that we made on our Multi-Criteria Randomized Reinforcement Learning 
proposal. Section 6 outlines the related work. Finally Section 7 concludes this paper and 
exposes our future work. 

2. Baseline 

This section presents the different conceptual elements used through the paper. Our case 
study is introduced in Subsection 2.1. Our services composition model is proposed in 
Subsection 2.2 and involves two steps. The first is to define the possible composition process 
with a statechart as described in Subsection 2.2.1. We illustrate the statechart representation 
with the composition of web services introduced in the case study. The second is to 
represent candidate services for each elementary task of the whole composition. This 
representation is derived from statecharts with Directed Acyclic Hypergraph. The 
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procedure for doing so is explained and illustrated with our case study in Subsection 2.2.2. 
We present in Subsection 2.3 the QoS model dedicated to the service user to make its 
particular requirements about its QoS priorities and preferences. 

2.1 Case study 

To illustrate our selection of services entering in a composition, we propose a case study 
subsequently used throughout the paper. The European Space Agency's (ESA) program on 
Earth observation allows researchers to access and use infrastructure operated and data 
collected by the agency.1 Our case study focuses on the information provided by the MERIS 
instrument on the Envisat ESA satellite. MERIS is a programmable, medium-spectral 
resolution imaging spectrometer operating in the solar reflective spectral range. MERIS is 
used in observing ocean color and biology, vegetation and atmosphere and in particular 
clouds and precipitation. In relation to MERIS, web services are made available by the ESA 
for access to the data the instrument sends and access and use of the associated computing 
resources. 

 

Fig. 1. Graphical user interface of the ENVISAT/MERIS MGVI web service 

                                                 
1http://gpod.eo.esa.int 
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Among available functionalities delivered by these web services, we focus our attention to 
services enabling to extract the vegetation index, or more precisely, the Fraction of Absorbed 
Photosynthetically Active Radiation (FAPAR) from MERIS data. The graphical interface 
used to determine the requested information for the vegetation index on a given region is 
illustrated in Figure 1. The graphical output produced for the world-wide map is given in 
Figure 2. 
Two main services allow the extraction of such data, one processing the information for the 
world-wide map and the other computing information for a given area of the world. The 
graphical user interface of the service providing regional data differs from the world wide 
one with a bounding box enabling to select an area on the map. World-wide data is much 
often requested than data for a given region of the world, so World-wide data can be more 
rapidly retrieved than the regional. Moreover, some services authorize the extraction of 
regional data from world-wide data. 
 

 

Fig. 2. Output provided by the world-wide vegetation service 

2.2 Web services composition model 

Service requests pointed out that various criteria can be used in specifying a service request; 
namely, QoS concepts cover deadline, reputation, monetary cost, and explicit requester 
preferences. Reputation and trust receive considerable attention in the literature (e.g., 
(Maximilien & Singh, 2005; Zacharia & Maes, 2000)). In AOSS, the ideas underlying 
Maximilien and Singh's approach (Maximilien & Singh, 2005) can be followed, with two 
caveats: they use “trust” to select services from a pool of competing services and exploit user-
generated opinions to calculate reputation, whereas herein WS are selected automatically and 
reputation can be generated by comparing WS behavior observed by the composer and the 
advertised behavior of the WS. The following is one way to define reputation in AOSS.2 

                                                 
2Reputation is used here instead of trust since no user opinions are accounted for. 
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have been made over a quality parameter k .  

It is apparent that many other criteria can be accounted for when selecting among 
alternative WS compositions. Decision making in presence of multiple criteria does not 
require full specification of all possible criteria for each WS---instead, it is up to the requester 
to choose what criteria to specify. The algorithm thus optimizes a single normalized variable 

(i.e., taking values in the interval [0,1] ). An aggregation function for the criteria relevant to 

the service requester is applied, so that the result of the function is what the algorithm will 
optimize. The process providing the aggregation function is presented in Section 3. 

2.2.1 Statechart representation 

A services composition is a succession of elementary tasks, whose exution fulfills a complex 
request. We assume the request describes a process to execute. Individual web services are 
combined together according to their functional specifications. Compositions support 
alternative possibilities and concurrency of elementary tasks. Similarly to Zeng and 
colleagues, our service process is defined as a statechart (Zeng et al., 2003). Statecharts offer 
well defined syntax and semantics so that rigorous analysis can be performed with formal 
tools to check specification concordance between services. Another advantage is that they 
incorporate flow constructs established in process modeling languages (i.e, sequence, 
concurrency, conditional branching, structured loops, and inter-thread synchronization). 
Consequently, standardized process modeling languages, such as, e.g., BPMN (OMG, 
2006a), can be used to specify the process model when selecting services that will enter in 
the composition. Statecharts offer the possibility to model alternatives and a composite task 
can be achieved by different paths in the statechart. Such paths are named execution paths ant 
their definition in relation to statecharts is given in Definition 2.2.1. The statechart is a useful 
representation of a process that a WS composition needs to execute, most selection 
algorithms cannot process a statechart in its usual form. Instead, a statechart is mapped onto 
a Directed Acyclic Hypergraph (DAH), using Definition 2.2.1 and the technique for 
constructing DAH, described below. 
 (Adapted from (Zeng et al., 2003)) An execution path of a statechart is a sequence of states 

1 2
[ , , , ]

n
t t t… , such that 

1
t  is the initial state, 

n
t  the final state, and for every state 

(1 < < )
i
t i n , the following holds:   

• 
i
t  is a direct successor of one of the states in 

1 1
[ , , ]

i
t t −… .  

• 
i
t  is not a direct successor of any of the states in 

1
[ , , ]
i n
t t+ … .  
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• There is no state 
j
t  in 

1 1
[ , , ]

i
t t −…  such that 

j
t  and 

i
t  belong to two alternative branches 

of the statechart.  
 

