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1. Introduction    
 

Adaptive control theory has been widely applied for stabilizing linear time invariant plants 
of unknown parameters (Goodwin & Sin, 1984). One of the more used methods for such a 
purpose is based on the model reference adaptive control (MRAC) problem (Aström & 
Wittenmark, 1997). Such a method requires some assumptions relative to the plant to be 
controlled in order to carry out the synthesis of a stable controller (Narendra & 
Annaswamy, 1989). One of them is that the plant has to be inversely stable, what means that 
its zeros have to be located within the stability domain. However, this information is not 
always available to the designer when the system under control contains unknown 
parameters. There are several alternatives to circumvent this drawback and carry out the 
stable adaptive control design. Some of them consist on relaxing the control performance 
from the model matching to that achievable from the closed-loop pole placement (Alonso-
Quesada & De la Sen, 2004 and Arvanitis, 1999). In this way, the stabilization of the closed-
loop system can be ensured although its transient behaviour cannot be fixed to a predefined 
one. 
 On one hand, the work (Alonso-Quesada & De la Sen, 2004) includes an estimates 
modification in the estimation algorithm to ensure the controllability of the estimated plant 
model without assuming any knowledge about the parameters of the plant to be controlled. 
This controllability property is crucial to avoid pole-zero cancellations between the 
estimated plant and the controller, which are both time-varying. In this context, a projection 
of the estimated plant parameters into a region in the parameter space where the closed-
loop system is free of pole-zero cancellations for all time can be alternatively used provided 
that the true plant is controllable and the knowledge of a region where the true plant 
parameters belong to (Goodwin & Mayne, 1987). 
 On the other hand, the research (Arvanitis, 1999) proposes an adaptive pole-placement 
control for linear systems using generalized sampled-data hold functions. Following such a 
technique, gain controllers essentially need to be designed. Concretely, a periodic piecewise 
constant gain controller is added in the feedback chain. In the non-adaptive case, such 
constant gain values are those required so that the discretized closed-loop model under a 
fundamental sampling period and a zero-order hold (ZOH) be stabilized. For such a 
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purpose, each sampling period is divided in a certain finite number of uniform subintervals 
and the controller gain takes a different value within each of them in order to locate the 
discretized poles at the stable desired locations. In other words, the controller consists of a 
constant vector of gains. In this sense, the controller works with a sampling rate faster than 
that used to discretize the plant to be controlled. In the adaptive case, an estimated model of 
the discretized plant is on-line updated by means of an estimation algorithm. Such a model 
is used to parameterize the controller gains vector which becomes time-varying and 
converges asymptotically to a constant one. 
 Another alternative, which does not relax the MRAC objective, to overcome the 
drawback of the unstable zeros in a continuous-time plant is the design of discrete-time 
controllers which are synthesized from the discretization of the continuous-time plant by 
means of a holder device combined with a multirate with fast input sampling rate (De la Sen 
& Alonso-Quesada, 2007 and Liang & Ishitobi, 2004). The main motivation of this method is 
that an inversely stable discretized model of the plant can be obtained with an appropriate 
choice of the multirate gains. In this way, an adaptive controller can be designed to match a 
discrete-time reference model since all the discretized plant zeros may be cancelled if suited. 
 In this context, a fractional-order hold (FROH) with a multirate input is used in this paper to 
obtain an inversely stable discretized plant model from a possible non-inversely stable and unstable 
time invariant continuous-time plant. Then, a control design for matching a discrete-time reference 
model is developed for both non-adaptive and adaptive cases. Note that a FROH includes as 
particular cases the ZOH and the FOH (first-order hold). In this way, the stabilization of the 
continuous-time plant is guaranteed without any assumption about the stability of its zeros 
and without requiring estimates modification in contrast with previous works on the 
subject. In this sense, this paper is an extension of the work (De La Sen & Alonso-Quesada, 
2007) where the same problem is addressed. The main contribution is related to the method used 
to built the continuous-time plant input from the discrete-time controller output. In the present 
paper, the FROH acts on the fundamental sampling period used to discretize the plant 
(plant output sampling) while in the aforementioned paper the FROH acted on the sampling 
period used to define the multirate device at the plant input. This later sampling period is 
an integer fraction of the plant output one, i.e. an integer number of input samples takes 
place within each output sampling period. Such an integer has to be suitably chosen for 
disposing of the enough freedom degrees being necessary to place the discretized plant 
zeros at desired locations, namely within the unity circle in order to guarantee the inverse 
stability of the discretized plant model. 
 The assumptions about the plant to guarantee the closed-loop stability of the adaptive 
control system are the following: (1) the stabilizability of the plant and (2) the knowledge of 
the continuous-time plant order. The motivation for using a multirate sampling input 
instead of the most conventional single rate one resides in the fact that the former, with the 
appropriate multirate gains, provides an inversely stable discretized plant model without 
requirements on either the stability of the continuous-time plant zeros or the size of the 
sampling period. In this sense, a single rate input can only provide an inversely stable 
discretized plant from an inversely stable continuous-time plant and, moreover, the 
fundamental sampling period to discretized the plant has to be sufficiently small (Blachuta, 
1999). Finally, the use of a FROH, instead of the most conventional ZOH, allows to 
accommodate better some discrete adaptive techniques to the transient response of discrete-
time controlled continuous-time plants (Bárcena et al., 2000 and Liang et al., 2003). 
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 The paper is organized as follows. Section 2 formulates a discrete state-space 
description under fast input sampling to then obtain an input-output discrete transfer 
function for the running slow sampling rate, namely, that acting on the output signal. The 
selection of the scalar gains that generate the fast sampled input so that the discrete plant 
zeros are stable is focused on depending on the continuous-time plant parametrization. 
Section 3 discusses the synthesis of a model-matching based controller with a possible 
potential free design of all the zeros of the reference model. The case of known plant 
parameters and the adaptive case for not fully known plant parameters are both considered. 
Two alternatives are proposed to update on-line the time-varying multirate gains in the 
adaptive case. The first one updates the multirate gains for all sampling instants in order to 
maintain the zeros of the estimated discretized plant fixed within the stability domain. On 
the contrary, the other one updates the multirate gains only when the change of gains is 
crucial to guarantee the stability of the estimated discretized plant zeros. In this way, the 
multirate gains are not updated for all sampling instants and then they became piecewise 
constant. As a result, the zeros of the estimated discretized plant become time-varying 
within the stability domain. Section 4 deals with the stability analysis of the adaptive control 
system. Simulated examples which highlight the proposed design philosophy are provided 
in Section 5. A comparison of the results obtained with the two different methods for 
updating the multirate gains is presented. Finally, conclusions end the paper in Section 6. 

