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1. Introduction      
 

In recent years, control Lyapunov functions (CLFs) and CLF-based control designs have 
attracted much attention in nonlinear control theory. Particularly, CLF-based inverse 
optimal controllers are some of the most effective controllers for nonlinear systems [Sontag 
(1989); Freeman & Kokotović (1996); Sepulchre et al. (1997); Li & Krstić (1997); Krstić & Li 
(1998)]. These controllers minimize a meaningful cost function and guarantee the optimality 
and a stability margin. Moreover, we can obtain the optimal controller without solving the 
Hamilton-Jacobi equation. An inverse optimal controller with input constraints has also 
been proposed [Nakamura et al. (2007)]. On the other hand, these controllers assume that 
the desired state of the controlled system is an equilibrium state. Then, if the controlled 
system does not satisfy the assumption, we have to use a pre-feedback control design 
method to the assumption is virtually satisfied. However, a pre-feedback control design 
causes the luck of robustness. This implies that a stability margin of inverse optimal 
controllers is lost. Hence the designed controller does not asymptotically stabilize the 
system if there exists a parameter uncertainty in the system.  
In this article, we study how to guarantee a stability margin when the pre-feedback 
controller design is used. We consider a magnetic levitation system as an actual control 
example and propose an adaptive inverse optimal controller which guarantees a gain 
margin for the system. The proposed controller consists of a conventional inverse optimal 
controller and a pre-feedback compensator with an adaptive control mechanism. By 
introducing adaptive control law based on adaptive control Lyapunov functions (ACLFs), 
we can successfully guarantee the gain margin for the closed loop system.  Furthermore, we 
apply the proposed method to the actual magnetic levitation system and confirm its 
effectiveness by experiments.  
This article is organized as follows. Section 2 introduces some mathematical notation and 
definitions, and outlines the previous results of CLF-based inverse optimal control design. 
Section 3 describes the experimental setup of the magnetic levitation system and its 
mathematical model. In section 4, we design an inverse optimal controller with a pre-
feedback compensator for the magnetic levitation system. The problem with the designed 
controller is demonstrated by the experiment in section 5. To deal with the problem, we 
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propose an adaptive inverse optimal controller in section 6. The effectiveness of the 
proposed controller is confirmed by the experiment in section 7. Section 8 is devoted to 
concluding remarks.   

 
2. Preliminaries 
 

In this section, we introduce some mathematical definitions and preliminary results of CLF-
based inverse optimal control. We also refer to ACLF-based adaptive control techniques.  

 
2.1 Mathematical notations and definitions 
We use the notation ),0[:0 ∞=≥R .  

Definition 1  A function )sgn(y  is defined for Ry∈  by the following equation:  

 

⎪
⎩

⎪
⎨

⎧

>
=
<−

=
).0(1

)0(0

)0(1

)sgn(

y

y

y

y  
 

(1) 
 

 
In this section, we consider the following input affine nonlinear system: 
 

,)()( uxgxfx +=&  (2) 

 

where nRx∈ is a state vector, mRUu ⊆∈  is an input vector and U  is a convex subspace 

containing the origin 0=u .  We assume that nn RRf →:  and mnn RRg ×→:  are continuous 

vector fields, and 0)0( =f . Let VL f
 and VLg

 be the Lie derivative of )(xf  and )(xg  

respectively, which are defined by  
 

),()( xf
x

V
xVL f ∂

∂
=  

 

(3) 

).()( xg
x

V
xVLg ∂

∂
=  

 

(4) 

For simplicity of notations, we shall drop )(x  in the remaining of this article. We suppose 

that a local control Lyapunov function is given for system (2). 
 
Definition 2 A smooth proper positive-definite function 

0: ≥→ RXV  defined on a 

neighborhood of the origin nRX ⊂  is said to be a local control Lyapunov function (local 
CLF) for system (2) if the condition  
 

0}{inf <⋅+
⊂

uVLVL gf
Uu

 (5) 
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is satisfied for all }0{\Xx∈  . Moreover, )(xV  is said to be a control Lyapunov function 

(CLF) for system (2) if )(xV  is a function defined on entire nR  and condition (3) is satisfied 

for all }0{\nRx∈ .   

