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Generalized “Yoking-Proofs”  
and Inter-Tag Communication 

Leonid Bolotnyy and Gabriel Robins 
Department of Computer Science, University of Virginia, 

 USA 

1. Introduction 

Some radio-frequency identification (RFID) scenarios require a proof of action (e.g., that a 
group of objects tagged with RFID tags were identified simultaneously). For example, 
pharmaceutical distributors may want to prove that a bottle of medicine was sold together 
with its instructions leaflet [Juels, 2004]; manufacturers may want to prove that safety 
devices were sold together with a tool or that a number of matching parts were delivered 
simultaneously; banking centers or security stations may want to prove that several forms of 
ID were read simultaneously; meeting organizers may want to prove that a group of people 
were present together at a meeting, etc. Third-parties can verify the validity of such proofs. 
For examples above, the verifying third parties can be regulatory agencies, company 
headquarters, etc. 
We seek to ensure that if a group of tags is not read nearly-simultaneously, an entity (RFID 
reader) will not be able to forge a proof that they were by constructing a valid forged proof. 
Inspired by this problem, Ari Juels developed a protocol that creates such a proof for a pair 
of RFID tags [Juels, 2004]. He left open for future research the problem of generalizing his 
protocol to three or more tags. We develop a methodology that generalizes yoking-proof 
protocols to arbitrarily large groups of tags. We also define an anonymous yoking problem 
and propose an efficient solution for it [Bolotnyy & Robins, 2006]. Finally, we show how 
these yoking protocols can be sped up. 

2. Assumptions 

We assume that RFID tags are passive and have limited computational capabilities. We 
require that tags be able to execute keyed hash functions and store state information such as 
a key, a counter, and some data computed during the protocol execution. These 
requirements can be satisfied in practice by Class-2 Generation-2 EPC tags [EPCglobal, 
2006]. Since we assume that tags are passive, the tags cannot communicate directly with 
each other, but they can communicate with each other indirectly through the reader. For 
now, we also assume that an adversary cannot physically steal tags’ secret information. 
Later we discuss how this requirement can be relaxed. 
Our verifier is assumed to be a trusted and computationally powerful machine. The verifier 
is considered to be off-line in the sense that it does not have to verify the proof immediately 
after it is created, and it does not need to communicate with the tags during the proof O

p
e

n
 A

c
c
e

s
s
 D

a
ta

b
a

s
e

 w
w

w
.i
n

te
c
h

w
e

b
.o

rg

Source: Development and Implementation of RFID Technology, Book edited by: Cristina TURCU,  
 ISBN 978-3-902613-54-7, pp. 554, February 2009, I-Tech, Vienna, Austria

www.intechopen.com



 Development and Implementation of RFID Technology 

 

448 

construction. A reader communicating with the tags is assumed to be adversarial, and we 
want the protocol to be secure against a reader that attempts to create the yoking proof 
without reading all the tags within the required time bounds. The tags are assumed to be 
not impaired by an adversary, and tags do not collude with an adversary. 
Replays of previously constructed valid proofs (replay attacks) may or may not be 
considered a threat, depending on the application. In our generalized yoking-proof protocol, 
we consider adversarial replay attacks to be a viable threat, and thus we design the protocol 
accordingly. To avoid replay attacks, the proof verifier stores some information about 
previous correct proofs. The verifier is not required to store this information if replays of 
valid proofs are not considered to be attacks. This will be elaborated upon in the discussion 
following the protocol specification. 
We require that the tag accessed first by the reader be able to implement a timeout after a 
specific time period t has elapsed. Perhaps surprisingly, timeouts can be implemented on 
clock-less RFID tags. FCC regulations require the reader to change the communication 
frequency of a tag-reading protocol within 400ms. Changing the communication frequency in 
the middle of the protocol execution will likely result in loss of power on-board a tag and 
cause protocol termination. Therefore, the FCC regulation can serve as the clock for honest 
(law-obedient) readers. However, if the reader is malicious and violates these FCC regulations, 
a capacitor discharge rate on-board a tag can be used for protocol timing [Juels, 2004]. 

3. Basic protocol for a pair of tags 

We now briefly describe Ari Juels’ “yoking”1 protocol for a pair of tags [Juels, 2004]. Assume 
that an RFID system contains n tags, which are denoted by T1, T2, . . . , Tn. Each tag Ti is 
assigned a unique key xi and a counter ci both are d bits long. A tag has the ability to 
compute a keyed hash function and a standard message authentication code, which is likely 
to be implemented as a keyed hash function, such as HMAC, in order to simplify the circuit. 
A reader will read two tags and produce a proof P that both tags were read near-
simultaneously, i.e. within t time units. The verifier V knows all key assignments to tags and 
will verify that the proof P is valid (not forged). 