 
2. Discretized Plant Representation 
 

Consider a linear time-invariant, single-input single-output and strictly proper continuous-
time plant described by the following state space equations: 

 

= + =&x(t) Ax(t) Bu(t)   ;    y(t) Cx(t)                                                (1) 

 

where u(t)  and y(t)  are, respectively, the input and output signals, ∈ℜnx(t)  denotes the 

state vector and A, B and C are constant matrices of suitable dimensions. A FROH and a 
multirate sampling on the fast input sampling will be used in order to obtain an inversely 
stable discretized plant model. The signal generated by such a device is given by, 
 

( )− −⎧ ⎫= α + β −⎨ ⎬
⎩ ⎭

j

u(k) u(k 1)
u(t) u(k) t kT

T
                                        (2) 

 

for [ )′ ′∈ + − +t kT ( j 1)T ,kT jT , { }∈ Kj 1,  2, , N  and FROH correcting gain [ ) ( ]β∈ − ∪1,0 0,1 , 

where T is the sampling period (slow sampling) which is divided in N equal subperiods of 

length ′ = TT N  (fast sampling) to generate the multirate plant input, u(k)  denotes the 

value of a discrete-time controller output signal at the instant kT, for all non-negative 

integer k, and α j ’s are real constants. Note that the FROH device operates on the sequence 

{ }u(k)  defined at the slow sampling instants kT and then the input u(t)  is generated over 

each subperiod with the corresponding gain α j , for { }∈ Kj 1,  2, , N , via (2). By substituting 

(2) into (1) and sampling the plant output y(t)  over the sampling period T, the following 
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state space representation is obtained which corresponds to the discrete-time plant model 

that relates the sequences { }u(k)  and { }y(k) : 

 

+ = + + − =1 2x(k 1) F x(k) G  u(k) G  u(k 1)    ;    y(k) C x(k)                            (3) 