If there exists no input constraint ( mRU = ), a smooth proper positive-definite function 

0: ≥→ RRV n  is a CLF if and only if  

 

.0,00 ≠∀<⇒= xVLVL fg
 (6) 

 
In this article, we guarantee the robustness of controllers by sector margins and gain 
margins. 
 

Definition 3 A locally Lipschitz continuous mapping mRu ∈)(φ  is said to be a sector 

nonlinearity in ),( βα  with respect to mRu∈  if the following conditions are satisfied:  

 

,0,)( ≠∀<< uuuuuuu TTT βφα  

.0)0( =φ  
(7) 

 

Definition 4   System (2) is said to have a sector margin ),( βα  with respect to mRu∈  if the 

closed system  
 

)()()( uxgxfx φ+=&  (8) 

 
is asymptotically stable, where )(uφ  is any sector nonlinearity in ),( βα  with respect to 

mRu∈  .  

 

Definition 5  System (2) is said to have a gain margin ),( βα  with respect to mRu∈  if the 

closed system (8) is asymptotically stable, when )(uφ  is given as follows:  

 

).,(,)( βακκφ ∈= uu  (9) 

 
By the definition, gain margins are the special case of sector margins. If system (2) has a 
sector margin ),( βα , it also has a gain margin ),( βα . 

 
2.2 Inverse optimal controller  
We introduce the inverse optimal controller proposed by Nakamura et al [Nakamura et al. 
(2007)]. The following results are obtained for system (2) with input constraint  
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(10) 
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where ∞<< k1  is a constant and 0)( >xC  is continuous on nR . 

 
Theorem 1  We consider system (2) with input constraint (10). Let )(xV  be a local CLF for 

system (2) and 01 >a be the maximum number satisfying  

 

{ } ,0inf <⋅+
∈

uVLVL gf
Uu C

k

 

{ }.)(|: 11 axVxWx <=∈∀  
(11) 

 
Then, 

1W  is a domain in which the origin is asymptotically stabilizable. If )(xV  is a CLF, 

then ∞=1a  and nRW =1
. 

 
Theorem 2  We consider system (2) with input constraint (10) . Let )(xV  be a local CLF for 

system (2) , )(xP  be a function defined by  

 

,
)(

)(

1−

=

k

kg

f

VLxC
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xP  

(12) 

 
and ),0( 1aar ∈  be the maximum number such that the condition  
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is satisfied, and d  be a positive constant. Then, input  
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(15) 

)()( 1

1

xdCxq k−=  (16) 
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asymptotically stabilizes the origin in 
rW , and minimizes the cost function:  

 

,
)(

)(
0

1

∫
∞ −

⎭
⎬
⎫

⎩
⎨
⎧

+= dtu
k

xR
xlJ
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11
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1

VLVL
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k
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k

k

kg −⋅
−

= −

−

 

              (17) 

 
Moreover, it achieves at least a sector margin ),( βα  in 

rW . 

 
2.3 Adaptive control problem 
We consider an adaptive control problem for nonlinear systems. In this section, we 
introduce some definitions and properties. We consider the following input affine nonlinear 
system:  
 

,)()()( 10 uxgxfxfx ++= θ&  (18) 

 

where nRx∈  is a state vector, mRu∈  is an input vector, and pR∈θ  is a constant unknown 

parameter vector. We assume that nn RRf →:0
, mnn RRg ×→:  and pnn RRf ×→:1

 are 

continuous vector fields, and 0)0(0 =f . Note that there exists no input constraint.  

The stabilizability of the system with unknown parameters is defined as the following. 
 

Definition 6  Let θ̂  be an estimate of θ . We say that (18) is globally adaptively stabilizable 

if there exist a function )ˆ,( θα x  continuous on pn RR ×}0{\  with 0)ˆ,0( ≡θα , a continuous 

function )ˆ,( θτ x , and a positive definite symmetric pp ×  matrix Γ , such that the dynamic 

controller  
 

),ˆ,( θα xu =  

 
(19) 

)ˆ,(ˆ θτθ xΓ=&  (20) 

 

guarantees that the solution )ˆ,( θx  is globally bounded, and 0→x  as ∞→t  for any value 

of the unknown parameter pR∈θ . 