Let f : {0, 1}d
 × {0, 1}* → {0, 1}d

 be a keyed hash function, and let MAC : {0, 1}d
 × {0, 1}* → {0, 1}d 

denote a standard message authentication code. Let fx[m] and MACx[m] denote computation of f 
and MAC respectively with a secret key x on input message m. The proof that tags TA and TB 

were scanned simultaneously is PAB = (A, B, cA, cB, mAB) where mAB is defined in the protocol 
in Figure 1. To verify proof PAB, the verifier computes , and 

, as well as m′AB = MACxA[cA, b′], and then checks if mAB = m′AB. If 

t time units elapse, the first tag terminates the protocol, thus depriving the reader of the 
ability to construct a valid proof. Juels’s protocol, as shown in Figure 1, has a minor, yet 
critical omission. Specifically, the counter value on the first tag is not incremented on 
timeout, allowing an adversary to violate the near-simultaneous object read requirement. 
Our group yoking protocol corrects this problem. 
Juels also introduced a “Minimalist MAC”, which may be implemented on lower-cost tags 
without encryption or hash function support. However, the protocol that he suggests for a 

                                                 
1 The term “yoking” suggests the joining together, or the simultaneous presence of all the 
tags. 
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“yoking-proof” using a “Minimalist MAC” can only construct the proof once, which seems 
to diminish the original purpose of the protocol. If the reader is trusted, there is no need for 
such a protocol; on the other hand, if the reader is potentially untrusted and aborts the 
protocol after the first read, there will be no proof and no chance of ever re-creating a 
provably unforgeable proof in the future. Next, we discuss several works that 
unsuccessfully attempt to solve the generalized “yoking-proof” problem. 
 

 

Fig. 1. A “yoking-proof” construction for a pair of RFID tags. The reader first communicates 
with tag TA, then with tag TB, and then with tag TA again. 

4. Related work 

There have been several attempts to generalize the yoking-proof protocol. However, none of 
them solve the problem satisfactorily. Saito and Sakurai [Saito and Sakurai, 2005] apparently 
misunderstood Ari Juels’ protocol for “strong MAC” and its modification for a “minimalist 
MAC”. The authors presumed that in a minimalist “yoking-proof” each tag generates a 
random number for each proof, on which a keyed-MAC function is later applied, whereas 
Juels states that each tag is initialized with a one-time random number. Thus, the replay-
attack the authors consider against the “minimalist-MAC” protocol is not applicable, since 
the “minimalist-MAC” protocol was designed for one-time use. 
Saito and Sakurai suggest a group protocol which relies on time stamps provided by the 
back-end database [Saito & Sakurai, 2005]. In their scheme a reader receives a time stamp TS 
from the database, and it sends this timestamp to all the tags participating in the protocol. 
Each tag Ti computes mi = MACxi [TS] and sends mi back to the reader. In addition, the 

authors assume the existence of one powerful/leader tag among tags participating in the 
protocol. The reader sends all mi to this leader tag, and the leader tag encrypts them together 
with the time stamp TS using encryption function SK keyed with a secret key x. Then, the 
leader tag sends the encryption result Cp to the reader, and the yoking proof is Pn = (TS,Cp). 
Figure 2 shows their grouping protocol. 
We discovered several flaws in Saito and Sakurai’s solution. First, the assumption that one 
of the tags is more powerful than the others is not true in many practical scenarios. The 
second and main weakness of their protocol is that an untrusted reader can pick the time 
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stamp TS as a future time stamp, and then use it on one tag and much later on another, thus 
violating the near-simultaneous read requirement. Even if the time stamp TS is encrypted, the 
reader can still separate tag accesses in time, since each tag access is independent of the others. 
 

 

Fig. 2. Saito and Sakurai’s protocol for a group of RFID tags. 