 

where = ψ = φ =N ATF (T) e  is the continuous-time state transition matrix computed for a 

slow sampling period and, 
 

− × − ×

= =

β β⎛ ⎞ ⎛ ⎞⎛ ⎞′ ′= α ψ Γ + Γ ∈ℜ = − α ψ Γ ∈ℜ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑l l

l l
l l

N N
N n 1 N n 1

1 2
1 1

G    ;   G
T T

                    (4) 

 
with, 
 

′ ′× ×′ ′ ′Γ = φ − ∈ℜ Γ = φ − ∈ℜ∫ ∫
T T

n 1 n 1

0 0
(T s) B ds    ;   (T s) B s ds                          (5) 

 
 The transfer function of this discrete-time plant model is, 
 

− ⎛ ⎞= − ψ + =⎜ ⎟
⎝ ⎠

N 1
n 1 2

1 B(z)
H(z) C(zI ) G G

z A(z)
                                                (6) 

 
where, 
 

+
Δ − +

Δ
=

+ − +

=

⎡ ⎤− ψ
= −ψ = ⎢ ⎥−⎣ ⎦

= − ψ = +

∑

∑

N n 1
nN n i 1

n i
i 1

n
N n 1 n i 1

n i
i 1

zI C (z)g
B(z) C Adj(zI )C (z)g Det = b z

C 0

A(z) z Det(zI ) z a z

               (7) 

 

with ⋅Adj( )  and ⋅Det( )  denoting, respectively, the adjoint matrix and the determinant of the 

square matrix (.), nI  denoting the n-th order identity matrix, and 

 

[ ] [ ]
Γ

T

βΓ
T

βΓzΔ(z)

Δ(z)ψΔ(z)Δ(z)ψ(z)C;ααg nxN1N

Δ
1NT

N1

′−⎟
⎠
⎞

⎜
⎝
⎛ ′+=

ℜ∈ℜ∈= −+ LLL
          (8) 

 

 Note that the coefficients ib , for { }∈ +Ki 1,  2,  ,  n 1 , of the polynomial B(z)  in (7) 

depend on the values α j , for { }∈ …j 1,  2,  ,  N , which define the multirate device. This fact 

lets to allocate the zeros of the discretized plant model at desired locations if a suitable 

number of multirate gains is provided. In this sense, the multirate gains α j , being the 

components of the vector g , are calculated to guarantee that such zeros are maintained 

within the stability domain, i.e., the unity circle. In particular, the coefficients ib  can be 
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expressed as: 
 

=

= α ⇔ =∑
N

i i , j j
j 1

b b v M g                                                           (9) 

 

where + ×⎡ ⎤= ∈ℜ⎣ ⎦
(n 1) N

i , jM b  and [ ]+= K
T

1 2 n 1v b  b b . The coefficients i , jb  depend on the 

parameters of the continuous-time plant, the sampling period T and the correcting gain β  of 

the FROH considered in the discretization process. 
 
Assumptions 1.  
(i) The plant is stabilizable, i.e. its transfer function does not possess unstable pole-zero 

cancellations, 
(ii) the plant order n  is known, and 

(iii) the correcting gain β  of the FROH device and the sampling period T  are chosen such 

that M  is a full rank matrix.       *** 

 
Remark 1. The multirate gains vector g  required to place the zeros of the discretized plant 

transfer function (6) at desired locations may be calculated from (9) provided Assumptions 1 

and that ≥ +N n 1 . In this sense, such locations are prefixed via a suitable choice of the 

vector v  composed by the coefficients of the desired polynomial for the transfer function 

numerator. If > +N n 1 , different solutions can be obtained for g . Otherwise, i.e. if 

= +N n 1 , there is a unique solution for the multirate gains vector from the linear algebraic 

system (9) which places the discretized zeros at desired locations.     *** 
 
 The discretized model (6) can be described by the following difference equation: 

 
+ +

= = = = =

+

= = =

= − − + − = − − + α −

= − − + − = θ ϕ −

∑ ∑ ∑ ∑∑

∑ ∑∑

n n 1 n n 1 N

i i i i , j j
i 1 i 1 i 1 i 1 j 1

n n 1 N
T

i i , j j
i 1 i 1 j 1

y(k) a  y(k i) b  u(k i) a  y(k i) b   u(k i)

       a  y(k i) b  u (k i)  (k 1)

         (10) 

 
where, 
 

[ ] [ ]
[ ]