 
 

Fig. 3. Statechart representation of the composite service 

We concentrate our efforts here on the description of elementary tasks of a composite 

service processing the FAPAR for a given region of the world. Two main paths of tasks 

allow to achieve this composite service. Besides elementary tasks stepping in both paths, the 

first path uses services allowing to process data for a given region of the world while the 

second path process the world-wide data and restrains the information to the given area. 

The composite service and its elementary tasks are illustrated with the corresponding 

statechart in Figure 2.2.1. 

2.2.2 Directed acyclic hypergraph instantiation 

It is apparent that an acyclic statechart has a finite number of execution paths. If the 

statechart is not acyclic, it must be “unfolded” (Zeng et al., 2003): logs of past executions 

need to be examined in order to determine the average number of times that each cycle is 

taken. The states between the start and end of a cycle are then duplicated as many times as 

the cycle is taken on average. Assuming for simplicity here that the statechart is acyclic, an 

execution path can be represented as a Directed Acyclic Hypergraph. 

Given a set of distinct execution paths 
1, ,

{[ , , ]}
k n k
t t…  ( k  is the index for execution paths), 

the Directed Acyclic Hypergraph (DAH) is obtained as follows: 

• DAH has an edge for every pair ( , )task WS  which indicates the allocation of WS to the 

given task. DAH thus has as many edges as there are possible allocations of WS to 
tasks. 

• DAH has a node for every state of the task allocation problem. Such a state exists 
between any two sequentially ordered tasks of the task allocation problem (i.e., a node 
connecting two sets of edges in the DAH, whereby the two tasks associated to the two 
sets of edges are to be executed in a sequence).  

Note that: (i) the DAH shows all alternative allocations and all alternative execution paths 

for a given statechart; (ii) conditional branchings in a statechart are represented with 

multiple execution paths. 

Available web services for fulfilling individual tasks of our composite service proposed in 

Figure 2.2.1 need to be represented in a DAH to apply our selection approach. Each state of 

the statechart will become a node in the DAH with an additional starting node depicting the 

initial state. The resulting DAH is available in Figure 3 with each edge standing for a service 

able to fulfill the task specified in the outgoing node of the edge. Several services provided 

by the ESA are able to fulfill each individual tasks of the composite service providing the 

FAPAR index. The DAH representation gather web services which can be used at different 

steps of the execution. 
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Fig. 4. DAH representation of the composite service    

2.3 Specification of user priorities and preferences 

We suggest a QoS model that enables the user to express accurately its needs about quality 
properties of its required service. To account for various aspects of user expectations, this 
model must include advanced concepts such as priorities over quality characteristics or 
preferences on offered values. To enable specifying these concepts, the model contains 
modeling constructs dedicated to various facets of user expectations. 
Among multiple available QoS models (D’Ambrogio, 2006; Keller & Ludwig, 2003; Zhou et 

al., 2004), we base our model on the UML QoS Profile. The original UML QoS Framework 

metamodel, introduced by the Object Management Group (OMG, 2006b), includes modeling 

constructs for the description of QoS considerations. It has some advantages over other 

models: it is based on the Unified Modeling Language (UML); it is a standard provided by 

the Object Management Group (OMG); it is a metamodel that can be instantiated in respect 

to users needs; and it covers numerous modeling constructs and allows to add some 

extensions. This model with our extensions are shown in Figure 2.3. 

In that metamodel, a QoS Characteristic is a description for some quality consideration, such 

as e.g., latency, availability, reliability or capability. Extensions and specializations of such 

elements are available with the sub-parent self-relation. A characteristic has the ability to be 

derived into various other characteristics as suggested by the templates-derivations self-

relation. A QoS Dimension specifies a measure that quantifies a QoS Characteristic. The unit 

attribute specifies the unit for the value dimension. QoS Values are instantiations of QoS 

Dimensions that define specific values for dimensions depending on the value definitions 

given in QoS DimensionSlots. A QoS DimensionSlot represents the value of QoSValue. It can 

be either a primitive QoS Dimension or a referenced value of another QoSValue. While 

constraints usually combine functional and non-functional considerations about the system, 

QoS Context is used to describe the context in which quality expression are involved. A 

context includes several QoS Characteristics and model elements. The aim of QoS Constraints 

is to restrict values of QoS Characteristics. Constraints describe limitations on characteristics 

of modeling elements identified by application requirements and architectural decisions. 

In comparison with the original OMG metamodel, we make some additional assumptions:   

• In the OMG standard, QoS Characteristics are quantified by means of one or several QoS 
Dimensions. We assume that the value of a QoS Dimension can similarly be calculated 
with quantitative measures of other QoS Dimensions. This assumption is expressed in 
the metamodel in Figure 2.3 through the Compose-Composed by relationship of the QoS 
Dimension metaclass. 

www.intechopen.com



 Machine Learning 

 

214 

 

Fig. 5. UML metaclasses to user modeling 

• We allow the user to express its priorities over QoS Characteristics and over QoS 
Dimensions by means of, respectively, QoS Charact Priority and QoS Dim Priority 
metaclasses whose are specializations of the QoS Priority metaclass. Its attribute rules 
concerns QoS Characteristics or QoS Dimensions involved in the priority and the 
direction of the priority while the attribute strength indicates the relative importance of 
the priority. QoS Priority Condition indicates conditions that need to hold in order for the 
priority to become applicable.  

• To enable the user to express its preferences over values of QoS Characteristics and QoS 
Dimensions, we add a specific metaclass: QoS Preference. Preferences over values are 
defined with some attributes: direction states if the value has to be minimized or 
maximized; max value indicates the maximal value expected by the user and defines its 
preference.  