For the stabilization problem, we introduce an adaptive control Lyapunov function (ACLF) 
as the following. 
 
Definition 7  We consider system (18) and assume that ),( θxVa

 is a CLF for system (18). 

Then, ),( θxVa
 is called an adaptive control Lyapunov function (ACLF) for system (18) if 

there exists a positive-definite symmetric matrix Γ  such that for each pR∈θ , 
aV  is a CLF 

for the modified system  
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.)()()( 10 uxg
V

xfxfx
T

a +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

Γ++=
θ

θ&  (21) 

 
Krstić et al. (1995) proved the following theorem. 
Theorem 3  The following two statements are equivalent:  

(1) There exists a triple ),,( ΓaVα  such that )ˆ,( θα x  globally asymptotically stabilizes (21) at 

0=x  for each pR∈θ  with respect to the Lyapunov function ),( θxVa
. 

(2) There exists an ACLF ),( θxVa
 for system (18). 

 
3. Magnetic Levitation System 
 

3.1 System configuration 
We consider a stabilization problem of a magnetic levitation system shown in Fig. 
1[Mizutani et al. (2004)]. The system consists of a magnet with a disk, a glass guide rod, 
upper and lower magnetic drive coils that generate a magnetic field in response to a DC 
current and two laser-based sensors that measure the magnetic position using the reflection 
of the disk surface.  

 
3.2 Mathematical model of the system 
In this article, we control the position of the magnet using attractive force generated by the 
upper drive magnetic coil. The force diagram is illustrated in Fig. 2. ξ  is the position of the 

magnet from the upper coil, and 
uF  is an attractive force for the magnet generated by the 

upper drive magnetic coil.  
The dynamical equation for the magnet is described by  
 

,0mgmFm u −−= ξμξ &&&  (22) 

 
where m is the mass of the magnet, μ  is a friction constant. 

0g  is the gravitational 

acceleration.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Magnetic levitation system 
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Fig. 2. Force diagram of the magnetic levitation system  

 
Here, 

uF  is modeled by  

 

,
)( 4ba

u
Fu +−

=
ξ

 (23) 

 
where a  and b  are constants determined by numerical modeling of the magnetic 

configuration, and u  is a control input voltage for the upper coil. The position ξ  is 

measured by the upper laser sensor.  

Let *ξ  be the desired position of the magnet, *

1 ξξ −=x , and 
12 xx &= . We set Txxx ],[ 21= . 

Then we obtain the following state equation: 
 

,)()( uxgxfx +=&  (24) 

 
where )(xf  and )(xg  are defined as  

 

.

)(

1
0

)(,)(
4*

1
02

2

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+−−
=⎥

⎦

⎤
⎢
⎣

⎡
−−

=
bxma

xg
gx

x
xf

ξμ
 

 
(25) 

 
The system parameters are shown in Table 1.  
 

m  

[kg] 

μ  

[-] 
0g  

[m/s2] 

a  

[V/N‚m4] 
b  

[m] 

0.12 4.5 9.80665 40118.9 0.056464 

Table 1. Parameter values of the magnetic levitation system 
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There exists the following input constraint in system (24): 
 

52

2
<= uu [V]. (26) 

 
By the above discussion, the control problem is reduced to the stabilization problem of 
system (24) with the input constraint (26).  

 
4. Pre-feedback Gravity Compensation 
 

In system (2), we assume that 0)0( =f . However, 0)0( ≠f  in system (24). Therefore, we 

cannot directly apply the inverse optimal controller (14) to system (24). To achieve 0)0( =f , 

we design a controller to compensate for gravity by a pre-feedback input.  
We consider the following gravity compensation input )(xuc

 as  

 

.)()(
4*

10 bxamgxuc +−−= ξ  (27) 

 
Substituting (27) into (24), the gravitational acceleration 

0g  is successfully canceled. Then, 

we split the input )(xu using )(xuc
 as  

 

),()()( xuxuxu sc +=  (28) 

 
where 

su  is an asymptotic stabilizing input for system (24) when 00 =g .  

