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1. Introduction 
 

Networked control systems (NCSs) are a type of distributed control systems, where the 
information of control system components (reference input, plant output, control input, etc.) 
is exchanged via communication networks. Due to the introduction of networks, NCSs have 
many attractive advantages, such as reduced system wiring, low weight and space, ease of 
system diagnosis and maintenance, and increased system agility, which motivated the 
research in NCSs. The study of NCSs has been an active research area in the past several 
years, see some recent survey articles (Chow & Tipsuwan, 2001; Hespanha & Naghshtabrizi, 
2007; Yang, 2006) and the references therein. On the other hand, the introduction of 
networks also presents some challenges such as the limited feedback information caused by 
packet transmission delays and packet loss; both of them are due to the sharing and 
competition of the transmission medium, and bring difficulties for analysis and design for 
NCSs. The information transmission delay arises from by the limited capacity of the 
communication network used in a control system, whereas the packet loss is caused by the 
unavoidable data losses or transmission errors. Both the information transmission delay and 
packet loss may result in randomly missing output measurements at the controller node, as 
shown in Fig. 1. So far different approaches have been used to characterize the limited 
feedback information. For example, the information transmission delay and packet losses 
have been modeled as Markov chains (Zhang et al., 2006). The binary Bernoulli distribution 
is used to model the packet losses in (Sinopoli et al., 2004; Wang et al., 2005 a & 2005 b). 
The main challenge of NCS design is the limited feedback information (information 
transmission delays and packet losses), which can degrade the performance of systems or 
even cause instability. Various methodologies have been proposed for modeling, stability 
analysis, and controller design for NCSs in the presence of limited feedback information. A 
novel feedback stabilization solution of multiple coupled control systems with limited 
communication is proposed by bringing together communication and control theoretical 
issues in (Hristu & Morgansen, 1999). Further the control and communication codesign 
methodology is applied in (Hristu-Varsakelis, 2006; Zhang & Hristu-Varsakelis, 2006) – a 
method of stabilizing linear NCSs with medium access constraints and transmission delays 
by designing a delay-compensated feedback controller and an accompanying medium 
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access policy is presented. In (Zhang et al., 2001), the relationship of sampling time and 
maximum allowable transfer interval to keep the systems stable is analyzed by using a 
stability region plot; the stability analysis of NCSs is addressed by using a hybrid system 
stability analysis technique. In (Walsh et al., 2002), a new NCS protocol, try-once-discard 
(TOD), which employs dynamic scheduling method, is proposed and the analytic proof of 
global exponential stability is provided based on Lyapunov’s second method. In (Azimi-
Sadjadi, 2003), the conditions under which NCSs subject to dropped packets are mean 
square stable are provided. Output feedback controller that can stabilize the plant in the 
presence of delay, sampling, and dropout effects in the measurement and actuation 
channels is developed in (Naghshtabrizi & Hespanha, 2005). In (Yu et al., 2004), the authors 
model the NCSs with packet dropout and delays as ordinary linear systems with input 
delays and further design state feedback controllers using Lyapunov-Razumikhin function 
method for the continuous-time case, and Lyapunov-Krasovskii based method for the 
discrete-time case, respectively. In (Yue et al., 2004), the time delays and packet dropout are 
simultaneously considered for state feedback controller design based on a delay-dependent 
approach; the maximum allowable value of the network-induced delays can be determined 
by solving a set of linear matrix inequalities (LMIs). Most recently, Gao, et al., for the first 
time, incorporate simultaneously three types of communication limitation, e.g., 
measurement quantization, signal transmission delay, and data packet dropout into the 

NCS design for robust ∞H  state estimation (Gao & Chen, 2007), and passivity based 

controller design (Gao et al., 2007), respectively. Further, a new delay system approach that 
consists of multiple successive delay components in the state, is proposed and applied to 
network-based control in (Gao et al., 2008). 
However, the results obtained for NCSs are still limited: Most of the aforementioned results 
assume that the plant is given and model parameters are available, while few papers 
address the analysis and synthesis problems for NCSs whose plant parameters are 
unknown. In fact, while controlling a real plant, the designer rarely knows its parameters 
accurately (Narendra & Annaswamy, 1989). To the best of our knowledge, adaptive control 
for systems with unknown parameters and randomly missing outputs in a network 
environment has not been fully investigated, which is the focus of this paper. 
 