  

 

Fig. 6. User specifications 

To illustrate our scoring model, we suppose a service requester who wishes to use our 
composite service processing FAPAR for a given area of the world while optimizing the 
following QoS Characteristics: availability, cost, latency, reliability, reputation and security. 
Some of these quality considerations are not directly quantifiable, and are measured with 
help of multiple QoS Dimensions (e.g.: latency is quantified by network time and execution 
time), others are measured with a single QoS Dimension (e.g.: the availability is a measure 
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provided in %). All these information are specified by the service requester with the help of 
our proposed QoS model. Parts of the complete specification of the user are illustrated in 
Figure 2.3. 

3. QoS scoring of services 

In order to select web services that will fulfill the different elementary tasks of the 
composition, the service composer must decide between them. Because web services 
represented in the DAH meet functional requirements, their discrimination will be made on 
their quality properties. To account for multiple quality properties in the reinforcement 
learning composition process, QoS need to be adequately aggregated. We explain in this 
section how the composer give an aggregated QoS score to each available service of the 
composition with help of Multi-Criteria Decision Making (MCDM) techniques. The QoS 
score is calculated by considering quality requirements expressed by the service user. To 
express such requirements, that must be interpretable by the service composer, the user 
needs an appropriate quality model. We present our QoS model and illustrate its utilization 
with the earth observation composite service of the ESA introduced in Subsection 2.2. 
The service composer uses information specified with the QoS model in combination with 
Multi-Criteria Decision Making (MCDM) techniques to establish an aggregated measure of 
quality properties on all available services. This measure must be calculated for each service 
candidate of the composition. However multiple execution paths are available in the DAH 
representation of the composite service and, these paths can be subject to major variations in 
quality performance. In our ESA case study, we observed that services used to generate 
world-wide data are slower than services providing regional data but are also more reliable. 
Anyway, scores of services need to be comparable to service candidates on all paths of the 
composition. To achieve this global measurement, the scoring will be established by 
pairwise comparisons on all services suitable for any tasks of the composition. 
The scoring process involves the following steps: (1) apply hard constraints on services, to 
restrict the set of services upon whose MCDM calculation will be made. (2) establish the 
hierarchy of quality properties with information related to characteristics and dimensions 
decomposition, each property being considered as a criterion of the MCDM model. 
Moreover, two distinct hierarchies are build, the first dedicated to benefits, i.e.: criteria to 
maximize, the second dedicated to costs, i.e.: criteria to minimize. (3) fix the priorities of 
quality properties by applying the Analytic Hierarchy Process (AHP) on both hierarchies. 
(4) give a score to each service alternative for both benefits and costs hierarchies. This step is 
done with the Simple Additive Weighting (SAW) process, which gives us the opportunity to 
score alternatives with few information given on criteria. (5) for each alternative, the ratio 
benefits/costs is computed by service composer and a score is linked to each available 
service. 

3.1 Fixing hard constraints 

Hard constraints on quality properties (i.e.: QoS Characteristics or QoS Dimensions) are 
defined by the user to restrict the set of accepted services. These are specified with the QoS 
Constraint metaclass and fix thresholds to values of a QoS Dimension. While the service 
composer assigns best available services to the service requester, services that do not fulfill 
thresholds values for the different QoS Dimensions taken into account are considered 

www.intechopen.com



 Machine Learning 

 

216 

irrelevant. Constraints allow us to decrease the number of alternative services to consider 
when applying MCDM - all services that do not satisfy the constraints are not considered for 
comparison. 
The complete specification made by the service requester with the QoS model is transmitted 
to the service composer that will process all steps of the selection. The composer starts by 
rejecting services that do not fulfill hard constraints. For example, in specification given in 
Figure 2.3, the composer restrains available services to those that have an Availability higher 
than 80%. 

3.2 Characteristics and dimensions hierarchies 

Decomposition of QoS Characteristics into QoS Dimensions and QoS Dimensions into others 
QoS Dimensions may be used by the service composer to build a complete hierarchy of QoS 
properties. This information is expressed with help of the relations Type - Typed between the 
QoS Characteristic and the QoS Dimension metaclasses and Compose - Composed by defined 
over the QoS Dimension metaclass. The hierarchy established by the service composer 
allows to bind weights to QoS properties at different levels. This way, their relative 
importance is aggregated in accordance with the QoS properties that these quantify. To 
account for measurement of QoS Characteristics by QoS Dimensions and quantification of 
QoS Dimensions, we classify them into two separate hierarchies. The first is dedicated to 
benefits, all quality properties that have to be maximized: availability, reliability, reputation, 
etc. The second is designed for costs, involving quality properties to minimize: execution 
time, failures, cost, etc. Modality (maximize or minimize) of QoS properties is defined with 
the attribute direction of the QoS Value class. These two hierarchies are linked to the same 
global optimization goal. This top-down organization clearly indicates the contributions of 
lower levels of quality properties to upper ones. The final hierarchy obtained takes the form 
of a tree. 
The second step of the service composer is to establish benefits and costs hierarchies with 
the information provided by the service requester. The hierarchy corresponding to 
expectations formulated by the requester for the ESA composite service is illustrated in 
Figure 3.2. 
 