+ ⎡ ⎤⎡ ⎤θ = θ θ θ θ ϕ − = ϕ − ϕ − ϕ − ϕ − −⎣ ⎦ ⎣ ⎦

θ = − − − ϕ − = − − −

θ = ϕ − = − − −⎡ ⎤⎣ ⎦
− =

K K

K K

K K

TTT T T T T T T T
a y u u ub,1 b,2 b,n 1

T T

a 1 2 n y

T T

i ,1 i ,2 i ,N u 1 2 Nb,i

j

   ;   (k 1) (k 1) (k 1) (k 2) (k n 1)

a a a    ;   (k 1) y(k 1) y(k 2) y(k n)

b b b    ;   (k i) u (k i) u (k i) u (k i)

u (k i) α −ju(k i)

(11) 

 

for all { }∈ +Ki 1,  2,  ,  n 1  and all { }∈ Kj 1,  2,  ,  N . In the rest of the paper, the case 

= +N n 1  will be considered for simplicity purposes. 
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3. Control Design 
 

The control objective in the case of known plant parameters is that the discretized plant 

model matches a stable discrete-time reference model = m
m

m

B (z)
H (z)

A (z)
 whose zeros can be 

freely chosen, where z  is the Z-transform argument. Such an objective is achievable if the 
discretization process uses the multirate sampling input with the appropriate multirate 
gains, what guarantees the inverse stability of the discretized plant. Then, all the discretized 
plant zeros may be cancelled by controller poles. In this way, the continuous-time plant 
output tracks the reference model output at the sampling instants. The tracking-error 
between such signals is zero at all sampling instants in the case of known plant parameters 
while it is maintained bounded for all time while it converges asymptotically to zero as time 
tends to infinity in the adaptive case considered when the plant parameters are fully or 
partially unknown. A self-tuning regulator scheme is used to meet the control objective in 
both non-adaptive and adaptive cases. 

 
3.1 Known Plant 

The proposed control law is obtained from the difference equation: 
 

= −R(q) u(k) T(q) c(k) S(q) y(k)                                            (12) 

 

for all non-negative integer k, where { }c(k)  is the input reference sequence and q is the 

running sample rate advance operator being formally equivalent to the Z-argument used in 
discrete transfer functions. The reconstruction of the continuous-time plant input u(t) is 

made by using (2), with the control sequence { }u(k)  obtained from (12), with the 

appropriate multirate gains α j , for { }∈ Kj 1,  2,  ,  N , to guarantee the stability of the 

discretized plant zeros. 
 The discrete-time transfer function of the closed-loop system obtained from the 
application of the control law (12) to the discretized plant (6) is given by: 

 

= =
+ +

Y(z) B(z)T(z) T(z)

C(z) A(z)R(z) B(z)S(z) A(z) S(z)
                                         (13) 

 

where the second equality is fulfilled if the control polynomial =R(z) B(z) . In this way, the 

polynomial B(z) , which is stable, is cancelled. Then, the polynomials T(z) , R(z)  and S(z)  

of the controller (12) so that  = m

m

Y(z) B (z)

C(z) A (z)
 are obtained from: 

 

= = = −m s m sT(z) B (z)A (z)   ;   R(z) B(z)   ;   S(z) A (z)A (z) A(z)                      (14) 

 

where sA (z)  is a stable monic polynomial of zero-pole cancellations of the closed-loop 

system. The following degree constraints are satisfied in the synthesis of the controller: 
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[ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

−
+

=

⎧ + = = +
⎪
⎪ = − = ⇒ =⎨
⎪
⎪ = + ≤⎩

∑
m s

n
n i

i 1
i 0

m s

Deg A (z) Deg A (z) Deg A(z) n 1

Deg S(z) Deg A(z) 1 n      S(z) s  z

Deg T(z) Deg B (z) Deg A (z) n

                          (15) 

 
3.2 Unknown Plant 

If the continuous-time plant parameters are unknown then the vector θ  in (11) composed of 

the discretized plant model parameters is also unknown. However, all the above control 
design in the previous subsection remains valid if such a parameter vector is estimated by 
an estimation algorithm. In this way, the controller parameterization can be obtained from 