 
Fig. 1. An NCS with randomly missing outputs. 

 
It is worth noting that systems with regular missing outputs – a special case of those with 
randomly missing outputs – can also be viewed as multirate systems which have uniform 
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but various input/output sampling rates (Chen & Francis, 1995). Such systems may have 
regular-output-missing feature. In (Ding & Chen, 2004a), Ding, et al. use an auxiliary model 
and a modified recursive least squares (RLS) algorithm to realize simultaneous parameter 
and output estimation of dual-rate systems. Further, a least squares based self-tuning 
control scheme is studied for dual-rate linear systems (Ding & Chen, 2004b) and nonlinear 
systems (Ding et al., 2006), respectively. However, network-induced limited feedback 
information unavoidably results in randomly missing output measurements. To generalize 
and extend the adaptive control approach for multirate systems (Ding & Chen, 2004b; Ding 
et al., 2006) to NCSs with randomly missing output measurements and unknown model 
parameters is another motivation of this work. 
In this paper, we first model the availability of output as a Bernoulli process. Then we 
design an output estimator to online estimate the missing output measurements, and further 
propose a novel Kalman filter based method for parameter estimation with randomly 
output missing. Based on the estimated output or the available output, and the estimated 
model parameters, an adaptive control is proposed to make the output track the desired 
signal. Convergence of the proposed output estimation and adaptive control algorithms is 
analyzed. 
The rest of this paper is organized as follows. The problem of adaptive control for NCSs 
with unknown model parameters and randomly missing outputs is formulated in Section 2. 
In Section 3, the proposed algorithms for output estimation, model parameter estimation, 
and adaptive control are presented. In Section 4, the convergence properties of the proposed 
algorithms are analyzed. Section 5 gives several illustrative examples to demonstrate the 
effectiveness of the proposed algorithms. Finally, concluding remarks are given in Section 6. 

Notations: The notations used throughout the paper are fairly standard.’ E ’ denotes the 

expectation. The superscript ‘ T ’ stands for matrix transposition; λmax/min( )X  represents the 

Maximum/minimum eigenvalue of X ; =| | det( )X X  is the determinant of a square matrix 

X ; )(
2 T

XXtrX =  stands forthe trace of TXX . If δ +∃ ∈0 R  and +∈0 Zk , δ≤ 0| ( )| ( )f k g k  

for ≥ 0k k , then ( )=( ) ( )f k O g k ; if →( ) / ( ) 0f k g k  for →∞k , then ( )=( ) ( )f k o g k . 

 
2. Problem Formulation 
 

The problem of interest in this work is to design an adaptive control scheme for networked 
systems with unknown model parameters and randomly missing outputs. In Fig. 2, the 

output measurements ky could be unavailable at the controller node at some time instants 

because of the network-induced limited feedback information, e.g., transmission delay 
and/or packet loss. The data transmission protocols like TCP guarantee the delivery of data 
packets in this way: When one or more packets are lost the transmitter retransmits the lost 
packets. However, since a retransmitted packet usually has a long delay that is not desirable 
for control systems, the retransmitted packets are outdated by the time they arrive at the 
controller (Azimi-Sadjadi, 2003; Hristu-Varsakelis & Levine, 2005). Therefore, in this paper, 
it is assumed that the output measurements that are delayed in transmission are regarded as 
missed ones. 

The availability of ky can be viewed as a random variable γ k . γ k is assumed to have Bernoulli 

distribution: 
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( )γ γ γ γ

μ γ
γ

μ γ

= ≠

=⎧
⎨
⎩

=
− =

E E E for ,

, if 1,
Prob( )

1 , else if 0,

k s k s

k k

k

k k

k s

 

(1) 

 

where μ< ≤0 1k . 