Recently another paper [Piramuthu, 2006] independently observed the same problem with 
the “yoking-proofs” protocol of Saito and Sakurai [Saito & Sakurai, 2005]. Both papers [Saito 
& Sakurai, 2005] [Piramuthu, 2006] discuss a replay attack on Juels’ one-time “yoking-
proof”. However, replay attacks are not an issue in Juels’ Minimalist-MAC protocol [Juels, 
2004] since the yoking-proof is a one-time proof. The one-time “yoking-proof” of Juels 
provides no security guarantees if the protocol is run more than once, and in fact, it is 
insecure in such re-run scenarios. The proposed “fix” of Piramuthu [Piramuthu, 2006] only 
works for a pair of tags, as opposed to an arbitrary number of tags. Moreover, the method of 
Piramuthu [Piramuthu, 2006] solves a different problem than the original problem 
formulation of Juels [Juels, 2004], since it relies on a random number the reader obtains from 
an on-line verifier, rather than accommodating an off-line verifier, as done in [Juels, 2004]. 
Our proposed solutions do not have these limitations. 
Lastly, the work Peris-Lopez et al. [Peris-Lopez et al., 2007] repeats our observations of flaws 
in previous attempts to generalize yoking proofs. The authors [Peris-Lopez et al., 2007] offer 
their solution to our anonymous-yoking problem, discussed below, yet their solution does 
not satisfy the problem requirements. Specifically, it does not provide privacy since their 
protocol leaks the counter value on-board the tags. In addition, their solution is applicable 
only to 2 tags, requires an on-line verifier, and forces the reader to be trusted. It is worth 
mentioning that Peris-Lopez et al. [Peris-Lopez et al., 2007] state that our anonymous-
yoking protocol takes O(n2), where n is the total number of tags in the system, to verify the 
yoking-proof for two tags. However, this bound is not tight since our anonymous-yoking 

protocol takes θ(k∗n) where k is the number of tags participating in the yoking protocol and 
n is the total number of tags in the system. So, if the number of tags participating in the 
protocol is small, as is the case for most realistic scenarious, our protocol takes θ(n) time. 

5. Our group yoking protocol 

The idea of our generalized “yoking proof” for a group of tags is to construct a circular 
chain of mutually dependent MAC computations [Bolotnyy & Robins, 2006]. The purpose of 
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the construction is to ensure that if an untrusted reader “breaks the chain” (i.e. does not read 
all the tags within t time units), it will neither be able to mount a replay attack nor create a 
proof that will be accepted as valid by the verifier. 
Using the same notation and definitions as above, let x1, x2, . . . , xn be the secrets and let c1, 
c2, . . . , cn be the counters stored on tags T1, T2, . . . , Tn, respectively. Tag secrets are shared 
with the verifier. In our protocol below, we assume that the reader generates a proof for tags 
T1, T2, . . . , Tk (k ≤ n) and queries them in that order. (Tags are queried based on their IDs or 
on the random numbers that they generate.) The first tag computes r1 = fx1[c1] and sends a1 = 

(1, c1, r1) to the reader. The reader will then send a1 to the second tag. The second tag will 
compute r2 = MACx2 [c2, a1] and send a2 = (2, c2, r2) to the reader. The reader will then send a2 

to the third tag, which will in turn perform the same computation as the second tag, i.e. r3 = 
MACx3 [c3, a2] and send a3 = (3, c3, r3) to the reader. The reader will then send a3 to the fourth 

tag and so on, until the last tag k has computed rk and sent ak = (k, ck, rk) to the reader. 
The reader then sends ak to the first tag, which computes m = MACx1 [a1, ak] (assuming that t 

time units have not yet elapsed since the initial tag access), and sends m to the reader. The 
reader R creates a proof P1,2,...,k = (1, 2, . . . , k, c1, c2, . . . , ck,m). The protocol is shown in Figure 
3. The numbers in ellipses in the figure indicate the communication order. To verify the 
proof P1,2,...,k, the verifier V performs the same computations as the tags 1, 2, . . . , k, 
maintaining the order, and compares the proof P that it generates to the proof P1,2,...,k that the 
reader provided. If the proofs match, the verifier outputs success; otherwise, it outputs 
failure. The pseudocode of algorithms for tag initialization, the reader, a tag, and the verifier 
can be found in the author’s Ph.D. thesis [Bolotnyy, 2007]. 
 