= ˆR(z,k) B(z,k) , with B̂(z,k)  denoting the estimated of B(z)  at the current slow sampling 

instant kT, and equations similar to (14) by replacing the discretized plant polynomial A(z)  

by its corresponding estimated one Â(z,k)  (Alonso-Quesada & De la Sen, 2004). Note that 

T(z)  in (14) has to be calculated once for all since mB (z)  and sA (z)  are time-invariant while 

S(z)  is updated at each running sampling time since the polynomial Â(z,k)  is time-

varying. The coefficients of the unknown polynomial B(z)  depend, via (9), on the multirate 

input gains α j , for { }∈ Kj 1,  2,  ,  N , being applicable to calculate the input within the inter-

sample slow period. However, the estimation algorithm provides an adaptation of each 

parameter i , jb , namely i , jb̂ (k) , for { }∈ Ki,  j 1,  2,  ,  N  and all non negative integer k. Then, 

the α j -gains have to be also updated in order to ensure the stability of the zeros of the 

estimated discretized plant, i.e. the roots of B̂(z,k)  be stable. Then, the gains α j  become 

time-varying, namely α j
ˆ (k) . The estimation algorithm for updating the parameters vector 

θ̂(k) , which denotes the estimated of θ , and two different design alternatives for the 

adaptation of the multirate gains are presented below. Also, the main boundedness and 
convergence properties derived from the use of such algorithms are established. 

 
3.2.1. Estimation algorithm 

An ‘a priori’ estimated parameters vector is obtained at each slow sampling instant by using 
a recursive least-squares algorithm (Goodwin & Sin, 1984) defined by: 

 

 

− ϕ − ϕ − −
= − −

+ ϕ − − ϕ −

− ϕ −
θ = θ − +

+ ϕ − − ϕ −

T

T

0
0 0

T

P(k 1) (k 1) (k 1) P(k 1)
P(k) P(k 1)

1 (k 1) P(k 1) (k 1)

P(k 1) (k 1) e (k)ˆ ˆ(k) (k 1)
1 (k 1) P(k 1) (k 1)

           (16) 

 

for all integer >k 0  where ( )= θ − θ − ϕ − = θ − ϕ −%
T T0 0 0ˆe (k) (k 1) (k 1) (k 1) (k 1)  denotes the ‘a 

priori’ estimation error and P(k)  is the covariance matrix initialized as = >TP(0) P (0) 0 . 
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Such an algorithm provides an estimation θ 0ˆ (k)  of the parameters vector by using the 

regressor ϕ −(k 1) , defined in (11), built with the output and input measurements with the 

multirate gains α −j
ˆ (k 1)  obtained at the previous slow sampling instant, i.e. 

− = α − −j j
ˆu (k i) (k 1) u(k i)  for all { }∈ Ki 1,  2,  ,  n+1 . Then, an ‘a posteriori’ estimates vector 

is obtained in the following way: 
 
Modification algorithm. 
This algorithm consists of three steps: 

Step 1: Built the matrix ×⎡ ⎤= ∈ℜ⎣ ⎦
0 0 N N

i , j
ˆM̂ (k) b (k) , for { }∈ Ki,  j 1,  2,  ,  N , from the ‘a priori’ 

estimates θ0
b,i

ˆ (k) , included in θ 0ˆ (k) , of the corresponding θb,i  defined in (11). 

Step 2: = 0ˆ ˆM(k) M (k)  

If ⎡ ⎤ ≥ δ⎣ ⎦ 0
ˆDet M(k)  then θ = θ0

b,i b ,i
ˆ ˆ(k) (k)  

                                            else while ⎡ ⎤ < δ⎣ ⎦ 0
ˆDet M(k)  

                                                          = + δ N
ˆ ˆM(k) M(k) I  

                                                    end; 

                                                    for =i 1  to N  

                                                          θ = ib ,i
ˆ ˆ(k) M (k)  

                                                   end 
             end. 

