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Hamiltonian Neural Networks  
Based Networks for Learning 

Wieslaw Sienko and Wieslaw Citko  
Gdynia Maritime University 

Poland 

1. Introduction 

The problem of learning represents a gateway to understanding intelligence in brains and 
machines. Many researchers believe that supervised learning will become a key technology 
for extracting information from the flood of data around us. The supervised learning 
techniques, i.e. learning from examples, can be seen as an implementation of the mappings 
y = F(x), relying on the fitting of given data pairs {xk ,yk}. The key point is that the fitting 
should be predictive and uncover an underlying physical law, which is then used in a 
predictive or anticipatory way. A great number of models implementing the supervised 
learning techniques have been proposed in literature. Artificial Neural Networks (ANN), 
Radial Basis Functions (RBF), Support Vector Machines (SVM) and Fuzzy Logic based 
models (ANFIS) should be here mentioned. Support Vector Machines, distinctive tools for 
data classification, are the product of statistical learning theory. Recently, a new learning 
algorithm named Regularized Least Squares Classification (RLSC) has been proposed. The 
RLSC concept relyies on multivariate function approximation with regularization theory as 
a natural framework for solving ill-posed problems of approximation. It is worth noting that 
SVM and RBF models can be regarded as special cases in the framework of approximation 
and regularization theory. On the other hand, the Hamiltonian Neural Networks (HNN) 
based orthogonal filters can be regarded as a natural implementation of the regularization 
technique. Using Hamiltonian Neural Networks based spectrum analysis, recognition, and 
memorization, gives rise to mapping implementations with skew-symmetric and symmetric 
kernels. The purpose of this chapter is to present how very large scale networks for learning 
can be designed by using HNN-based orthogonal filters and, specifically, by using 8-
dimensional (octonionic) modules. The unique feature of HNN is the fact that they can exist 
as either algorithms or physically implementable devices. In this chapter we mainly 
concentrate on algorithmic description of HNN-based networks. Moreover, since the 
structures of HNN can be based on the family of Hurwitz-Radon matrices, we present here 
how to design large scale nonlinear mappings by using neural networks with weight 
matrices determined by Hurwitz-Radon matrices. Hence, this chapter consists of the 
following issues: 
- Fundamentals of HNN  
- Family of Hurwitz-Radon matrices 
- RLSC basics O
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- Orthogonal filter-based approximation 
- Modeling classifiers, pattern recognition and associative memories via nonlinear 

mappings 
- Attractors based very large scale associative memories 
- Conclusions 
There is a large literature on the subject of networks for learning. Here we only refer to some 
comprehensive and useful, from the point of view of our presentation, reviews: (Evgeniou et 
al., 2000), (Poggio &  Smale, 2003), (Boucheron et al., 2005), (Predd et al., 2006).  

2. Hamiltonian neural networks 

It is well known that a general description form of an autonomous Hamiltonian network is 
given by the following state-space equation: 

 ( ) ( )'= =JH x ν xx$   (1) 

where: x - state vector, 
2n

R∈x  
 ν(x) – a nonlinear vector field 
and:    -J = JT = J-1 i.e. J is skew-symmetric and orthogonal. 
Function H(x) is a Hamiltonian (energy) of the network. Since Hamiltonian networks are 
lossless (there is no dissipation of energy), their trajectories in the state space can be very 
complex for t → ±∞ . It is, however, worth noting that Eq.(1) has constant solutions, i.e. 

every points 
0

2n
R∈x such that  H’(x0) = 0 is the equilibrium and x(t) ≡ x0 is the solution. 

Equation (1) gives rise to the modeling of Hamiltonian Neural Networks, as follows: 

 ( )= +$x WΘ x d   (2) 

where:  W- (2n×2n) skew-symmetric orthogonal weight matrix 
 Θ(x) – vector of activation functions 
 d – input vector (input data) 
and:  Θ(x) ≡ H’(x) 
 E=H(x) - the energy absorbed by HNN 
It can be easy seen that HNN, as described by Eq.(2), is a compatible connection of n 
elementary building blocks – lossless neurons (Fig.1). 
 