 
 

Fig. 3. Our “yoking-proof” protocol for a group of RFID tags. 
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Notice that each tag computes a MAC of a message that is a function of a MAC computed 
by the preceding tag in a yoking chain. This ensures that the reader has at most t time units 
to create the proof. To avoid replay attacks and allow temporal ordering of the proofs, each 
tag increments its counter immediately after it sends ai to the reader. Also, observe that tags 
need not know how many tags participate in the “yoking-proof” protocol; instead, they only 
need to know when to timeout. 
Note that if the first tag does not update its counter right after it sends its first message, a 
possibly malicious reader can create a proof P that will successfully pass through the 
verifier, without reading all the tags within the specified time bound t. In such a scenario, a 
proof can be forged as follows. The malicious reader can ask the first tag to compute a1, then 
wait for t time units to elapse in order to cause T1 to timeout, then send a1 to T2 to obtain a2. 
Then, the reader will access T1 for a dummy computation of a1, and send a2 to T1 to obtain m, 
and construct a valid proof P = (1, 2, c1, c2, m). 
The basic yoking protocol of Juels, as shown in Figure 1, suffers from this problem unless 
the counter on the first tag is incremented on a timeout, but this is not specified in Juels’s 
paper. The security of our scheme hinges on the probability  that an adversary A is able to 
construct a “yoking proof” PAB, which could fool the verifier V into reporting “success”, 
without actually reading the IDs of all the tags involved in the protocol within t time units, 
as intended. 
Next, we state the security property of our protocol. The proof of the theorem can be found 
in the author’s Ph.D. thesis [Bolotnyy, 2007]. 
Theorem: Given random-oracle assumptions for f and MAC [Bellare and Rogaway, 1993], the 
success probability  of an adversary A for a grouping protocol is bounded from above by 
2−d where d is the message length.                                                                                                      □ 
Discussion: Our group-yoking protocol can be adapted to the “Minimalist MAC” protocol 
proposed by Juels. However, as discussed above, a one-time proof is not very useful given 
the problem assumption that the reader may be malicious. 
To prevent an adversary from replaying old proofs, the verifier can store counter values of 
tags obtained from the latest verified-correct yoking proofs in which tags participated. A 
replay attack will use the counter value that is less than or equal to the last recorded counter 
for the tag. Storing tag counter values also allows for a temporal ordering of the yoking 
proofs, which may be desired. If there is more than one verifier in the system, the verifiers 
need to be able to share the tags’ counter values to prevent replay attacks. 
Having counters on-board tags allows for temporal ordering of the yoking proofs and 
guarantees that a keyed hash function will never be computed on the same point twice. 
However, such tag counters require tags to maintain a persistent state between several runs 
of the protocol. An alternative is to replace counter values with random numbers generated 
on-board the tags (the tags will need to be equipped with pseudo-random number 
generators and maintain secret seeds or have truly random number generators). However, if 
random numbers are used instead of counters, and a replay of past proofs is considered to 
be an attack, the verifier should store all previous yoking proofs and compare them to the 
new proof. 
We made an assumption (see Section 2) that the reader cannot physically steal secrets from 
the tags. We can relax this assumption somewhat. Assuming that a malicious reader did not 
read one or more of the tags, and is pressed for a proof by the verifier, then the owner of the 
reader can try to find the “first tag” and physically steal the secret key from it, allowing the 
reader to complete the protocol. To prevent such an attack, each tag can update its secret key 
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in a forward secure manner [Bellare & Yee, 2003]. For example, a one-way hash function can 
be used to update a tag’s key at the time of a tag’s counter update. The old key is then 
securely discarded. For this scheme to be practical, tags should maintain counters, instead of 
generating random numbers as timestamps, to allow the verifier to quickly determine the 
secret key that each tag used for computation. 
In yoking proofs it is critical to rapidly establish communication with all the tags, otherwise 
the yoking-proof can not be created within the required time interval. This issue raises the 
object detectability problem [Bolotnyy & Robins, 2005] [Bolotnyy & Robins, 2007a]. Note, 
multiple connected tags, or multi-tags, can help address the object detection problem 
[Bolotnyy & Robins, 2005] [Bolotnyy, 2007]. 

6. Anonymous yoking 

Observe that Juels’s “yoking proof” protocol and our generalization do not hide the 
identities of tags – each tag sends its identifier and its counter value to the reader in the 
clear. Before the execution of the protocol, the reader is unaware of the identities of tags, and 
running the yoking protocol will reveal them to it. In some practical scenarios, we would 
like to preserve the identity of objects associated with the tags (i.e. not reveal tag IDs to 
untrusted readers). We therefore introduce a new problem formulation, called anonymous 
yoking, which in addition to the requirements of a “yoking-proof” problem, requires tags to 
preserve their privacy. 
The protocol that we develop for anonymous yoking is very similar to the generalized 
“yoking proof” protocol discussed above, yet certain differences and details are important. 