Consider a single-input-single-output (SISO) process (Fig. 2): 
 

= = +A ,z k z k k k kx B u y x v  (2) 

 

where ku is the system input, ky the output and kv the disturbing white noise with variance 

vr . zA and zB are two backshift polynomials defined as 

 
−− −

−− −

= + + + +

= + + + +

L

L

1 2
1 2

1 2
0 1 2

,

.

1 a

a

b

b

n
z n

n
z n

A a z a a z

B b b z b z b z
 

 

 

The polynomial orders an and bn are assumed to be given. Eqn. (2) can be written 

equivalently as the following linear regression model: 
 

ϕ θ= +T
0 ,k k ky v  (3) 

 
where 
 

ϕ

θ

− − − − −⎡ ⎤= − − −⎣ ⎦

⎡ ⎤= ⎣ ⎦

L L

L L

T

0 1 2 1

T

1 2 0 1

,

.

a b

a b

k k k k n k k k n

n n

x x x u u u

a a a b b b
 

 

 

Vector ϕ0k  represents system’s excitation and response information necessary for parameter 

estimation, while vector θ  contains model parameters to be estimated. 

 

 
Fig. 2. Output-error (OE) model structure. 

 
For a system with the output-error (OE) model placed in a networked environment subject 
to randomly missing outputs, the objectives of this paper are: 

1. Design an output estimator to online estimate the missing output measurements. 
2. Develop a recursive Kalman filter based identification algorithm to estimate unknown 

model parameters. 
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3. Propose an adaptive tracking controller to make the system output track a given 
desired signal. 

4. Analyze the convergence properties of the proposed algorithms. 

 
3. Parameter Estimation, Output Estimation, and Adaptive Control Design 
 

There are two main challenges of the adaptive control design for a networked system as 
depicted in Fig. 1: (1) randomly missing output measurements; (2) unknown system model 
parameters. Therefore, in this section, we first propose algorithms for missing output 
estimation and unknown model parameter estimation, and then design the adaptive control 
scheme. 

 
3.1 Parameter estimation and missing output estimation 

Consider the model in (3). It is shown by (Cao & Schwartz, 2003) and (Guo, 1990) that the 
corresponding Kalman filter can be conveniently used for parameter estimation. In 
combination with an auxiliary model, the Kalman filter based parameter estimation 
algorithm for an OE model is given by 
 

θ θ ϕ θ− −= + − T
1 , , 1

ˆ ˆ ˆ( ),k k a k k a k kK y  

 

(4) 

ϕ
ϕ ϕ

−

−

=
+

, 1 ,
, T

, , 1 ,

,a k a k
a k

v a k a k a k

P
K

r P
 

 

(5) 

ϕ ϕ
ϕ ϕ

− −
−

−

−
+

=
T

, 1 , , , 1
, , 1 T

, , 1 0

,a k a k a k a k
a k a k

v a k a k k

P P
P P

r P
 

 

(6) 

φ θ= T
, ,

ˆ ,a k a k kx  

 

(7) 

ϕ − − − − −⎡ ⎤= − − −⎣ ⎦L L
T

, , 1 , 2 , 1 ,
a ba k a k a k a k n k k k nx x x u u u  

 

(8) 

where θ̂k represents the estimated parameter vector at time instant k . 

It is worth to note that the above algorithm as shown in (4)-(8) cannot be directly applied to 
the parameter estimation of systems with randomly missing outputs in a network 

environment, as ky in (4) may not be available. This motivates us to develop a new 

algorithm that can simultaneously online estimate the unavailable missing output and 
estimate system parameters under the network environment. The proposed algorithm 
consists of two steps. 
 

Step 1: Output estimation 
Albertos, et al. propose a simple algorithm that uses the input-output model, replacing the 
unknown past values by estimates when necessary (Albertos et al., 2006). Inspired by this 
work, we design the following output estimator: 
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γ γ= + − ˆ(1 ) ,k k k k kz y y  (9) 

 
with 
 

ϕ θ −= T
1

ˆˆ .k k ky   

 

In (9), γ k  is a Bernoulli random variable used to characterize the availability of ky at time 

instant k at the controller node, as defined in (1). With the time-stamp technique, the 

controller node can detect the availability of the output measurements, and thus, the values 

of γ k  (either 1 or 0) are known. The knowledge of their corresponding probability μk is not 

used in the designed estimator. The structure of the designed output estimator is intuitive 
and simple yet very effective, which will be seen soon from the simulation examples. 
 