±w1

∫  

∫  

Θ(x2)

Θ(x1)

d1

d2

x1 x1

x2

y1

y2

∓ w1

x2

 

Fig.1. Structure of a lossless neuron. 
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The state-space description of a lossless neuron is as follows: 

 
11 1 1

2 1 2 2

dx 0 w Θ(x )

x w 0 Θ(x ) d

±
= +

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$

$ ∓
  (3) 

where the activation function Θ(xi) , i = 1, 2 has been assumed as a passive nonlinearity, i.e.: 

 i

1 2 1 2

i

Θ(x )
た た  ;  た ,た (0, )

x
≤ ≤ ∈ ∞   (4) 

A lossless neuron is an elementary Hamiltonian network with absorbed energy given by: 

 
21 2

1 2 1 1 2 2

0 0

E=E +E ( )dな ( )dな 0

x x

ς ς= Θ + Θ ≥∫ ∫   (5) 

Formula (5) can be directly extended onto n-neuron HNN: 

n

i

i=1

E E=∑  

where: Ei – energy absorbed by the i-th neuron. 
Note, that for weight matrix W skew-symmetric but nonorthogonal, Eq.(2) describes a 
lossless neural network.  The Hamiltonian neural network described by Eq.(1) cannot be 
realized as a macroscopic scale physical object.  But HNN determines a type of orthogonal 
transformation, namely: 

 ( )⋅ + =W Θ x d 0  (6) 

 ( )= =y Θ x Wd   (7) 

(y, d) = 0;   (· , ·) – scalar product 

Rows (and columns) of W constitute an orthogonal Haar basis. The components of output 
vector are Haar coefficients. Thus, Haar spectrum analysis using HNN is given by: 

 y =W d   and    d= -W y  (8) 

and formula (8) can be used as an algebraic transformation. The problem of physical 
realizability of HNN can be solved by using HNN-based orthogonal filters. A basic 
structure of such filters is shown in Fig.2. 
 

y  d y = Θ(x)  d 

- w0 1 

u 
 

HNN 

W
w0 > 0 

Orthogonal 

Filter  

 

Fig. 2. Structure of an orthogonal filter. 
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It is worth noting that an orthogonal filter performs the following decomposition: 

 d = u +w0 y   (9) 
where: u, y are orthogonal i.e. (u, y) = 0  
Moreover, Eq.(9) sets up the following orthogonal transformation (W2 = -1): 

 
0

0

1
( w )

1 w
= +

+
y W 1 d   (10) 

where: (d, y) ≠ 0 
The output vector y = Θ(x) constitutes the Haar spectrum of input data d. Since, however, 
y = Θ(x) is the output of a nonlinear dynamical system, Eq.(10) is true for bounded input 
only. It means, for example, that for neuron activation functions of sigmoidal type, the 
following conditions have to be fulfilled: 

│Θ(xi)│≤  bi , i = 1, 2, … , 2n 

where: bi – asymptotical value of a sigmoid 
Some orthogonal filter based transformations, given by the following formulae, are useful 
for further consideration: 

 d= (WT+w01) y  (11) 
product of transformations (w0 = 1): 

 
1 1

( ) ( )
4 2

= + ⋅ + =y W 1 W 1 d Wd   (12) 

orthogonalization of outputs for given d: 

  
1

1
( )

2
= +y W 1 d  

T

2

1
( )

2
= +y W 1 d  

hence: 

 
T

1 2 1 2
( , ) 0⋅ = =y y y y   (13) 

Note that the transformations given by formulae (10), (11), (12) and (13) can be regarded 
either as algebraic algorithms or as physically implementable HNN-based orthogonal filters. 
Such an implementation is guaranteed by the stabilizing action of negative feedback loops, 
even if the weight matrix W is not exactly skew-symmetric. 

3. Hurwitz-Radon matrices 

As mentioned above, the main issue in HNN-based orthogonal filters is forming the weight 

matrices W – skew symmetric and orthogonal. The most adequate mathematical framework 

www.intechopen.com



Hamiltonian Neural Networks  Based Networks for Learning 

 

79 

for this task seems to be an algebraic theory of Hurwitz-Radon matrices. Renewed interest 

in this old algebraic theory of Hurwitz-Radon matrices can be recently observed. 