Let f : {0, 1}d
 × {0, 1}* → {0, 1} d

 be a keyed hash function. Upon the reader’s request, each tag 
will generate a random number r, and compute a = fx(r, value), where x is a secret key stored 
on a tag and value is an output of the previous tag in the chain, as in our generalized 
“yoking proof” scenario above. The first tag sets value equal to 0. Each tag will respond to 
the reader’s request by sending (r, a) to it, and the first tag will close the chain. The detailed 
algorithms for the reader, a tag, and the verifier can be found in the author’s Ph.D. thesis 
[Bolotnyy, 2007]. The proof of security is very similar to the one for the generalized protocol 
[Bolotnyy, 2007]. This anonymous yoking-proof protocol is privacy preserving in the Strong 
Privacy model of [Juels & Weis, 2006]. 
Note that the process of determining the tags’ identifiers and verifying the proof are 
combined in the verification steps. The verifier will try to determine which secrets were 
used to compute each ai given ri. Since ai is a function of ai−1 for all 2 ≤ i ≤ k, the process of 
determining the secrets and verifying the proof coincide. To determine the tags’ identifiers 
and to verify the protocol, it will take the verifier O(k · n) time where n is the total number of 
possible tags and k is the number of tags participating in the protocol. The running time can 
be further reduced to O(k · log(n)) if the approach suggested by Molnar et al. [Molnar and 
Wagner, 2004] is used, namely arranging the tags at the leaves of a tree and associating a 
secret to each edge in the tree. Each tag stores all the secrets on the path from the root to the 

leaf where it is located. Instead of sending (ri, ai) to the reader, each tag will send ri, 
1

i
a = fs1 

(ri, ai−1), . . . , i
a

tree-depth = fstree−depth (ri, ai−1) where s1, . . . , stree−depth are secrets from the root of the 

tree to the leaf where a tag is located. This algorithm modification will allow the verifier to 
determine a tag’s identity in O(log(n)) time by finding the right path from the root to the leaf. 
However, this speedup in tag identification suggested in [Molnar & Wagner, 2004] comes at 
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a cost, as leakage of secrets of one or more tags poses a privacy threat to other tags. The 
extent of the threat is analyzed in [Avoine et al., 2005]. 
Observe that anonymous yoking allows an adversary or even an innocent transient entity to 
inject an arbitrary (“yoking-proof” supporting) tag into the “yoking-proof” construction. If 
the verifier does not possess the injected tag’s secret key, this action will prevent the verifier 
from verifying the complete proof, thus causing a denial of service attack. 

7. Speeding up the yoking protocols 

The run-time of the “yoking-proof” protocol is the sum of the time to perform encryption, 
the time to establish a reliable reader-to-tag communication channel, and the time to decode 
the reader requests and to encode the responses. We estimate that the establishment of the 
communication channel, and the decode and encode times take about 1ms per tag, assuming 
about 1,000 security-free tags can be identified per second. The majority of the protocol time 
will be spent on encryption operations. Therefore, we concentrate on encryption operations 
for the protocol run-time analysis. The tag that starts and closes the yoking chain performs 2 
encryptions and the tags in the middle of the chain perform 1 encryption. Therefore, to yoke 
k tags requires k + 1 encryptions. The time to perform a single encryption depends on the 
frequency of a tag/reader communication, the communication distance, the communication 
standard, the power consumption of a tag, the cryptographic algorithm, and the length of 
the secret key. 
For example, for high RFID communication frequency of 13.56MHz, ISO/EIC 18000 
compliant standard, and 128-bit secret key AES implementations suggested by [Feldhofer et 
al., 2004] with 15μA current for AES module and 100KHz AES module clock frequency, one 
encryption takes about 10ms. So, under these conditions we can yoke ~ 36 tags and remain 
within the FCC required 400ms communication window (36· 10ms + 36· 1ms < 400ms). 
There may be applications where over 40 tags need to be yoked, or where a novel 
minimalist RFID encryption takes long computation times, or scenarios with real-time 
performance requirements (i.e., multiple yokings per second). For these types of 
applications, the “yoking-proof” protocol should be sped up. 
The yoking-proof creation can be sped up by splitting the circular chain of dependent MACs 
into a group of arcs, where each arc consists of a sequence of dependent MACs, and where 
the adjacent arcs are inter-dependent. Each arc has a single element that plays the role of the 
“first” and the “last” tag. Let ID1, . . . , IDk be the tags’ identifiers sorted by the tags ID, or by 
the random numbers generated on-board the tags for anonymous yoking. We split the 
sorted list of identifiers into the desired  number of groups g (e.g., ID1, . . . , IDi1 , IDi1+1, . . . , 

IDi2 , . . . , IDig , . . . , IDk). 