 

Fig. 7. Benefits and costs hierarchies 
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3.3 Priorities over criteria 

Priorities information is used to bind weights to QoS Characteristics and QoS Dimensions, 
reflecting their respective relative importance. These weights are defined using QoS 
Priorities specifications given by the service user and are linked to the corresponding QoS 
properties. Once the hierarchy is established, the relative importance of each QoS property 
has to be fixed with a weight reflecting its contribution to the main optimization goal. These 
weights must be fixed independently for benefits criteria and for costs criteria to consider 
separately positive and negative QoS properties. To fix weights on such hierarchies, we use 
the Analytic Hierarchy Process (AHP) (Saaty, 1980). The Analytic Hierarchy Process fixes 
weights to criteria with help of comparison matrices provided for each level of criteria. For a 
same level, each criterion is compared with other criteria of its level on a scale fixed between 
1/9 and 9. Each matrix is build with QoS Priority specifications: rules express direction of 
pairwise comparisons of criteria and strength fixes the value chosen by the user on the scale 
for the comparison. Next, weights of QoS properties are obtained with the computation of 
the right eigenvector of the matrix. The eigenvector is computed by raising the pairwise 
matrix to powers that are successively squared each time. The rows sums are then calculated 
and normalized. The computation is stopped when the difference between these sums in 
two consecutive calculations is smaller than a prescribed value. The service composer 
adopts a top-down approach, the weights of each level being multiplied by the weight of the 
quality property of its upper level to determine its relative importance on the whole 
hierarchy. This process is performed on both sides of the tree, for positive and negative 
quality properties. 
The third step of the composer is to fix weights for each level of criteria with the AHP 
method. With the information provided by QoS Priority instance in Figure 2.3, the service 
composer is able to build a comparison matrix for dimensions quantifying the Latency. In the 
case or our composite service computing the FAPAR index for a given area of the world, the 
service requester favors the Execution time rather than the Network time. In fact, Execution time 
is the main bottleneck of the service execution due to huge quantity of data processed. This 

matrix is 
1 4

1/ 4 1

⎛ ⎞
⎜ ⎟
⎝ ⎠

. The composer computes its eigenvector to obtain weights for this level, 

in the example: 0.2 for Network Time and 0.8 for Execution Time. These weights are multiplied 
by weights of upper levels to determine weights of the whole hierarchy that are illustrated 
in Figure 3.2. 

3.4 QoS scoring with user preferences 
Preferences information specified by the user on QoS Values is used by the service composer 
to compute the score of the service. We use this information to determine what values are 
preferred for a given QoS Characteristic or QoS Dimension. The priorities of quality 
properties have been fixed with weights reflecting their relative importance. Preferences on 
values allow us to discriminate services on a given criterion. To quantify these preferences, 
we rely on a specific class of MCDM methods: scoring methods (Figueira et al., 2005) and 
more specifically the Simple Additive Weighting (SAW) method (Hwang & Yoon, 1981). 
This method is based on the weighted average. An evaluation score is calculated for each 
alternative by multiplying the scaled value given to the alternative of that attribute with the 
weights given by the AHP method. Next, these products are summed for all criteria 
involved in the decision making process. Each service alternative is evaluated on both 
hierarchies, i.e.: benefits and costs, with the following formula: 
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i
w  is the weight of the QoS property i get with the AHP method and *
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scaled score of the service alternative u on the QoS property i. 
The scores for the QoS properties are measured with different scales, i.e.: percentage, 
second, level, etc. Such measurement scales must be standardized to a common 
dimensionless unit before applying the SAW method. The scaling of a service alternative for 
a given QoS property is evaluated with the following formula: 

 
max

i

ui
ui

x

x
x =*

  (2) 

where 
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uix  is the scaled score of the service alternative u on the QoS property i . 
ui
x  is the 

score of the service alternative u on the QoS property i expressed with its original unit. 
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i
x  

is the maximal possible score on the QoS property i. This maximal score is expressed by the 
user with help of the max value attribute of the QoS Preference class illustrated in Figure 2.3. 
When the unit of the QoS Property is a percentage, the maximal value is systematically 
equal to 100. If the unit is a time period as second, the user defines himself the maximal 
value. So, the scaled scores will reflect the preferences of the user with means of the relative 
importance of the maximal value by contrast to observed values. 
Once weights reflecting the relative importance of each QoS property have been fixed, the 

fourth step of the service composer is to define the score of each alternative for both benefits 

and costs hierarchies with user preferences. It uses the SAW method and begins by scaling 

the score of all alternatives on all QoS properties involved in the selection process. For 

example, in Figure 2.3, the max value proposed by the service user for the Network time is 

20 sec. With a service alternative offering a Network Time of 13 sec, the scaled score of this 

service for the Network Time QoS property is 65%. This score is then multiplied by 0,13333, 

the weight of the Network Time. This process is summed for all QoS properties considered 

and repeated for all existing service alternatives on both hierarchies. 

3.5 Benefits/costs analysis 

Scores of services alternatives get with the SAW method on both hierarchies define the 
relative performance of services on positive properties (benefits) and negative properties 
(costs). Benefits should be maximized while costs have to be minimized, to aggregate both 
considerations into a single measure of performance, the AHP MCDM method proposes to 
execute the benefits/costs ratio (Figueira et al., 2005). The benefits/costs ratio is evaluated 
with the following formula: 

 
costs

u

benefits

u
u

s

s
r =   (3) 

where 
u
r  is the final score of the service alternative u. benefits

u
s  is the score of the service u on 

the benefits hierarchy and 
costs

u
s  is the score of the service a  on the costs hierarchy. 
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The last step of the composer is then to compute the benefits/costs ratio of each alternative 
as suggested by some AHP variations. E.g.: if a service alternative has a score of 0,8126  for 
its benefits hierarchy and a score of 0,7270 for its costs hierarchy, the final score of its service 

is 
0,8126

= 1,1177
0,7270

. The respective score of each service is then linked to reflect its relative 

performance. 