Step 3: ⎡ ⎤θ = θ θ θ θ⎣ ⎦K
TT0 T T T

a b,1 b,2 b,N
ˆ ˆ ˆ ˆ ˆ(k) (k) (k) (k) (k) , 

 

for some real positive constants δ << 1  and δ <<0 1 , and where iM̂ (k)  denotes the i-th row 

of M̂(k) .        *** 

 

Remark 2. Note that the estimate θ0
a

ˆ (k)  corresponding to the parameters of θa  is not 

affected by the modification algorithm. Also, note that the while instruction part of the 

second step is doing a finite number of times since there exists a finite integer number l  

such that ( ) ( )⎡ ⎤ ⎡ ⎤= + δ = δ + δ θ θ θ ≥ δ⎣ ⎦ ⎣ ⎦l l K
N0 0 0 0

N 0b,1 b,2 b,N
ˆ ˆ ˆ ˆ ˆDet M(k) Det M (k) I f ,  (k),  (k),  , (k) .  *** 

 
3.2.2. Updating of the time-varying multirate gains 

Once the estimated parameters vector is obtained at each slow sampling instant the 
multirate input gains have to be updated. Two alternative algorithms are considered to 
carry out such an operation. 

 
Algorithm 1. 
A vector of multirate gains is updated at all slow sampling instants in order to maintain the 
zeros of the estimated discretized plant fixed at desired locations within the stability domain 

<z 1 . Such desired zeros are the roots of a predefined polynomial ′B (z) . For such a 
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purpose, the required vector ĝ(k)  is obtained from the resolution of the following matrix 

equation: 
 

=ˆ ˆM(k) g(k) v                                                                (17) 

 

at each slow sampling instant, where [ ]′ ′ ′= K
T

1 2 Nv b b b  is composed by the coefficients 

of ′B (z) , ×⎡ ⎤= ∈ℜ⎣ ⎦
N N

i , j
ˆM̂(k) b (k) , with i , jb̂ (k)  denoting each of the ‘a posteriori’ estimated 

parameters corresponding to the components of the vectors θb,i  defined in (11), and 

[ ]= α α αK
T

1 2 N
ˆ ˆ ˆ ˆg(k) (k) (k) (k) . In this way, ĝ(k)  is composed by the multirate gains 

which make the numerator of the estimated discretized plant model be equal to the desired 
polynomial ′B (z) . Note that the matrix equation (17) can be solved at all slow sampling 

instants since the parameters modification added to the estimation algorithm ensures the 

non-singularity of the matrix M̂(k) . 

 
Algorithm 2. 
It consists of solving the equation (17) only when it is necessary to modify the previous 
values of the multirate gains in order to guarantee the stability of the zeros of the estimated 
discretized plant model. i.e., the multirate gains remain equal to those of the preceding slow 
sampling instant if the zeros of the estimated discretized plant obtained with the current 

estimated parameters vector, θ̂(k) , and the previous multirate gains, α −j
ˆ (k 1) , are within 

the discrete-time stability domain. Otherwise, the multirate gains are updated by the 
resolution of the equation (17), which can be solved whenever it is necessary since the 

matrix M̂(k)  is invertible at all slow sampling instant due to the modification included in 

the estimation algorithm. In this way, the multirate gains are piecewise constant, the 
estimated discretized plant zeros are time-varying and the computational burden associated 
with the updating of the multirate gains is reduced with respect to that of Algorithm 1. 

 
3.2.3. Properties of the estimated models 

The parameter estimation algorithm, together with any of the considered adaptation 
algorithms for the multirate gains, possesses the properties given in the following lemma, 
whose proof is presented in Appendix A. 
 
Lemma 1. Main properties of the estimation and multirate gains adaptation algorithms  

(i) P(k)  is uniformly bounded for all non-negative integer k, and it asymptotically 

converges to a finite, at least semidefinite positive, limit as →∞k . 

(ii) θ 0ˆ (k)  and θ̂(k)  are uniformly bounded and they asymptotically converge to a finite 

limit as →∞k . 

(iii) The vector ĝ(k)  of multirate gains is bounded and converges to a finite limit as →∞k . 

(iv) 
( )

+ ϕ − − ϕ −

20

T

e (k)

1 (k 1) P(k 1) (k 1)
 is uniformly bounded and it asymptotically converges to 
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zero as →∞k . 

(v) 0e (k)  asymptotically converges to zero as →∞k . 