By using (26) and (28), the input constraint is rewritten to  
 

.5)()()(
22
<+= xuxuxu sc

 (29) 

 
To handle input constraint (29) as a norm constraint, we rewrite (29) as  
 

).(:)(5)(
2

xCxuxu cs =−<  (30) 

 
(30) represents a constraint depending on the state. Note that constraint (30) is more severe 
than the original constraint (29). The problem of designing controller (28) is reduced to the 

problem of designing controller )(xus
 with input constraint )()(

2
xCxus < .  

To apply inverse optimal controller (14), we construct a CLF for system (24). In general, the 
controller performance often depends on a CLF. However, it is unclear which CLF achieves 
the best control performance. Hence, we construct a CLF with a design parameter. Using the 
integrator backstepping method, a CLF )(xV  can be carried out as  

 

,
2

1
)1(

2

1
)(

2

221

2

1

2 xxrxxrxV +++=  (31) 
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where r  is a positive constant and also a design parameter. 
Now, we construct input 

su . Let )(0 xf  be the function defined by  

 

.|)()(
2

2

00 0 ⎥
⎦

⎤
⎢
⎣

⎡
−

== = x

x
xfxf g μ

 (32) 

 
By using (31), we can calculate VL f0

 and VLg
 as  

 

,)(})1{(
2

221

2

0
xrxxrrVL f μμ −+−+=  

 

(33) 

.
)( 4*

1

21

bxma

xrx
VLg +−−

+
=

ξ
 (34) 

 
Substituting (33) and (34) into (14) and (15), we get the following input )(xus

.  

 

,
)(

1
)(

1

VL
xR

xu gs −= , 

 

(35) 

⎪
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⎩

⎪
⎪

⎨

⎧

=

≠
++

+

=

),0(
)(

2

)0(
)()(2
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22

1

VL
xq

VL
VLxqPP

VLVLxq
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g

g

g
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(36) 

,
)(

)(

2

1
0

VLxC

VL
xP

g

f=    

 

(37) 

.)(5)()(
2

xudxdCxq c−==  

 
(38) 

According to Theorem 2, )(xus
 has a sector margin ),2/1( ∞ .  

Finally, the following controller )(xu  is obtained: 

 

.
)(

1
)()(

1

4*

10 VL
xR

bxamgxu g−+−−= ξ  (39) 

 
5. Experiment 1 
 

We apply controller (39) to  the  magnetic  levitation  system. We  set  [ ]Tx 0.0,4.1)0( −=  and 

0.2* −=ξ [cm]. The  controller  is  implemented  by   MATLAB/SIMULINK.  The   sampling 
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interval is 3101 −× [sec] and control parameters are 8=r  and 41025.1 −×=d , respectively.  

The time response of the controlled system is shown in Fig. 3. Although the velocity 
2x  

vibrates due to sensor noise, the input constraint (26) is satisfied. However, the position 
1x  

does not converge to zero (an offset error remains). Then, the actual magnetic levitation 
system is not asymptotically stabilized by the proposed controller (39).  
The biggest reason for the offset error is the lack of robustness with respect to 

cu . If there 

exists a parameter uncertainty in )(xg , the gravitational acceleration 
0g  is not completely  

canceled by the pre-feedback )(xug
. Therefore, the proposed controller )(xu  does not 

guarantee the robustness for the system (24) even if the stabilizing input )(xus
 guarantees 

the sector margin ),2/1( ∞  for the system  

 

.)()(0 suxgxfx +=&  (40) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Experimental result of controller (39) 

 
6. Adaptive Inverse Optimal Controller Design 
 

6.1 Robustness recovery via adaptive control 
To  solve  the  problem  stated in  section 5, we propose  a  controller  that  guarantees a gain 
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margin for u . We apply an adaptive control technique to achieve a gain margin for input u .  