For example, ID1 is the “first” and the “last” element of the first arc. It starts the chain of its 
group (ID1, . . . , IDi1 ) as described in the generalized “yoking-proof” protocol, and it closes 

the chain of the group IDig , . . . , IDk. In other words, the first element of each arc starts the 

chain of the arc and closes the chain of the preceding arc (see Figure 4). 
Note that the protocol requires multiple readers or a single reader with multiple antennas. 
In addition, the protocol should incorporate a medium access control scheme that allows the 
reader(s) to communicate with more than one tag at a time to avoid/minimize tag response 
collisions. The time to create the yoking proof is the sum of the reader communication times 
with the tags belonging to the longest arc. Therefore, the overall speedup factor resulting 
from partitioning the tag set into arcs, can ideally approach the number of arcs. 
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Fig. 4. Group “yoking-proof” protocol speedup. The circular chain is split into 4 arcs. 
Starting/closing tags are clearly marked and directions of the chain creation are shown with 
bold arrows. Dashed arrows represent closing operations with the source tag of the arrow 
proving the input to the destination tag. 

The suggested speedup does not effect the security statement of the theorem for generalized 

yoking-proof protocol given above. The proof is also very similar and therefore omitted. The 

main difference in the proof is that there is more than one starting and closing operations. 

7.1 Message authentication code implementations 
A message authentication code (MAC) aboard a tag can be implemented using a standard 

cryptographic hash-based MAC (i.e., HMAC). Alternatively, Lamport’s one-time signature 

scheme [Lamport, 1979] can be used, as noted in [Juels, 2004], where each bit position of the 

signature has two associated secrets - one for 0 and one for 1. The signature is an ordered 

sequence of secrets that correspond to 0 or 1 in each bit position. However, this scheme 

requires a prohibitably large memory on-board a tag. A more “minimalistic” approach, 

where each secret is just a single bit, was suggested by Juels [Juels, 2004]. To avoid simple 

forgeries, he suggests lengthening the message size, and making the message space sparse 

[Juels, 2004]. In our research [Bolotnyy & Robins, 2007b] [Bolotnyy, 2007] we showed how 

MACs can be implemented using physical hash functions (PUFs) that require an order-of-

magnitude less hardware to implement than standard cryptographic hash functions. In 

addition, PUF-based MAC implementations allow messages to be signed more than once. 

Still, due to some restrictions of PUF-based MAC (limited message space or required tag 

presence during the signature verification), applicability of PUF-based MAC to yoking 

proofs may be limited. 
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The signatures of PUF-based MAC constructions can be long. To reduce the length of the 

signatures and to make them conform to the input length of each tag, a reader can apply a 

publicly known collision resistant one-way hash function to each MAC. The verifier will 

need to apply the same hash function to the signatures when verifying proofs. 

8. Inter-tag communication 

“Yoking-proofs” provide a good example of passive tags communicating with each other 

through the reader (Figure 5). In [Juels, 2004], inter-tag communication is performed as part 

of a larger protocol, and it did not receive enough attention as a general technique in its own 

right. We have found no literature that specifically discusses tag-to-tag communication 

between powerless tags. In the few sources where the term “tag-to-tag communication”2 is 

mentioned, it refers to active (battery-powered) tags that can communicate with each other 

directly. 
 

 

Fig. 5. Inter-Tag communication. Passive tags can communicate with each other through the 
reader. 

In almost all RFID systems discussed in the literature, readers query RFID tags for their IDs 

or for some other data, and pass that data to the back-end server for processing. We envision 

a different paradigm of RFID systems where RFID tags, even passive or semi-passive ones, 

can communicate amongst themselves, using the readers as intermediaries. Such inter-tag 

communication capability can create additional heterogeneity in ubiquitous computing, 

where powerful wireless devices (e.g. readers) are able to initiate communication on their 

own, and communication-powerless devices (e.g. semi-passive tags, passive tags) can still 

communicate with their peers through powerful devices. Inter-tag communication creates 

opportunities for new RFID applications, but it also creates new security challenges (e.g., 

securing the communication channel between the tags even if “connecting” readers are 

untrusted, and maintaining the integrity of the transmitted data.) 

Next, we give examples of applications where inter-tag communication can be beneficially 

utilized. 