Particularly, a link between this important old matrix problem and refined methods of 

algebraic topology (homology theories) has been established (Eckmann, 1999), (Vakhania, 

1993). The purpose of these considerations is to show how Hurwitz-Radon matrices can be 

used in design of orthogonal filters.  Hence, we provide, below, some basic statements from 

the theory of Hurwitz-Radon matrices. Let us note that a set of real N×N matrices Aj 

fulfilling the following equation (so called Hurwitz matrix equation): 

 
2

j j k k j
,   = − + =A 1 A A A A 0   (14) 

for k ≠ j, k = 1, ... , s; 1-unit matrix 

is called Hurwitz-Radon family matrices (HR family). The matrices Aj of family are 

orthogonal, i.e. 
T -1 T

j j j j
,   = − =A A A A , j = 1, … , s. The maximum possible number s of family 

members for given dimension N is determined by the Radon number ρ(N). It can be found, 

as follows:  

Let N = 2a b, where b is an odd number and a = 4c +d; 0 ≤ d ≤ 4; c ≥ 0. Then the Radon 

number  ρ(N) is given by: 

 ρ(N) = 8 c +2d (15) 

 

and such a family consists of smax(N×N)-matrices, where: 

 smax = ρ(N) – 1  (16) 

 

Generally: ρ(N) ≤ N and for  N = 2, 4, 8 only, ρ(N) = N and smax = N – 1. 

Thus, for example, Hurwitz-Radon family of 8-dim. matrices consists of 7 matrices. The 

following issues in Hurwitz-Radon theory, useful for further consideration, are worth 

noting: 

1. Algebra of complex numbers, quaternions and octonions, is directly related to Hurwitz-
Radon families for N = 2, 4, 8,  respectively. 

2. Maximum number of continuous orthonormal tangent vector fields on sphere 
N-1 N

S R∈ is given by  smax = ρ(N) – 1. Moreover, let A1, … , As be a family of Hurwitz-

Radon integer {-1, 0, 1} matrices. Let A0 = 1 and a0, … , as be real numbers with 
s

2

i

i=1

1α =∑ . Then N×N matrix: 

                                                         
i

s

i

i=1

( ) a=∑A a A                                                 (17) 

 
is orthogonal and A(a) can be considered as a map of sphere Ss into orthogonal group 
O(N). 

3. All 8-dim. HR matrices have the following form (smax=7) 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

=

  0hhhhhhh

h  0hhhhhh

hh  0hhhhh

hhh  0hhhh

hhhh  0hhh

hhhhh  0hh

hhhhhh  0h

hhhhhhh  0

1234567

1325476

2316745

3217654

4567123

5476132

6745231

7654321

8H
 (18) 

where: hi ∈ R, i =1, …, 7. 
Similarly for N =16 HR family consists of smax= 8 matrices and all 16-dim. matrices can 
be found according to the following structure: 

 

8

8

8 8

16 8
8 8

T

8

8

h

h

h
h

h

= = +
− −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

H

0 H 0 0 1
H

0 0 H -1 0

H

0

D

D

 (19)                          

where: h8 ∈ R. 
For N = 32, ρ(N) = 10 and smax=9. All 32- dim. HR matrices can be found as: 

 16

32 9

16

h= +
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

H 0 0 1
H

0 H -1 0

  (20) 

 

Note that the number of free parameters hi in H8, H16 and H32 is equal smax. For 
dimension N = 2k, k = 6, 7, … all 2k- dim. HR matrices can be similarly found, i.e.   

 
k-1

k

k-1

K

2

2

2

h= +
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

H 0 0 1
H

0 H -1 0

  (21) 

where: hK ∈ R. 
But, then the number of free parameters is smaller than smax = ρ(N) – 1 (K < smax). HR 
matrices of dimension N = 2k are particularly interesting due to their structures-
the connections of 8-dim. blocks can be here recognized. 

4. Taking into account the definition of HNN given by Eq.(2), weight matrices W can be 

implemented by using HR matrices (e.g.
2

kH ). Moreover, adding diagonal matrix h01, 

where dim 1 = 2k, to skew-symmetric matrix 
2

kH , we obtain an implementation of the 

orthogonal transformation from Eq.(10), as follows: 
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02 2

0

k

1
( h )

1 h
= +

+
y H 1 d   (22) 

where: h0 > 0. 
It is worth noting that for 8-dim. weight matrix H8, Eq.(22) describes either the 
following orthogonal transformation: 

 
8 02

0

1
( h )

1 h
= +

+
y H 1 d   (23) 

or an equivalently 8-dim. orthogonal filter, as shown in Fig.3.  
 

y  d 

- h0 1 

u 
HNN 

H8 

 
 

Fig. 3. Structure of 8-dim. orthogonal filter 

This type of orthogonal filter will be further called the octonionic module. Because in 