Step 2: Model parameter estimation 

Replacing ky in the algorithm (4)-(8) by kz , defining a newϕk , and considering the random 

variable γ k , we readily obtain the following algorithm: 

 

θ θ ϕ θ− −= + − T
1 1

ˆ ˆ ˆ( ),k k k k k kK z  

 

(10) 

ϕ
ϕ ϕ
−

−

=
+

1
T

1

,k k
k

v k k k

P
K

r P
 

 

(11) 

ϕ ϕγ
ϕ ϕ

− −
−

−

= −
+

T
1 1

1 T
1

,k k k k
k k k

v k k k

P P
P P

r P
 

 

(12) 

ϕ θ= T
,

ˆ ,b k k kx  

 

(13) 

ϕ − − − − −⎡ ⎤= − − −⎣ ⎦L L
T

, 1 , 2 , 1 .
a bk b k b k b k n k k k nx x x u u u  

 

(14) 

Remark 3.1. Consider two extreme cases. If the availability sequence γ γL1{ , , }k constantly assumes 

1, then no output measurement is lost, and the algorithm above will reduce to the algorithm (4)-(6). 

On the other hand, if the availability sequence γ k constantly takes 0, then all output measurements 

are lost, and the parameter estimates just keep the initial values. 

 
3.2 Adaptive control design 
Consider the tracking problem. Let ,r ky be a desired output signal, and define the output 

tracking error 
 

ζ = − ,: .k k r ky y   
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If the control law ku is appropriately designed such that ϕ θ= T
, 0r k ky , then the average 

tracking error kz approaches zero finally. Replacing θ  by θ −1
ˆ
k  and ϕ0k by ϕk  yields 

 

ϕ θ θ θ− − − + + − −
= =

− − − − − − −

= = − +

= − − − + + +

∑ ∑
L L

T
, 1 , 1 1, 1

1 0

1, 1 , 1 , 1 , 0 , 1 , 1

ˆ ˆ ˆ

ˆ ˆˆ ˆ .

a b

a

a a b b

n n

r k k k i k k i n i k k i
i i

k b k n k b k n k k n k k n

y x u

a a b u b ux x
 

 

 
Therefore, the control law can be designed as 
 

− − − −
= =−

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
∑ ∑, , 1 , 1

1 10, 1

1 ˆˆ .
ˆ

a bn n

k r k i k k i i k k i
i ik

u y a x b u
b

 
(15) 

 
The proposed adaptive control scheme consists of the missing output estimator [Equation 
(9)], model parameter estimator [Equations (10-14)], and the adaptive control law [Equation 
(15)]. The overall control diagram is shown in Fig. 3. 

 
4. Convergence Analysis 
 

This section focuses on the analysis of some convergence properties. Some preliminaries are 
first summarized to facilitate the following convergence analysis of parameter estimation in 
(10)-(12) and of output estimation in (9). Inspired by the work in (Chen & Guo, 1991; Ding & 
Chen, 2004a; Ding et al., 2006), the convergence analysis is carried out under the stochastic 
framework. 
 

 
Fig. 3. Adaptive control diagram. 

 
4.1 Preliminaries 

To facilitate the convergence analysis, directly applying the matrix inversion formula (Horn 
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& Johnson, 1991) 
 

− − − − − − −+ = − +1 1 1 1 1 1 1( ) ( ) ,A BCD A A B C DA B DA   

 
the proposed parameter estimation algorithm in Section 3.1 [(10)-(12] can be equivalently 
rewritten as: 
 

θ θ ϕ ϕ θ−
− −= + −1 T

1 1
ˆ ˆ ˆ( ),k k v k k k k kr P z  

 

(16) 

γ ϕ ϕ− − −
−= +1 1 1 T

1 .k k v k k kP P r  

 

(17) 