8.1 Example 1: battery-free sensing 
In [Philipose et al., 2005] the authors provide evidence that battery-less tags can be used for 

sensing by harvesting their energy from the readers using RFID technology. Consequently, 

                                                 
2 For example, [Brooke, 2005] contains the term “tag-to-tag communication” without 
explicitly referring to passive tags, the assumption being that the tags in question are active. 

www.intechopen.com



Generalized “Yoking-Proofs” and Inter-Tag Communication 

 

457 

inter-tag communication can allow passive tags to share sensing data, and use it to enable 

future sensing activities, just like in wireless sensor networks. 

8.2 Example 2: tags as mailboxes 
We envision a scenario where off-line readers can exchange messages by using tags as 

“mailboxes”. Here, one reader can send a message to another reader by writing a message 

onto an appropriate tag, and this message will later be retrieved by the recipient reader. 

Tags can also be used as proxies, permitting readers to send and receive data from tags that 

are outside their reading range. The data will propagate from one tag to another tag which 

is closer to the destination. Essentially, RFID tags can serve as powerless distributed storage 

devices. In this application of inter-tag communication, readers must verify the data that 

they read off the tags to ensure that it is not a virus (e.g., see attacks discussed by Rieback et 

al. [Rieback et al., 2006]). 

8.3 Example 3: centralized authentication 
The tag population can be partitioned into groups, with specific tags designated as group 

leaders. A group’s leader is in charge of reader authentication and access control to data 

stored on-board all tags belonging to a group. An example of centralized authentication is a 

pallet tagged with a group leader tag, and individually-tagged items within the pallet 

serving as the group members. Individual tag access is authorized by a group leader (a 

powerful tag), which contains access policy information that can be updated over time. One 

of the benefits of such an approach is the centralization of group policy information, which 

allows for faster and more uniform policy updates. In addition, the tag complexity can be 

reduced by placing major functions on a single (group leader) tag. 

Next, we describe the protocol for this centralized authentication scenario. Let k be the 

number of tags in the group, excluding the group leader. Let f, h : {0, 1}d
 × {0, 1}d

 → {0, 1}d be 

two pseudo-random functions. Let s be a secret key shared by the group leader and the 

reader, and for i = 1, ..., k let si be the secret keys of tags Ti, known to the group leader. At the 

beginning of the protocol, the reader sends an access request to tag Ti and the tag responds 

with a nonce (i.e., a random “number used once”). The reader will then ask the group leader 

for an access certificate to tag Ti, providing it with the nonce received from the tag. The 

group leader will authenticate the reader using a challenge-response protocol and issue a 

certificate c based on the tag supplied nonce, if allowed by the access control policy. The tag 

will verify that the access certificate is valid and grant data access to the reader. The general 

form of the reader and group leader communication protocol is shown pictorially in Figure 

6, and the algorithms for the reader, a tag, and the group leader are given in the author’s 

Ph.D. thesis [Bolotnyy, 2007]. 

Tag data access control policy can be group-based or tag-based (i.e. the identity of a tag is 

not a secret, but access to the data stored on-board the tag is granted only to authorized 

readers). If the policy is tag-based, the reader will need to specify to the group leader the 

identity of the tag whose data it wants to access. Note that this scenario reduces the number 

of secrets that a reader needs to possess in order to collect information from the tags, since 

the reader only needs to share secrets with group leaders. 
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Fig. 6. Centralized reader authentication. The group leader issues a certificate to the reader, 
allowing access to tag Ti. Here f is the pseudo-random function that the reader and the 
group leader use for authentication, and s is the secret they share; h is the pseudo-random 
function that the group leader and the tags within a group use for authentication; and si is 
the secret that the group leader and tag Ti share. 

8.4 Example 4: distributed access control 
Inter-tag communication can also be used for distributed access control. A master tag grants 

the reader access to a resource only if all of its subordinate tags first authorize access to all 

dependent resources (i.e. all dependent sub-resources have to be acquired first, before the 

main resource itself is acquired). Examples of distributed access control include “safe 

deposit box opening” that requires multiple keys, and a system of doors where access to a 

door depends on successful access to a group of other doors. 

Distributed Access Control Problem: A reader seeks to gain access to information, data or 

facility controlled by a master tag. To gain access to the master tag, the reader first needs to 

obtain recent authentication certificates from all subordinate tags, (i.e., all proofs must be 

generated within some time window t). 