Eq.(23) we have in disposition eight free design parameters; h0, h1 , … , h7, so this 

equation allows us to formulate and to solve the following inverse problem: for given 

input vector d0 and given output y0 find parameters h0, h1 , … , h7 such that d0 is 

transformed  into y0 (d0 → y0). In other words, we set up a best adapted basis for given 

d0 and y0.  An adequate solution is given by:  

0 1 2 3 4 5 6 7 8

1 2 1 4 3 6 5 8 7

2 3 4 1 2 7 8 5 6

3 4 3 2 1 8 7 6 5

4 5 6 7 8 1 2 3 4

5 6 5 8 7 2 1 4 3

6 7 8 5 6 3 4 1 2

7 8 7 6 5

8
2
i

i 1

h y y y y y y y y

h y y y y y y y y

h y y y y y y y y

h y y y y y y y y1

h y y y y y y y y

h y y y y y y y y

h y y y y y y y y

h y y y y y

y
=

⎡ ⎤
⎢ ⎥ − − − −⎢ ⎥
⎢ ⎥ − − − −
⎢ ⎥ − − − −⎢ ⎥ =⎢ ⎥ − − − −
⎢ ⎥

− − − −⎢ ⎥
⎢ ⎥ − − − −
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

∑

1

2

3

4

5

6

7

4 3 2 1 8

d

d

d

d
  

d

d

d

y y y d

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 
(24) 

 

Thus, Eq.(24) can be regarded as a design formula for an octonionic module. It is 

interesting to note that a classical perceptron performing a scalar product of input data 

d and memory vector m can be implemented by the octanionic module with best 

adaptive basis (m → y1= [ 1, … ,1]T), as presented in Fig. 4. 
The implementation in Fig. 4 relies on a linear summing of the output flat spectrum of 

the orthogonal filter. 
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Fig. 4. Implementation of perceptron by octonionic module. 

4. RLSC basics 

The problem of learning from examples is about predicting the unknown class of 
observations generated by the underlying physical system. In the last decade the learning 
problems have been formalized by probabilistic setting, giving rise to statistical learning 
theory. As products of  learning theory, some new and effective techniques, like boosting 
and support vector machines have been developed. On the other hand, approximation 
theory, supported by regularization theory, provides a new perspective on learning theory. 
Regularization theory has been introduced as a natural framework for solving ill-posed 
problems of approximation (Evgeniou et al., 2000). The purpose of this section is to provide 
some basic knowledge of Regularization Networks (RN) and, particularly, of RLSC, useful 
for further consideration. We limit ourselves to briefly describing the main ideas in a simple 
way.  
As mentioned above, learning issues can be formulated as a problem of approximating a 

multivariate function from sparse data. Starting with training pairs { }m

i=1
,
i i

x y , where input 

vectors 
i

n
X R∈ ⊂x and 

i
Y R∈ ⊂y , one can synthesize a function which represents the 

relation between the input x and y, in the best way. In the language of statistics this means 
that the probability of error f(x) ≠ y should be minimal. According to (Evgeniou et al., 2000) 
the most general framework, unifying several learning techniques can be formulated by 
considering functionals of the form: 

 
2

K

m

i=1

1
H(f ) V(y , f ( )) そ f

m
i i

= +∑ x   (25) 

where:  f : X → Y 
 V(· , ·)- loss function 
 λ - regularization parameter 

 
2

K
f - norm in a Reproducing Kernel Hilbert Space (RKHS) 

 K - kernel (positive definite function) 
The synthesized function f(x) corresponds to the minimum of functional H for different loss 
functions V. Choosing square loss V (L2 loss function): 

 
2

i i i i
V(y , f ( )) (y f ( ))= −x x   (26) 

the approximation scheme arises from the minimization of quadratic functional: 
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i

2

K
f

i=1

1
min H(f ) V(y , f ( )) そ f

m
i

H

m

∈
= +∑ x   (27) 

where:  λ  > 0; 
               H - Reproducing Kernel Hilbert Space (RKHS) defined by symmetric, positive 
               definite function K(x, y)  

               
2

K
f - norm in this RKHS 

Thus, Eq.(27) presents the classical Tikhonow minimization problem formulated and solved 
in his regularization theory. It can be shown that the function that solves Eq.(27), i.e. that 
minimizes the regularized quadratic functional, has the form: 

 
i

i=1

f( ) c K( , )
i

m

=∑x x x   (28) 

where: c = [ c1, … , cm]T 

and kernels K(x, xi) are symmetric, i.e. K(x, xi) = K(xi, x), positive definite functions 

continuous on X×X. The coefficients ci are such as to minimize the error on the training set, 
i.e. they satisfy the following linear system of the equations: 