4. Web services composition with randomized RL algorithm 

An important issue is the selection of WS that are to participate in performing the process 
described in the composition model. This problem is referred to as the task allocation 
problem in the remainder. 
Reinforcement Learning (RL) (see, e.g., (Sutton & Barto, 1998) for an introduction) is a 
particularly attractive approach to allocating tasks to WS. RL is a collection of methods for 
approximating optimal solutions to stochastic sequential decision problems (Sutton & Barto, 
1998). An RL system does not require a teacher to specify correct actions. Instead, the 
learning agent tries different actions and observes the consequences to determine which are 
best. More specifically, in the RL framework, a learning agent interacts with an environment 

over some discrete time scale = 0,1, 2,3t , ... . At each time step t , the environment is in 

some state, 
t
k . The agent chooses an action, 

t
u , which causes the environment to transition 

to state 
1t

k +  and to emit a feedback, 
1t
r+ , called ``reward''. A reward may be positive or 

negative, but must be bounded and it informs the agent on the performance of the selected 
actions. The next state and reward depend only on the preceding state and action, but they 
may depend on it in a stochastic fashion. The objective of reinforcement learning is to use 
observed rewards to learn an optimal (or nearly optimal) mapping from states to actions, 

which is called an optimal policy, Π . An optimal policy is a policy that maximizes the 

expected total reward (see, §  4.2, Eq. 5). More precisely, the objective is to choose action 
t
u , 

for all 0t ≤ , so as to maximize the expected return. Using the terminology of this paper, RL 

can be said to refer to trial-and-error methods in which the composer learns to make good 
allocations of WS to tasks through a sequence of " interactions" . In task allocation, an 
interaction consists of the following: 
1. The composer identifies the task to which a WS is to be allocated. 
2. The composer chooses the WS to allocate to the task. 
3. The composer receives a reward after the WS executes the task. Based on the reward, 

the composer learns whether the allocation of the given WS to the task is appropriate or 
not. 

4. The composer moves to the next task to execute (i.e., the next interaction takes place).  
One advantage of RL over, e.g., queuing-theoretic algorithms (e.g., (Urgaonkar et al., 2005)), 
is that the procedure for allocating WS to tasks is continually rebuilt at runtime: i.e., the 
composition procedure changes as the observed outcomes of prior composition choices 
become available. The WS composer tries various allocations of WS to tasks, and learns from 
the consequences of each allocation. Another advantage is that RL does not require an 
explicit and detailed model of either the computing system whose operation it manages, nor 
of the external process that generates the composition model. Finally, being grounded in 
Markov Decision Processes, the RL is a sequential decision theory that properly treats the 
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possibility that a decision may have delayed consequences, so that the RL can outperform 
alternative approaches that treat such cases only approximately, ignore them entirely, or 
cast decisions as a series of unrelated optimizations. 
One challenge in RL is the tradeoff between exploration and exploitation. Exploration aims to 
try new ways of solving the problem, while exploitation aims to capitalize on already well-
established solutions. Exploration is especially relevant when the environment is changing: 
good solutions can deteriorate and better solutions can appear over time. In WS 
composition, exploitation consists of learning optimal allocations of WS to tasks, and 
systematically reusing learned allocations. Without exploration, the WS composer will not 
consider allocations different than those which proved optimal in the past. This is not 
desirable, since in absence of exploration, the WS composer is unaware of changes in the 
availability of WS and appearance of new WS, so that the performance at which the 
composition is fulfilled inevitably deteriorates over time in an open and distributed service-
oriented system. 
Two forms of exploration can be applied: preliminary and continual online exploration. The 
aim with preliminary exploration is to discover the state to reach, and to determine a first 
optimal way to reach it. As the composition model specifies the state to reach in WS 
composition, continual online exploration is of particular interest: therein, the set of WS that 
can be allocated to tasks is continually revised, so that future allocations can be performed 
by taking into account the availability of new WS, or the change in availability of WS used in 
prior compositions. Preliminary exploration is directed if domain-specific knowledge is used 
to guide exploration (e.g., (Thrun, 1992b; Thrun, 1992a; Thrun et al., 2005; Verbeeck, 2004)). 
In undirected preliminary exploration, the allocation of new WS to tasks is randomized by 
associating a probability distribution to the set of competing WS available for allocation to a 
given task. 
To avoid domain-specificity in this paper, the RL algorithm in MCRRL relies on undirected 
continual exploration. Both exploitation and undirected continual exploration are used in WS 
composition: exploitation uses available data to ground the allocation decision in 
performance observed during the execution of prior compositions, whereas exploration 
introduces new allocation options that cannot be identified from past performance data. 
This responds to the first requirement on WS composition procedures (item 1, §  1), namely 

that optimal WS compositions will be built and revised at runtime, while accounting for 
change in the availability of WS and the appearance of new WS. As shown in the remainder 
(see, §  4.1), the WS composition problem can be formulated as a global optimization 

problem which follows either a deterministic shortest-path (in case the effects of WS 
executions are deterministic) or a stochastic shortest-path formulation. Requirement 4 ( §  1) is 

thus also addressed through the use of RL to guide WS composition. Since the RL approach 
can be based on observed performance of WS in compositions, and the algorithm in MCRRL 
accepts multiple criteria and/or constraints (see, §  3 and §  4.1), requirements 2 and 3 (§  1) 

are fulfilled as well. 

4.1 Task-allocation problem 

If RL is applied to task allocation, the exploration/ exploitation issue can be addressed by 
periodically readjusting the policy for choosing task allocations and re-exploring up-to-now 
suboptimal execution paths (Mitchell, 1997; Sutton & Barto, 1998). Such a strategy is, 
however, suboptimal because it does not account for exploration. The Randomized 
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Reinforcement Learning (RRL) algorithm introduced in (Saerens et al., 2004) is adapted 
herein to task allocation in WS composition, allowing the assignment of tasks to WS while: 
(i) optimizing criteria, (ii) satisfying the hard constraints, (iii) learning about the 
performance of new agents so as to continually adjust task allocation, and (iv) exploring 
new options in task allocation. The exploration rate is quantified with the Shannon entropy 
associated to the probability distribution of allocating a task to a task specialist. This permits 
the continual measurement and control of exploration. 
The task-allocation problem that the RRL resolves amounts to the composer determining the 
WS to execute the tasks in a given process model. By conceptualizing the process of the 
composition model as a DAH (see, §  2.2.2), the task-allocation problem amounts to a 

deterministic shortest-path problem in a directed weighted hypergraph. In the hypergraph, 
each node is a step in WS composition problem and an edge corresponds to the allocation of a 

task 
k
t  to a WS 

,

WS

k u
w , where u  ranges over WS that can execute 

k
t  according to the criteria 

set with the QoS model. Each individual allocation of a task to a WS incurs a cost 
,