Suppose that kP is initialized by 0p I , where 0p is a positive real value large enough, and 

define −= 1tr( )k kr P . The relation between kr and −1| |kP can be established in the following 

lemma. 
Lemma 4.1. The following relation holds: 
 

( )− =1ln E| | ln E .k kP O r  (18) 

 

Proof: Using the formulae 
 

λ λ
= =

= =∑ ∏
1 1

tr( ) ( ) and| | ( ),
nn

i i
i i

X X X X  
 

 

where n is the dimension of X , we have 

 
− ≤1E| | (E ) .n

k kP r   

 
This completes the proof.              
The next lemma shows the convergence of two infinite series that will be useful later. 
Lemma 4.2. The following inequalities hold: 
 

( )μ ϕ ϕ− −

=

≤ +∑ 1 T 1
0 0

1

E ln E| | ln a.s.,
t

i v i i i k
i

r P P n p  

 

(19) 

( )
( )

ϕ ϕ
μ

∞
−

−=

< ∞∑
T

1

1
1

E
a.s.,

ln E| |

i i i

i v c
i

i

P
r

P
 

 

(20) 

where > 1c . 

Proof: The proof can be done along the similar way as Lemma 2 in (Ding & Chen, 2004b) 
and is omitted here.            □ 
The following is the well-known martingale convergence theorem that lays the foundation 
for the convergence analysis of the proposed algorithms. 
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Theorem 4.1. (Goodwin & Sin, 1984) Let {X }k be a sequence of nonnegative random variables 

adapted to an increasing σ -algebras { }kF . If 

 

( ) α β+ ≤ + − +1E | (1 ) , a.s.,k k k k k kX XF ň   

 

where α ≥ 0k , β ≥ 0k , < ∞0EX , ∞<∑∞
= ii
ε0

 and β∞

=
< ∞∑ 0 ii

 almost surely (a.s.), then X k  

converges a.s. to a finite random variable and 
 

α
→∞

=

< ∞∑
0

lim , a.s.
N

i
N

i

 
 

 
4.2 Convergence analysis 

To carry out the convergence analysis of the proposed algorithms, it is essential to 
appropriately construct a martingale process satisfying the conditions of Theorem 4.1. Main 
results on the convergence properties of the proposed algorithm are summarized in the 
following Theorem. 
Theorem 4.2. For the system considered in (3), assume that 

(A1) { , }k kv F is a martingale difference sequence satisfying 

 

( )− =1E | 0, a.s.,k kv F  

 

(21) 

( )− = < ∞2
1E | , a.s.;k k vv rF  

 

(22) 

(A2) −
1 1

2zA
is strictly positive real; 

(A3) zB  is stable; i.e., zeros o f zB are inside the closed unit disk. 

Suppose the desired output signal is bounded: < ∞,| |r ky . Applying the missing output estimator 

[Equation (9)], model parameter estimator [Equations (10-14)], and the adaptive control law 
[Equation (15)], then the output tracking error has the property of minimum variance, i.e., 
 

(1) 
→∞

=

− + =∑ 2
,

1

1
lim ( ) 0, a.s.;

k

r i i i
k

i

y y v
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(2) { }μ −→∞
=

− = < ∞∑ 2
, 1

1

1
lim E ( ) | , a.s.

k

i i r i i v
k

i

z y r
k

F  
 

 

Proof: As pointed out in (Goodwin & Sin, 1984; Chen & Guo, 1991), from (A2) it follows that 
 

                       
= =

⎛ ⎞
≤ + ⎜ ⎟

⎝ ⎠
∑ ∑2 21

1 1

1
(1) , a.s.

k k

i i
i i
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u O O y
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(23) 
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Here, 1c is a positive constant. Define the following vectors: 

 

ϕ θ −= − T
1 ,ˆ

k k ke z  

 

 

η = − , ,k k b ky x  

 

 

η γ η= ,k k k  

 

 

τ = − +, ,k r k k ky y v  

 

 

τ γ τ= .k k k   

 
From (2), (3), (16) and (16), it follows that 
 

η γ= − +,( ),k k k b k kx x v  

 