 ( )λ+ =K 1 c y   (29) 

where: K is square positive-definite matrix with elements Kij = K(xi, xj,) and y is the vector 
with coordinates yi. The equation (29) is well-posed, hence a numerical stable solution exists: 

 
1

( )λ −= +c K 1 y   (30) 

and, moreover, the regularization parameter λ  > 0 determines the approximation errors. It 
is worth noting that: 
1. an approximation is stable if small perturbations in the input data xi do not 

substantially change the performance of the approximator. Hence, the regularization 
parameter λ can be regarded as the stability control factor. 

2. a construction of effective kernels is a challenging task. One of the most distinctive 
kernels is the Gaussian: 

 
i

2 2
i /2

K( , ) e
σ− −

=
x x

x x   (31) 

leading to RBF networks. 

4. Orthogonal filter-based approximation 

The purpose of our considerations is to show how a function, given at limited number of 
training data xi, can be implemented in the form of composition of HNN based orthogonal 
filters. 
Define f: X→Y by: 

                                                                 
i i

m

i=1

f ( ) c K( , )=∑x x x                                                         (32) 
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where kernels  K(xi, x) are defined by the following function (induced by the activation 
function of neuron, Eq.(4)): 

 
T

i i n
K( , ) ( )= Θx x x H x   (33) 

where:  [ ]T

i 1 n

n
x ,…,x , R

i
= ∈x x  is i-th training vector 

               Hn is skew-symmetric matrix 
 Θ( · ) is an odd function 
Hence: 

 
T

i n i
0=x H x   (34) 

and 

 
T T

i n j j n i
= −x H x x H x   (35) 

Thus, the matrix  

 { } { }
i jij

K K( , )= =K x x   (36) 

is skew-symmetric 

Notice that in the case of kernels given by Eq.(33), regulizer  
2

K
f  in Eq.(26) is seminorm i.e.:  

 

i i j j i j i j

T

i j i j

i=1

m m m m
2

K
i=1 j=1 i=1 j 1

m m

j=1

c K( ,  ), c K( ,  ) c c (K( ,  ),  K( ,  ))

c c (K( ,  ) 0

f
=

= =

= = =

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ ∑ ∑∑

∑∑

x x x x

x x c Kc

i i i i

 (37) 

Despite the property given by Eq.(37), we use the key approximation algorithm as 
formulated by Eq. (29) and (30), i.e. the regularized kernel matrix takes the form: 

 
R

( )γ= +K 1 K   (38) 

where:  γ > 0 
                K –skew-symmetric kernel matrix 
Thus, the key design equation is well-posed: 

 
-1 1

R
( )γ −= = +c K y 1 K y   (39) 

It is easy to see that the type of regularization proposed by Eq.(38) means that one changes 
the type of Θ( · ) function, in kernel definition, as follows: 

 
0

( ) ( ) ( ) ( )
r

γ γΘ → Θ + ⋅ = Θi i i i   (40) 

where:  γ > 0 

                γ0 (·) – distribution, e.g. 
0

2 2

0

-p /δ
(p) lim e , p R

δ
γ

→
= ∈  
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In other words, the activation function Θ( · ) should be endowed with “a superconducting 
impulse γ” as shown in Fig.5. 
 

a)    b) 

Θ(p) 

0             p                                   0             p  

Θr(p) 

   γ     

 regularization 

 

Fig. 5. Regularization by adding γ impuls. 

The mechanism of stabilization by means of Θr( · ) can be easy explained when one 
considers the solution of Eq.(39) in a dynamical manner. Such an orthogonal filter-based 
structure, solving Eq.(39), is shown in Fig.6. 
 

Lossless 

neural 
network 

W = -K 

+

-γ1    

y                                                       Θ(ζ) = c 

 

Fig. 6. Structure of orthogonal filter for solution of Eq.(39). 

The state-space description of the filter from Fig.(6). is given by: 

 ( ) ( )γ
•

= − + +ς 1 K Θ ς y   (41) 

and the output in steady state as: 

 
1

( ) ( )γ −= = +c Θ ς 1 K y   (42) 

The stability of approximation in the sense mentioned above can be achieved by damping 
influence of parameter γ. One of the possible architectures implementing approximation 
equation (32) is schematically shown in Fig.7 (Sienko & Zamojski, 2006). 
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Fig. 7. Basic structure of function approximator. 
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This structure consists of three basic blocks: 
1. Block Hn , where matrix Hn is randomly skew-symmetric or Hn belongs to Hurwitz-

Radon family, e.g. 
n

2
k=H H  (Eq.(21)). 