Before applying the adaptive controller, we rewrite the system (24) to  
 

,)()()( 010 uxggxfxfx ++=&  (41) 

 

where )(0 xf  is defined by (31) and [ ]Txf 1,0)(1 −= . Additionally, to consider a gain margin 

for (41), we rewrite the system to  
 

,)()()( 10 uxgxfxfx κθκ ++=&  (42) 

 
where κ  is an unknown constant and κθ /: 0g=  is a constant unknown parameter. Note 

that the range of κ , in which the origin of the system (42) is asymptotically stable, is a gain 
margin for input u . Furthermore, we consider the following input: 

 

),ˆ,()ˆ,()ˆ,( θθθ xuxuxu sc ′+=  (43) 

 

where κθ ˆ/:ˆ
0g=  and κ̂  is an estimate of κ . We suppose that input )ˆ,( θxus′  asymptotically 

stabilizes the system (40) and guarantees the gain margin ),2/1( ∞ . Let )ˆ,( θxug
 be a gravity 

compensation input defined as follows: 
 

.)(ˆ)ˆ,( 4*

1 bxmaxuc +−−= ξθθ  (44) 

 
Remark 1  In this section, we do not mention whether the input constraints exist or not.  
 

Then, we construct an adaptive law θ&̂  such that the input (43) stabilizes the system (42) and 

show the input (43) has a gain margin ),2/1( ∞ . 

In this section, we use an ACLF to construct an adaptive law. The following lemma is 
available for constructing an ACLF.  
 
Lemma 1  We consider system (42). Let )(xV  be a CLF for system (41). Then, )(xV  is an 

ACLF for system (42).  
 
Proof:  If )(xV  is an ACLF for system (42), )(xV  is a CLF for the following system:  

 

,)()()( 10 uxg
V

xfxfx κ
θ

γθκ +⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

++=&  (45) 

 
where γ  is a positive constant. Note that 0/ =∂∂ θV , the above system is rewritten to  

 

.)()()( 10 uxgxfxfx κθκ ++=&  (46) 
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Sytem (46) is asymptotically stabilized by the input  
 

),()()( xuxuxu sc +=θ  (47) 

 
where )(xuc

 and )(xus
 are defined by  (27) and (35) respectively. This implies all CLFs for 

system (41) are ACLFs for system (42).  
 
By Lemma 1, CLF (31) is applicable to an ACLF for system (42). 
 
Lemma 2  We consider system (42) and assume that an ACLF )(xV  for (42) is obtained. Let 

)ˆ,( θxV ′  be a function defined by  

 

,
~

2
)()ˆ(

2
)()ˆ,( 22 θ

γ
κθθ

γ
κθ +=−+=′ xVxVxV  (48) 

 

where ∞<< κ2/1  and θθθ ˆ:
~

−= . Let the adaptive law θ&̂  be  

 

).()(ˆ
1 xf

x

V
x

∂
∂

== γγτθ&  (49) 

 

Then, )ˆ,( θxV ′  is a Lyapunov function for the closed loop system of (42).  

 

Proof:  Let the origin of system (42) be ),0()ˆ,( θθ =x . Then, V ′  is a positive definite function. 

Assume u  is input (43) and note that θθ && ˆ~
−= . Then,  

 

( ){ }[ ])ˆ,()ˆ,()(ˆ)()()ˆ,( 10 θθθκθ xuxuxgxfxf
x

V
xV sc ′+++

∂
∂

=′&  

[ ] .0)ˆ,()()(0 ≤′+
∂
∂

= θκ xuxgxf
x

V
s

                              
(50) 

 

Since the input )ˆ,( θxus′  has a gain margin ),2/1( ∞ , )ˆ,( θxV& ′  is less than or equal to zero. 

Then )ˆ,( θxV ′  is a Lyapunov function for the closed loop system of (42) and the origin 

),0()ˆ,( θθ =x  is stable. 

 
Remark 2  Lyapunov function (48) contains an unknown constant κ . However, it does not 
become a problem because both input (43) and adaptive law (49) do not contain κ .  
 
Lemma 3  We consider system (42) and assume that an ACLF )(xV  for (42) is obtained. 

Then, if ∞<< κ2/1 , )(0 ∞→→ tx  and )(ˆ ∞→→ tθθ  are achieved by input (43) and 

adaptive law (49).  
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 Proof:  By Lemma 2, we can construct a Lyapunov function )ˆ,( θxV ′  (47) for system (41). 