(24) 

η ϕ ϕ− −
−= + 1 T 1

1(1 ) ,k v k k k kr P e  

 

(25) 

τ γ− += .k k k ke v  

 

(26) 

Also define the parameter estimation error vector and a Lyapunov-like function as 
 

θ θ θ= −% ˆ ,k k   

θ θ−= % %T 1 .k k k kV P   

 
From (9), (16) and (25), we obtain 
 

θ θ ϕ θ ϕ η− −
− − −+ +=% % %1 1

1 1 1= . k k v k k k k v k k kr P e r P  (27) 

 

With (17) and (27), kV  can be further evaluated as 

 

γ ϕ θ ϕ θ η ϕ ϕ ϕ ϕ− − − −
−= + + − −% %1 T 2 1 T 2 T 1 T 2

1 ( ) 2 (1 ) .k k v k k k v k k k v k k k v k k k kV V r r r P r P e   
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ϕ θ−= %% T ,k k ku  

 

 

ϕ θ η −= +%% T1
( ).

2
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Then we have 
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Note that ϕ θ −
%T

1k k , γ−k k ke v ,ϕ ϕT
k k kP andτ k are uncorrelated with kv and −1kF -measurable. Thus 

taking the conditional expectation of both sides of (28) with respect to −1kF  gives 
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In (A2), it is assumed that 
⎛ ⎞
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⎝ ⎠
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is positive real, which indicates 
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Adding kS  to both sides of (29) yields 
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Define a new sequence: 
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Since −1ln E| |kP  is nondecreasing andϕ ϕ =T (1)k k kP o , there exists a 0k  such that if ≥ 0k k we 

have 
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From (12) we have 
 

( )ϕ ϕ−− >1 TE 1 0.v k k kr P   

 
Also note that by Lemma 4.2 the summation of the third term in (33) from 0 to ∞  is finite. 
Therefore, Theorem 4.1 is applicable, and it gives 
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Further, Lemma 4.1 indicates 
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As ( )ϕ ϕ−⎡ ⎤−⎣ ⎦
1 T1 Ev k k kr P  is positive and nondecreasing, it holds that ( )ϕ ϕ−⎡ ⎤= −⎣ ⎦

1 T1 1 Ev k k kO r P . 

Hence, 
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(36) 

 

Since →∞ = ∞lim ln Ek kr , then from the Kronecker lemma [15] it follows that 
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and (23), we obtain 
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By (22) we have 
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Substituting (37) into (38) gives 
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which implies together with (37) that 
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or equivalently 
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and γ γ=k k k kz y , we have 
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This completes the proof.             □ 

 
5. Illustrative Examples 
 

In this section, we give three examples to illustrate the adaptive control design scheme 
proposed in the previous sections. 
The OE model shown in Fig. 2 in the simulation is chosen as 
 

− −

− −

+ +
= +

+ +

1 2
0 1 2

1 2
1 2

,
1

k k k

b b z b z
y u v

a z a z
 

 

 
which is assumed to be placed in a network environment (Fig. 1) with randomly missing 

output measurements and unknown model parameters. { }kv  is a Gaussian white noise 

sequence with zero mean and variance = 20.05vr . The parameter vector θ = T
1 2 0 1 2[ ]a a b b b is 

to be estimated. Here, true values of θ  are 

 

θ = − T[ 0.3 0.6 0.5 0.2 0.34] .   

 

For simulation purposes, we assume that: (1) θ  is unknown and initialized by ones; (2) the 

output measurement { }ky is subject to randomly missing when transmitted to the controller 

node; (3) the availability of the output measurements ( ky ) at the controller node is 

characterized by the probability μk ; (4) The desired output signal to be tracked is a square 

wave alternating between -1 and 1 with a period of 1000. Mathematically, it is given by 
 

+
+ = − = =L1

,(500 ) ( 1) , 0,1,2, , 1,2,...500.i
r i jy i j   

 
In the following simulation studies, we carry out experiments for three different scenarios 
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regarding the availability of the output measurements at the controller node and the 
parameter variation, and examine the control performance, respectively. According to the 
proposed adaptive control scheme shown in Fig. 3, we apply the algorithms of the missing 
output estimator, model parameter estimator, and the adaptive control law to the 
networked control system. 