2. Perceptron-Based Memory consists of m perceptrons, each designed at points xi of one 
of the m training points, for any m < ∞. Note that activation functions Θi( · ), i =1, …, m 
are odd functions (e.g. sigmoidal) allowing for error approximation at training points xi. 
Modeling a nonsmooth function only, they have to be extended by γ impulses. 

3. Block of parameters ci. Note that an implementation of a mapping y = F(x) needs l such 
blocks, where l = dim y. 
The approximation scheme, illustrated in Fig.7., can be described by: 

 
m,n n

= ⋅ ⋅p S H x   (43)  

and 

 
T

f ( ) ( )= ⋅x Θ p c   (44) 

where:     Hn- (nxn) skew-symmetric matrix 

          Sm,n – (m×n) memory matrix,  Sm,n = [x1, x2, … ,xm]T 
          Θ( p ) = [Θ( p1 ), Θ( p2 ), … ,Θ( pm )]T 

           c = [c1, c2, … , cm]T 
Another orthogonal filter-based structure of function approximator, is shown in Fig.8 
(Sienko & Citko 2007). 
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Fig. 8. Orthogonal Filter-Based structure of an approximator. 

The structure of the approximator shown in Fig.8. relies on using the skew-symmetric 
kernels, as given by: 

 
T

i i
K( , ) ( )= Θu v u v  (45) 

where: ui = (W-1) xi 
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 v = - (W+1) x 
 Θ( � ) is an odd function 

Assuming: W2 = -1, WT W = 1 i.e. W- skew-symmetric, orthogonal e.g. k2
=W H Hurwitz-

Radon matrix, Eq.(21). 
Then: ui, v – Haar spectrum of input xi and x, respectively. 
thus, elements of kernel matrix fulfill:  

T T

i j i j i j
K( , ) ( ) (2 )= Θ = Θu v u v x Wx  

and  

 K(ui,vj) = - K(vj, ui)  (46) 

Hence, matrix  

{ } { }i j i j
K K( , )= =K u v   is skew-symmetric. 

Note that for the structure from Fig.8., the same key design equation (39) is relevant. 
However, the structure from Fig.8. can be seen as HNN-based dynamically implemented 
system, as well. Moreover, taking into account the implementation presented in Fig.4. one 
can formulate the following statement: 
Statement 1 
Orthogonal filter-based structures of function approximator can be implemented by 
compatible connections of octonionic modules. 
Other important remarks concluding the above described approximation scheme can be 
formulated as follows: 
Statement 2 
Due to the skew-symmetry of kernel matrix, the orthogonal filter based approximation 
scheme can be regarded as a global method. It means that the neighborhood of the training 
point xi is reconstructed by all the other training points. Exceptionally, this global method is 
completed by a pointwise local one, if the activation function of used perceptrons has a form 
Θr( · ) (Fig.5.). 
Statement 3 
Orthogonal filter-based approximation scheme can be easy reformulated as a local 
technique. Indeed, taking into considerations the kernel defined by Eq.(33), where activation 
function is an even function e.g. Gaussian function:  

 

2

2

p
- 
σ1

(p) e

2 σπ
Θ =   (47) 

where: p R∈  

then the kernel matrix 

 { } { } { }T

ij i j i n js K K( , ) ( )= = = ΘK x x x H x   (48) 

is a symmetric, positive matrix. 

For Θ(p)   given by Eq.(47)  matrix { }i j
K fulfils: 
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Kii > 0   for all i, 

Kii > Kij for i ≠ j 

and there is such a  σ  > 0   that   det Ks > 0. 
Thus, matrix Ks  is positive definite.  
Hence, it is clear that the key design equation is well-posed: 

 
-1

s
=c K y   (49) 

and the local properties of this approximation scheme can be controlled by parameter σ. It 
should be however noted that positive definiteness is not necessary for det Ks > 0 and for 
existing an inverse Ks

-1. To summarize this section, let us note that by choosing a different 
type of activation functions, one generates a family of functions or mappings fulfilling: 

qi iF ( )=y x , i = 1, … , m; q = 1, 2, … 

To minimize the approximation errors, one should select a function or mapping which, in 
terms of learning, optimally transforms a neighborhood  S(xi) of xi onto yi. 