( , )WS

k k u
c t w , 

whereby this " cost"  is a function of the aggregated criteria (as discussed earlier §  3) 

formulated so that the minimization of cost corresponds to the optimization of the 
aggregated criteria (i.e., minimization or maximization of aggregation value). For 
illustration, consider the DAH representation of our composite ESA service in Figure 3. 
The task allocation problem is a global optimization problem: learn the optimal complete 
probabilistic allocation that minimizes the expected cumulated cost from the initial node to 
the destination node while maintaining a fixed degree of exploration, and under a given set 
of hard constraints (specified with the QoS model). At the initial node in the graph (in Fig.3, 
blank node), no tasks are allocated, whereas when reaching the destination node (last 'Pd' 
node in the same figure), all tasks are allocated. 

The remainder of this Section is organized as follows: §  4.2 introduces the notations, the 

standard deterministic shortest-path problem, and the management of continual 

exploration. §  4.3 introduces the unified framework integrating exploitation and 

exploration presented in (Achbany et al., 2005). Finally, §  4.3 describes our procedure for 

solving the deterministic shortest-path problem with continual exploration. 

4.2 RL formulation of the problem 

At a state 
i
k  of the task allocation problem, choosing an allocation of 

,k li
t  (where l  ranges 

over tasks available in state 
i
k ) to 

,

WS

k ui
w  (i.e., moving from 

i
k  to another state) from a set of 

potential allocations ( )
i

U k  incurs a cost 
, ,

( , )WS

k l k ui i
c t w . Cost is an inverse function of the 

aggregated criteria the user wishes to optimize (see, §  3), say r . The cost can be positive 

(penalty), negative (reward), and it is assumed that the service graph is acyclic (Christofides, 

1975). Task allocation proceeds by comparing WS over estimated r̂  values and the hard 

constraints to satisfy (see, s 3.1). The allocation 
, ,

( , )WS

k l k ui i
t w  is chosen according to a Task 

Allocation policy (TA) Π  that maps every state 
i
k  to the set ( )

i
U k  of admissible allocations 

with a certain probability distribution ( )
ki
uπ , i.e., ( )

i
U k : { ( ), = 0,1, 2, , }

ki
u i nπΠ ≡ … . It is 

assumed that: (i) once the action (i.e., allocation of a given task to a WS) has been chosen, the 

sate next to ik , denoted 
'
i
k , is known deterministically, = ( )

' kii
k f u  where f  is a one-to-

one mapping from states and actions to a resulting state; (ii) different actions lead to 

different states; and (iii) as in (Bertsekas, 2000), there is a special cost-free destination state; 
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once the composer has reached that state, the task allocation process is complete. Although 

the current discussion focuses on the deterministic case, extension to the stochastic case is 

discussed elsewhere (Achbany et al., 2005) due to format constraints. 
As remind, one of the key features of reinforcement learning is that it explicitly addresses 
the exploration/exploitation issue as well as the online estimation of the probability 
distributions in an integrated way. Then, the exploration/ exploitation tradeoff is stated as a 
global optimization problem: find the exploration strategy that minimizes the expected 
cumulated cost, while maintaining fixed degrees of exploration at same nodes. In other 
words, exploitation is maximized for constant exploration. To control exploration, entropy is 
defined at each state. 

The degree of exploration 
ki
E  at state 

i
k  is quantified as: 

 
( )

= ( ) log ( )
k k ki i i

u U ki

E u uπ π
∈

− ∑   (4) 

which is the entropy of the probability distribution of the task allocations in state 
i
k  (Cover 

& Thomas, 1991; Kapur & Kesavan, 1992). 
ki
E  characterizes the uncertainty about the 

allocation of a task to a WS at 
i
k . It is equal to zero when there is no uncertainty at all 

( ( )
ki
uπ  reduces to a Kronecker delta); it is equal to log( )

ki
n , where 

ki
n  is the number of 

admissible allocations at node 
i
k , in the case of maximum uncertainty, ( ) = 1/

k ki i
u nπ  (a 

uniform distribution).  

The exploration rate 0,1]r

ki
E ∈  is the ratio between the actual value of 

ki
E  and its 

maximum value: = / log( )r

k k ki i i
E E n .  

Fixing the entropy at a state sets the exploration level for the state; increasing the entropy 
increases exploration, up to the maximal value in which case there is no more exploitation---
the next action is chosen completely at random (using a uniform distribution) and without 
taking the costs into account. Exploration levels of composers can thus be controlled 
through exploration rates. Service provision then amounts to minimizing total expected cost 

0
( )V kπ  accumulated over all paths from the initial 

0
k  to the final state: 

 
0

=0

( ) = ( , )
i i

i

V k E c k uπ π

∞⎡ ⎤
⎢ ⎥⎣ ⎦
∑   (5) 

The expectation Eπ  is taken on the policy Π  that is, on all the random choices of action 
i
u  

in state 
i
k . 