To solve this problem, the reader can perform an authentication algorithm with each 

subordinate tag based on a nonce provided by the master tag, and then present the collected 

authentication certificates to the master tag for verification. The master tag can time the 

reader, as in yoking-proofs, to verify the timely presentation of proofs. 

However, if we also require the proofs to be verifiable at any time after they have been 

generated, the problem becomes more difficult. To provide such a proof, which joins 

together proofs from a number of tags, we can use a modified version of our anonymous 

“yoking-proof” solution described above. The reader will generate a proof, showing that it 

read all tags within time t, and then present this proof to the master tag. The “yoking-proof” 

will need to be augmented to allow for preliminary authentication, and timed from the start 

of the authentication rather than from the yoking construction. The master tag will then 

verify the validity of the “yoking-proof”. 

Another application of inter-tag communication is subordinate reader authentication / 

authorization. A group leader tag provides access to the reader or performs reader 
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authentication if and only if the reader has successfully authenticated itself to other tags. To 

gain access to the main object/data, the reader needs to prove to the guardian tag that it has 

successfully authenticated itself to the subordinate tags. To do so, the reader authenticates 

itself to each subordinate tag and provides a proof to the group leader that it was 

successfully authenticated by all tags. Timing is important here as we do not want a reader 

to present an “old authentication” or an authentication it stole by eavesdropping on 

communication by another reader. 

8.5 Example 5: location access control 
Yet another application of inter-tag communication is location access control. For example, 

several readers want to gain access to a resource if all of them are present at specific 

locations. Each reader can prove its proximity to a corresponding tag using a distance-

bounding protocol [Sastry et al., 2003] [Hancke & Kuhn, 2005], and the authentication result 

is then shared among the tags. Access to the resource is granted if the protocol completes 

successfully. 

The above list of examples does not exhaust all possible applications of inter-tag 

communication, and future research can focus on finding new applications. 

9. Conclusion 

We reviewed the basic “yoking-proof” protocol for a pair of tags suggested by Juels and 

discovered a critical omission in his protocol. We also described weaknesses in attempts by 

other researchers to generalize the protocol to a yoking-proof problem. We designed a 

protocol that creates a proof that an arbitrarily large group of RFID tags are read within a 

given time bound. This protocol generalizes the basic “yoking” protocol by Juels. The 

yoking-proof is improbable to forge and it is verifiable off-line by a trusted verifier. We 

modified the security requirements of the yoking-proof problem, requiring the system to 

maintain privacy, and gave an algorithm for this new anonymous yoking problem 

formulation. We also described a way to speedup our “yoking-proof” protocols. 

We briefly discussed viable low-cost message authentication code (MAC) implementations. 

MAC implementations relying on physical unclonable functions (PUFs) require less 

hardware resources than the known cryptographic implementations of keyed hash 

functions and therefore, may be applicable to some applications of yoking-proofs. We 

proposed a new paradigm of inter-tag communication between passive RFID tags where 

tags communicate with each other through the reader. We put forward a number of 

interesting applications of inter-tag communication such as battery-free sensing, and 

distributed access control, among others. We suggested another type of “yoking-proof” for 

distributed access control in RFID, and described possible solutions. 

The cost of tags capable to implement our generalized yoking proof protocol is likely to be 

greater than the cost of a basic RFID tag that only replies to the reader with a constant tag 

identifier. The tag cost may be even higher if in addition to the hash function, a PUF 

circuit is added to the tag to provide physical protection of the tag key(s) and counter 

value. Also, due to protocol timing constraints and the time to compute a hash value 

onboard a tag, it may not be possible to join all the tags within the required time period. 
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In this case, it is interesting to consider the use of a logical clock instead of a physical 

clock. Moreover, the tag capacitor charge and discharge rate may be imprecise, resulting 

in variable tag timeout. Since the capacitor charging rate is based on the power supplied 

to the tag by the reader, an adversarial reader can reduce the power supply to the first tag 

to a minimum in order to extend the object yoking period. Some provisions onboard a tag 

can be added to prevent the tag from communicating with the reader until the tag 

capacitor charges fully. 

Future research opportunities lie in the development of new applications of inter-tag 

communication, utilizing the ability of tags to communicate with each other through the 

reader. In addition, much future work is needed in the area of PUF-based security, which 

may allow for low-cost implementations of yoking-proofs protocols. Inter-tag 

communication and yoking-proofs in particular give good examples of RFID that go 

beyond simple tracking of objects. Looking broadly at possible RIFD applications opens 

previously unexplored possibilities, thus paving the way to ubiquitous RFID 

deployments. 
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