5. Modeling classifiers and associative memories 

As mentioned in the previous section, an approximation of a mapping can be obtained as an 
extended structure of a multivariate function approximation. Hence, for the sake of 
generalization, we below use a notation of mapping  approximation. 

Define mapping F: X → Y 

where  X, Y are input and output training vector spaces, respectively. The   values of 

mapping are known at training points{ }
i j

m

i=1
,x y where, dim xi = n and dim yi= l: 

Thus: 

 
i i

F( )=y x   i = 1, … , m  (50) 

where: X, Y
i i
∈ ∈x y  

Classification  issues can be seen as a special problem in mapping approximations. If output 
vectors y of mapping  F ( · ) take values from an unordered finite set, then F ( · ) performs the 
function of a classifier. In a two-class classification, one class is labeled by y = 1 and the 
other class by y = -1. The general functionality of classifiers can be then determined by the 
following equation: 

 
i i

F( ) =x y# , i = 1, …, m  (51)  

where: 
i

x# denotes a neighborhood of “center” xi 

  yi – class label  

The determination of neighborhoods 
i

x#  depends on the application of a classifier, but 

generally, to minimize the erroneous classifications, 
i

x# have to be densely covered by 

spheres belonging to 
i

x# , i = 1, … , m. Thus, the problem of classifier design can be 

formulated as follows: 
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1. generate a family of mappings Fq( · ), q =1, 2, … fulfilling: 

 
i i

qF

X Y,     F( )→ =x y#   (52) 

where X, Y are input and output training vector spaces, respectively.  
Members of this family are created by choosing different type of kernels (antisymmetric 
or symmetric) and different values of regularization parameters γ or σ 

2. select the mapping that transforms input points onto output vectors in an optimal way 
(minimizing  approximation errors): 

optF

( X) ( Y)∈ → ∈x y  

The problem of optimal mapping selection has been recently formulated in the 
framework of statistical operators on family (52) (e.g. bagging and boosting techniques). 
We propose here to consider an optimal solution as a superposition of global and local 
schemes. In the simplest case, we have the following equation: 

 
opt G L

F ( ) (1 )F ( ) αF ( )α= − +i i i   (53) 

where: weight parameter α; 0 ≤ α ≤ 1. 
and   

G
F ( )i - a global model of mapping obtained by using antisymmetric kernels Eq.(33) and 

Eq.(45)  

L
F ( )i - a local model of mapping obtained by using symmetric kernels, Eq.(48). 

The relation (53) is motivated by the general properties of dynamical systems: a vector 
field F( · ) underlying a physical law, object or process generally consists of two 
components-global and local (recombination and selection in biological systems, 
respectively). 

To illustrate the considerations above, let us consider the following example: 

Example1 

Let us design a classification of 8-dim. vector input space X, where x = [x1, x2, … ,x8]T,    
xk ∈ [ -1 , 1], k = 1, … , 8. into 25 classes centered in randomly chosen points: xi, i =1, … , 32. 
This classification has to be error free, with probability 1, for solid spheres x∈ Sρ(xi), where 
ρ(radius) = 0.2. It has been experimentally found (i.e. by simulation) that covering randomly 
every sphere  Sρ(xi) with 10 balls, such a classifier design can be reformulated as the 
following mapping approximation (n = 8, m = 320-number of inputs points): 

ij i
F( ) =x y , i = 1, … , 32; j =  1, … , 10 

where: yi = [±1, ±1, ±1 , ±1, ±1]T       (binary label of classes) 
The set of input points is given by: 
 

{ }ij と i
S ( )∈x x , i = 1, … , 32, j = 1, … , 10 

where: ρ = 0.2 
To implement the above defined mapping F(xij), let us choose the antisymmetric kernels 
Eq.(33), where: 
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( )3p

2
Θ(p) 5 1 ,   p  R

1 e
−

= − ∈
+

 

and 

8

0 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1

1 1 0 1 1 1 1 1

1 1 1 0 1 1 1 11

1 1 1 1 0 1 1 17

1 1 1 1 1 0 1 1

1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0

− − − −

− − − −

− − − −
=

− − − −

− − − −

− − − −

− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

H

 