4.3 Computation of the Optimal Policy 
The composer begins with task allocation from the initial state and chooses from state ki the 

allocation of a WS u  to a task 
,k li
t  with a probability distribution ( )

ki
uπ , which aims to 

exploration. The composer then performs the allocation of the task 
,k li
t  to a WS u  and the 

associated aggregated quality score, the cost 
,

( , )WS

k l ui
c t w  is incurred and is denoted, for 

simplicity ( , )
i

c k u  (note that this score may also vary over time in a dynamic environment); 

the composer then moves to the new state, 
'
i
k . This allows the composer to update the 
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estimates of the aggregated quality score of the policy, and of the average aggregated 

quality value until destination; these estimates will be denoted by ( , )
i

c k i , ( )
ki
iπ  and 

( )
i

V k . The RRL for an acyclic graph, where the states are ordered in such a way that there is 

no edge going backward (i.e., there exists no edge linking a state 
'i
k  to a state 

i
k  where 

'i
k  

is a successor state of 
i
k  ( >

' i
i
k k  ), is as follows (a detailed treatment can be found in 

(Achbany et al., 2005)): 

1. Initialization phase: Set  ( ) 0
d

V k = , which is the expected cost at the destination state. 

2. Computation of the TA policy and the expected cost under exploration constraints: For 

= ( 1)
i d
k k −  to the initial state 

0
k , compute:  

 

( )
( )

,

,
( )

,
( )

exp ( , ) ( )
( ) = ,

exp ( , ) ( )

( ) = ( ) ( , ) ( ) for

'

k i i ui

ki ' '

k i 'i i u'
u U ki

'

i k i i u i di
u U ki

c k u V k
u

c k u V k

V k u c k u V k k k

θ
π

θ

π
∈

∈

⎧ ⎡ ⎤− +⎣ ⎦⎪
⎪ ⎡ ⎤− +⎢ ⎥⎨ ⎣ ⎦
⎪

+ ≠⎡ ⎤⎪ ⎣ ⎦
⎩

∑

∑

  (6) 

where 
,

= ( )'

i u k
k f u , 

,

'

'
i u
k = ( )'

k
f u  and 

ki
θ  is set in order to respect the prescribed degree of 

entropy at each state (see Eq.4 which can be solved by a simple bisection search).   

Various approaches can be applied to update the estimated criterion 
û
r ; e.g., exponential 

smoothing leads to: 

 (1 )
u u u
r r rα α← + −   (7)  

where 
u
r  is the observed value of the criterion for 

WS

u
w  and ]0,1[α ∈  is the smoothing 

parameter. Alternatively, various stochastic approximation updating rules could also be 

used. The composer updates its estimates of the criterion each time a WS performs a task 

and the associated cost is updated accordingly. 

5. Simulation results 

Experimental setup. Task allocation for the service provision problem diplayed in Fig.3 was 

performed. A total of three distinct WS were made available for each distinct task. Each 
,k u

w  

is characterized by its actual 
u
r  which is an indicator of the WS's performance over the 

optimization criterion (see, §  4.2). In this simulation, it will simply be the probability of 

successfully performing the task (1 -- probability of failure). In total, 42 WS are available to 

the Composer for task allocation. For all WS u , 
u
r  takes its value 0,1]∈ ; for 70% of the WS, 

the actual 
u
r  is hidden (assuming it is unknown to the Composer) and its initial expected 

value, 
u
r , is set, by default, to 0.3  (high probability of failure since the behavior of the WS 

has never been observed up to now), while actual 
u
r  value is available to the Composer for 

the remaining 30% (assuming these WS are well known to the Composer). Actual 
u
r  is 

randomly assigned from the interval [0.5,1.0]  following a uniform probability distribution. 

It has been further assumed that ( , ) = ( )
i u u

c t w ln r− , meaning that it is the product of the 
u
r  
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along a path that is optimized (this is a standard measure of the reliability of a system). 

After all tasks are allocated, the selected WS execute their allocated tasks according to their 

actual 
u
r  value (with failure 1

u
r− ). The estimated WS criterion 

û
r  is then updated by 

exponential smoothing, according to Eq.7. In Eq.7, ur  equals 1 if uw  is successful at 

executing the task it has been allocated, 0 otherwise. Estimated costs are of course updated 

in terms of the 
u
r  and each time a complete allocation occurs, the probability distributions 

of choosing a WS are updated according to Eq.6. 10,000 complete allocations were simulated 

for exploration rate 20%. 
 

 

Fig. 8. Success rate in terms of run number, for an exploration rate of 20%, and for the five 
methods (no exploration, actual r  known, ε -greedy, naive Boltzmann, RRL). 

Results. The RRL is compared to two other standard exploration methods, ε -greedy and 

naive Boltzmann (see (Achbany et al., 2005) for details), while tuning their parameters to 

ensure the same exploration level as for RRL. The success rate is defined as the proportion of 

services that are successfully completed (i.e., all tasks composing the service are allocated 

and executed successfully) and is displayed in Fig. 4 in terms of the run number (one run 

corresponding to one complete assignment of tasks, criterion estimation and probability 

distribution update). Fig. 4 shows the RRL behaves as expected. Its performance converges 

almost to the success rate of the RRL in which all actual r  are known from the outset (i.e., 

need not be estimated)---and indicate that exploration clearly helps by outperforming the 

allocation system without exploration (which has a constant 75% success rate). Fig.5 

compares the three exploration methods by plotting the average absolute difference 

between actual 
u
r  and estimated 

u
r  criterion values for a 30% exploration rate. Exploration 

is therefore clearly helpful when the environment changes with the appearance of new 

agents---i.e., exploration is useful for directing Composer behavior in dynamic, changing, 

and open architectures, i.e., in the SCA. 
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Fig. 9. Average absolute difference between actual ( r ) and estimated ( r ) criterion values in 
terms of run number, for three exploration methods (ε -greedy, naive Boltzmann, RRL). 