Example 1: μ = 0.85k . In the first example, 85% of all the measurements are available at the 

controller node after network transmission from the sensor to the controller. The output 
response is shown in Fig. 4, from which it is observed that the output tracking performance 
is satisfactory. In order to take a closer observation on the model parameter estimation and 
output estimation, we define the relative parameter estimation error as 
 

               

 

 

It is shown in Fig. 5 (solid blue curve) that δ %par  is becoming smaller with k increasing. 

Comparison between the estimated outputs and true outputs during the time range 

≤ ≤501 550t  is illustrated in Fig. 6: The dashed lines are corresponding to the time instants 

when data missing occurs, and the small circles on the top of the dashed lines represent the 
estimated outputs at these time instants. From Fig. 6 it can be found that the missing output 
estimation also exhibits good performance. 
 

 
Fig. 4. Example 1: Output response when μ = 0.85k . 

 

 
Fig. 5. Comparison of relative Parameter estimation errors for Example 1 and Example 2: 
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Blue solid line for Example 1; red dotted line for Example 2. 

Example 2: μ = 0.65k . In the second example, a worse case subject to more severe randomly 

missing outputs is examined: Only 65% of all the measurements are available at the 
controller node. The output response is shown in Fig. 7. Even though the available output 
measurements are more scarce than those in Example 1, it is still observed that the output is 
tracking the desired signal with satisfactory performance. The relative parameter estimation 

error, δ %par , is shown in Fig. 5 (dashed red curve). Clearly, it is decreasing when k is 

increasing. The estimated outputs and the true outputs are illustrated in Fig. 8, from which 
we can see good output estimation performance. 
For the comparison purpose, the relative parameter estimation errors of these two examples 
are shown in Figure 5. We can see that the parameter estimation performance when 

μ = 0.85k  is better than that when μ = 0.65k .It is no doubt that the estimation performance 

largely depends on data completeness that is characterized by μk . 

 

 
Fig. 6. Example 1: Comparison between estimated and true outputs when μ = 0.85k  (The 

dashed line represents output missing). 
 

 
Fig. 7. Example 2: Output response when μ = 0.65k . 
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Example 3: Output tracking performance subject to parameter variation. In practice, the model 
parameters may vary during the course of operation due to the change of load, external 
disturbance, noise, and so on. Hence, it is also paramount to explore the robustness of the 
designed controller against he influence of parameter variation. In this example, we assume 

that at = 2500k , model parameters are all increased by 50%. The output response is shown 

in Fig. 9. It can be seen that: At = 2500k , the output response has a big overshoot because of 

the parameter variation; however, the adaptive control scheme quickly forces the system 
output to track the desired signal again. 
Observing Figs. 4, 7, and 9 in three examples, we notice that the tracking error and 
oscillation still exist. This is mainly due to (1) the missing output measurements, and, (2) the 
relatively high noise-signal ratio (around 25%). On the other hand, it is desirable to develop 
new control schemes to further improve the control performance for networked systems 
subject to limited feedback information, which is worth to do extensive research. 
 

 
Fig. 8. Example 2: Comparison between estimated and true outputs when μ = 0.65k (The 

dashed line represents output missing). 
 

 
Fig. 9. Example 3: Output response subject to parameter variation: At time instant = 2500,k  

all parameters are increased by 50%. 
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6. Conclusion 
 

This paper has investigated the problem of adaptive control for systems with SISO OE 
models placed in a network environment subject to unknown model parameters and 
randomly missing output measurements. The missing output estimator, Kalman filter based 
model parameter estimator, and adaptive controller have been designed to achieve output 
tracking. Convergence performance of the proposed algorithms is analyzed under the 
stochastic framework. Simulation examples verify the proposed methods. It is worth 
mentioning that the proposed scheme is developed for SISO systems in this work, and the 
extension to multi-input-multi-output (MIMO) systems is a subject worth further 
researching 
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