Some simulation experiments showed that the mapping  F(xij) fulfils formulated constraints 
on classification for the case: min d(xi, xj) ≥ 0.7 (distance between sphere centers) and under 
condition that regularization parameters γ   ≥ 0.75 (Eq.(38)).  
Equation (51) can be seen as a definition of associative memory as well, under the 
assumption that dim xi = dim yi, where xi is a memorized pattern. For yi ≡ xi, one gets a 
feedforward structure of an autoassociative memory, i.e.: 

 
i i

F( ) =x x# , i = 1, …, m  (54) 

Hence, the problem of a nonlinear mapping-based design of the associative memory can be 
regarded as a covering problem of input space X by spheres Sρ(xi). 
Moreover, Eq.(54) determines an identity map i.e. : 

 
i i

F( ) =x x , i = 1, …, m  (55) 

and F( · ) is an expansion.  
Hence, the mapping F( · ) possesses at least one fixed point, i.e. : 

 F( ) =e e   (56) 

where: e- a fixed point of F( · ) 
Specifically, let us construct the family of identity maps for orthogonal vectors hi , i =1, …, 8, 
constituting eight columns of matrix H8 in Eq.(18), i.e.: 

 F ( )
q i i

=h h , i = 1, … , m; q = 1, 2, …  (57) 

using antisymmetric kernels Eq.(33), hi ∈ R8.  
It can be shown that in family (57) there are mappings Fq( · ) with the number of fixed points 
ne ≤ 256 (e.g. ne =144), giving rise to a feedback structure of associative memories. Indeed, let 
us embed such a Fq( · ) into a dynamical system, as shown in Fig. 9. 
The state-space equation of structure from Fig.9. is given by: 

 
q

β F ( )

•

= − +ς ς ς   (58) 

where: ς - 8-dim. state vector, 0 < β ≤1. 
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Fig. 9. Dynamical structure of an attractor type associative memory. 

Thus, one obtains a feedback type structure of an associative memory with e.g. over 144 
asymptotic stable equilibria, but generally with different diameters of attraction basins. 
Unfortunately the set {ek}of fixed points of a map F( · ), can not be found analitically but 
rather by a method of asymptotic sequences. This can be done relatively simply for 8-dim. 
identity map presented by Eq.(57) and (58). Thus, due to the exceptional topological 
properties of a 8-dim vector space, very large scale associative memories could be 
implemented by a compatible connection of the 8-dim. blocks from Fig.9. An example of 
such a connection is presented in Fig.10, where two 8-dim. blocks from Fig.9., weakly 
coupled by parameters εi > 0, create a space with a set of equilibria given by: 

{ } { } { }
k

(1) (2)

c j= ×e e e where: k =1, 2, …, 144, …; j = 1, 2, … , 144 ...  

Finally, it is worth noting that the structure from Fig.10 can be scaled up to  very large scale 
memory (by combinatorial diversity), due to its stabilizing type of connections (parameters 
εi ). More detailed analysis of the above presented feedback structures is beyond the scope of 
this chapter. 
To summarize, this section points out the main features of orthogonal filter-based mapping 
approximators: 
1. Due to regularization and stability, orthogonal filter-based classifiers can be 

implemented for any even n (dimension of input vector space) and any  m < ∞ (number 
of training vectors). Particularly for n = 2k , k ≥ 3 such classifiers can be realized by 
using octonionic modules. 

2. As mentioned above, the problem of a nonlinear mapping-based design of classifiers 
and associative memories can be regarded as a covering problem of input space X by 
spheres with centers xi . The radius of the spheres needed to cover X depends on the 
topology of X and can be changed by a suitably chosen nonlinearity of function Θ( · ). 
Using, for example, a sigmoidal function for the implementation of Θ( · )., this radius 
depends on the slope of  Θ( · ) at zero. Hence, note that antisymmetric kernels allow us 
to classify very closely placed input patterns in terms of   Θ( · )→ sgn( · ). 

6. Conclusions 

The main issue considered in this chapter is the deterministic learning of mappings. The 
learning method analysed here relies on multivariate function approximations using mainly 
skew-symmetric kernels, thus giving rise to very large scale classifiers and associative 
memories. By using HNN-based orthogonal filters, one obtains regularized and stable 
structures of networks for learning. Hence, classifiers and memories can be implemented for 
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Fig. 10. Very Large Scale Structure of associative memory. 

any even n (dimension of input vectors) and any m < ∝ (number of training patterns). 
Moreover, they can be regarded as numerically well-posed algorithms or physically 
implementable devices able to perform their functions in real-time. We believe that 
orthogonal filter-based data processing can be considered as motivated by structures 
encountered in biological systems. 
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