The input and the adaptive law are given by (42) and (48), respectively. Then, we obtain 

)0(0)ˆ,( ≠≤′ xxV θ&  because the input )ˆ,( θxus′  has a gain margin ),2/1( ∞ . Let S  be a set 

defined by  
 

},ˆ,,0)ˆ,()ˆ,{(: RRxxVxS n ∈∈=′= θθθ &  

}.ˆ,0)ˆ,{( Rxx ∈== θθ                        
(51) 

 

We show that the largest invariant set contained in S  consists of only a point ),0()ˆ,( θθ =x . 

Consider the following solution of (42) belonging to S : 

 

.0,0)( ≥≡ ttx  (52) 

 

Note that 0)ˆ,0( =′ θsu , we obtain the following equation for (42): 

 

{ },)ˆ,0()0()0()0( 10 θθκ ugffx ++=&  

{ },)ˆ,()0()0(1 θθκ xugf c+=             

,0)ˆ(1 ≡−= θθκf                               

(53) 

 

where 0≠κ  and 0)0(1 ≠f , we obtain θθ ≡ˆ . On the other hand, if 0=x  and θθ ≠ˆ , we 

obtain 0≠x&  by (50). Therefore, the largest invariant set contained in S  is a set )},0{( θ . 

Finally, we obtain 0→x  and θθ →ˆ  when ∞→t  by LaSalle’s invariance principle [Khalil 

(2002)].  
 
The following theorem is obtained by Lemmas 2 and 3.  
 
Theorem 4  We consider system (42), controller (43) and adaptive law (49). Then, the 
controller has a gain margin ),2/1( ∞ .  

 
6.2 Adaptive inverse optimal controller  

We calculate θ&̂  of (49) by using CLF (31) as:  
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(54) 

 
Furthermore, taking into consideration the input constraint, we obtain the following 
controller:  
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),ˆ,()ˆ,( θθ xdCxq =  

 
(59) 

,)ˆ,(5)ˆ,(
2

θθ xuxC c−=  

 

(60) 

where we use )(xus
 given by (35) as )ˆ,( θxus′ . Then, note that the input constraint )(xC   is 

rewritten to )ˆ,( θxC  given by (60). According to Lemma 2 and the result of [Nakamura et al. 

(2007)], we can show the input )ˆ,( θxus′  minimizes the following cost function:  

 

∫
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′+=
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22 ,
2
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θθ  (61) 

 
where  
 

.
)ˆ,(2

1
)ˆ,(

0

2

2
2

VLVL
xR

xl fg −=
θ

θ  
(62) 

 
It is obvious that a gain margin ),2/1( ∞  is guaranteed for controller (55) at least in the 

neighborhood of the origin.  

 
7. Experiment 2 
 

In this section, we apply controller (55) to the magnetic levitation system and confirm its 
effectiveness by the experiment. To consider the input constraint, we employ the following 
adaptive law with projection instead of (54): 
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(63) 

 

We set the adaptation gain 160=γ  and the initial value of the estimate 820)0(ˆ =θ . The 

other experimental conditions and control parameters are the same as in section 5. The 
experimental result is shown in Fig. 5. Position 

1x  converges to zero without any tuning of 

control parameters. The gain margin guaranteed by the adaptive law seems quite effective. 
We can observe that the input is larger than the non-adaptive controller (39), however, the 

input constraint is satisfied. The parameter estimate θ̂  also tends to converge to the true 

value θ . As a result, the effectiveness of the proposed controller (55) is confirmed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Experimental result of controller (55) 

  
8. Conclusion 
 

In this article, we proposed an adaptive inverse optimal controller for the magnetic 
levitation system. First, we designed an inverse optimal controller with a pre-feedback 
gravity compensator and applied it to the magnetic levitation system. However, this 
controller cannot guarantee any stability margin. We demonstrated that the controller did 
not work well (offset error remained) in the experiment. Hence, we proposed an improved 
controller via an adaptive control technique to guarantee the stability margin. Finally, we 
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confirmed the effectiveness of the proposed adaptive inverse optimal controller by the 
experiment. As a result, we achieved offset-free control performance. 
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