6. Related work 

Various possibilities for representation of web services composition have already been 

addressed. Jaeger et al. use composition patterns (sequence, loop, xor, and, or , etc.) to 

represent structural elements of the composition. Hamadi (Hamadi & Benatallah, 2003) and 

Benetallah and Fu et al. (Fu et al., 2006) approaches refer both to Petri nets for modeling web 

services control flow. Rather than using such patterns and their associated aggregation 

rules, we choose, as Zeng et al. (Zeng et al., 2003b; Zeng et al., 2004), Benatallah and Dumas 

(Benatallah et al., 2002) and Zhang et al. (Zhang et al., 2007), to control services composition 

with the help of statecharts. 

While statecharts and their associated formal semantic are used to represent the different 

tasks entering in the composition, Directed Acyclic Graph (DAG) (Gu & Nahrstedt, 2002) are 

used to represent alternative web services allowing to fulfill these tasks. Zeng (Zeng et al., 

2004) proposes to model alternatives with multiple execution paths derived from statecharts 

possibilities. We choose to represent our composition possibilities with a Directed Acyclic 

Hypergraph (DAH) where nodes represent functional steps of execution and edges are web 

services alternatives to fulfill a given task. 

Our selection of services that will enter in the services composition is based on their 

quality properties, i.e., their QoS. To lead the selection from the requester view, we 

provide him a QoS model enabling to specify its expectations about quality behavior. This 

behavior is expressed by relationships between characteristics and dimensions, priorities 

between quality properties and preferences over values. The preference over values has 

already been addressed in other approaches under the form of a direction attribute 

indicating if a property has to be maximized or minimized (Jaeger et al., 2004; Liu et al., 
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2004; Naumann et al., 1999; Zeng et al., 2004). Our preference structure offers more 

information, we allow the user to specify conditions and indifference thresholds. The 

priority relationship is defined in some proposals with means of a weight attribute 

associated to quality properties (Jaeger et al., 2004; Zeng et al., 2004). Our model 

authorizes weights binded to quality properties at different levels and we define a method 

to fix adequately these weights. 

Most QoS composition approaches aim at summing QoS values of services entering in the 

composition rather than computing their individual performance (Cardoso et al., 2004; 

Cheng et al., 2006; Jaeger et al., 2005; Yu & Lin, 2004; Yu & Lin, 2005; Zeng et al., 2003b; 

Zhang et al., 2007). In our MCRRL proposal, we focus on the individual evaluation of each 

web service candidate to the whole composition. Rather than using Reinforcement 

Learning computation, Zeng and colleagues (Zeng et al., 2003b) proceed to finding 

optimal WS compositions through linear programming techniques. In contrast to RL, their 

approach considers each WS composition as a new problem to solve, so that there is no 

learning. Canfora and colleagues (Canfora et al., 2004) use genetic algorithms, avoiding 

thus the need for a linear objective function and/or linear constraints in the search for the 

optimal WS composition (required for the linear programming approach (Zeng et al., 

2003b)). MCRRL improves responsiveness of the system to varying availability and 

appearance of new WS because of exploration. MCRRL allows the execution of potentially 

complex processes, permits concurrency, while assuming that the set of available WS is 

changing. One distinctive characteristic the composer's behavior suggested in the present 

paper is that the MCRRL accounts for a vector of criteria when allocating tasks, including 

QoS, service provision deadline, provision cost, explicit user preferences, and agent 

reputation. Feedback mechanisms are also used by Maximilien and Singh (Maximilien & 

Singh, 2005) that propose service selection driven by trust values assigned to individual 

services. Trust is extracted from user-generated reports of past service performance (as 

usual in reputation systems) over qualities defined by a system-specific QoS ontology. 

Level of trust depends on the degree to which reputation and quality levels advertised by 

the provider match. Similar approaches have been proposed, yet fail to address service 

selection in open, distributed MAS architecture, furthermore without dynamic allocation 

so that autonomic requirements are not fulfilled. By basing selection on trust only and 

generating levels of trust from advertised and user-observed behavior, Maximilien and 

Singh's approach involves learning driven by exploitation of historical information, 

without exploration. 

7. Conclusions and future work 

This paper advocates that WS compositions optimal w.r.t. a set of criteria need to be learned 

at runtime and revised as new WS appear and availability of old WS changes, whereby the 

learning should be based on observed WS performance, and not the performance values 

advertised by the service providers. To enable such learning, a selection procedure is 

needed which both exploits the data on observed WS performance in the past, and explores 

new composition options to avoid excessive reliance on past data. 

As a response, this paper proposes the Multi-Criteria Randomized Reinforcement Learning 

(MCRRL) approach to WS composition. MCRRL combines a generic service request and the 
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Randomized Reinforcement Learning (RRL), a reinforcement learning algorithm. The SR 

model describes the process to execute by the WS composition and the criteria and 

constraints to meet when executing it. The RRL selects the WS for performing tasks specified 

in the service request. The algorithm decides on the WS to select among competing WS 

based on multiple criteria, while both exploiting available WS performance data and 

exploring new composition options. 

MCRRL responds to four common requirements when defining a task allocation 

procedure for WS composition. First, the RRL uses both exploitation and undirected 

continual exploration in WS composition: exploitation uses available data to ground the 

allocation decision in performance observed during the execution of prior compositions, 

whereas exploration introduces new allocation options that cannot be identified from past 

performance data. Optimal WS compositions are thus identified revised at runtime. 

Second, the generic SR model combined with the optimization approach in the RRL allow 

many criteria for comparing alternative task allocations. Third, the comparison over 

various criteria relies on observed performance over the given criteria, instead of vales 

advertised by service providers. Finally, the algorithm can be extended to allow 

underterministic outcomes of WS executions (as explained elsewhere (Achbany et al., 

2005)). 

Since undirected exploration may be costly in actual applications, future work will 

investigate the performance of MCRRL within realistic applications, so that the approach 

can be optimized for practical settings. 
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