(vi) Assuming that the external input c(k)  is sufficiently rich such that ϕ −(k 1)  in (11) is 

persistently exciting, θ 0ˆ (k)  tends to the true parameters vector θ  as →∞k . Then, θ̂(k)  

tends to θ 0ˆ (k)  and ( )= θ − θ − ϕ −
Tˆe(k) (k 1) (k 1)  tends to zero as →∞k .   *** 

 

Remark 3. The convergence of the estimated parameters to their true values in θ  requires 

that ϕ −(k 1)  is persistently exciting. In this context, ϕ −(k 1)  is persistently exciting if there 

exists an integer l  such that 
+

=

ρ > ϕ − ϕ − > ρ∑
l0

0

k
T

1 m 2 m
k k

I (k 1) (k 1) I  where ρ >1 0 , ρ >2 0  and 

= + = + +2 2m n N n 3n 1  is the number of components of the regressor ϕ −(k 1) . Such a 

condition may be ensured by chosing an external input sufficiently rich of order m , i.e. it 

consists of at least m
2  frequencies in the frequency domain (Ioannou & Sun, 1996).  *** 

 
4. Stability Analysis 
 

The plant discretized model can be written as follows, 
 

+

= =

= + = θ − ϕ − + = − − − + − − +∑ ∑
n n 1

T
i i

i 1 i 1

ˆˆ ˆˆy(k) y(k) e(k) (k 1) (k 1) e(k) a (k 1)y(k i) b (k 1)u(k i) e(k)     (18) 

 
and the adaptive control law as, 
 

( ) ( )+ +
= =

+

+
=

⎧= − − − − − − − − + − −⎨
⎩

⎫− − − − − + − + − + δ⎬
⎭

∑ ∑

∑ i

n n

1 i i 1 1 i i 1
i 1 i 11

n 1
1

1 n 1 m
i 1 1

1 ˆ ˆˆ ˆ ˆ ˆu(k) s (k 1)a (k 1) s (k 1) y(k i) s (k 1)b (k 1) b (k 1) u(k i)
b̂ (k)

ŝ (k)ˆˆ                  s (k 1)b (k 1)u(k n 1) b c(k i 1) e(k) (k)
b̂ (k)

(19) 

 
where (12) has been used with R(q)  and S(q)  substituted, respectively, by time-varying 

polynomials =ˆ ˆR(z,k) B(z,k)  and Ŝ(z,k) , which is the solution of the equation (14) for the 

adaptive case, and, 
 

( ) ( )

( ) ( )
( )

+ +
=

+ +
=

+

⎧δ = ⎡ − − − − − − ⎤ −⎨ ⎣ ⎦⎩

⎡ ⎤− − − − + − − −⎣ ⎦

− − − −

∑

∑

n

1 1 i i 1 i 1
i 11

n

1 1 i i 1 i 1
i 1

1 1 n 1

1
ˆ ˆ ˆ ˆ ˆ(k) s (k) s (k 1) a (k 1) s (k) s (k 1) y(k i)

b̂ (k)

ˆ ˆ ˆˆ ˆ                      s (k) s (k 1) b (k 1) b (k) b (k 1) u(k i)

ˆˆ ˆ                      s (k) s (k 1) b (k }− −1)u(k n 1)

                  (20) 

 
 By combining (18) and (19), the discrete-time closed-loop system can be written as: 

www.intechopen.com



Discrete Model Matching Adaptive Control for Potentially Inversely Non-Stable Continuous-Time  
Plants by Using Multirate Sampling 

 

123 

 

= Λ − − + Ψ + Ψ ϑ1 2x(k) (k 1) x(k 1) e(k) (k)                                             (21) 

 

where 
+

=

⎛ ⎞
ϑ = − + − + δ⎜ ⎟

⎝ ⎠
∑ i

n 1

m 1
i 11

1
ˆ(k) b c(k i 1) s (k) e(k) (k)

b̂ (k)
 and, 

 
[ ]

[ ] ( )
{

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−

−−−−−−−−−−−−

=−

ℜ∈⎥⎦
⎤

⎢⎣
⎡=ℜ∈=
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ˆ

ˆ
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ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆˆˆˆˆˆˆˆ  (22) 

 

with +− = − − − −i 1 i i 1
ˆ ˆ ˆ ˆf (k 1) s (k 1)a (k 1) s (k 1) , ( )+− = − − − + −i i i i 1

ˆ ˆ ˆˆh (k 1) s (k 1)b (k 1) b (k 1) , for 

{ }∈ …i 1,  2,  ,  n , and + +− = − − −n 1 1 n 1
ˆ ˆˆh (k 1) s (k 1)b (k 1) . 

 Note that −iâ (k 1)  and 
=

− = − α −∑
N

i i , j j
j 1

ˆ ˆ ˆb (k 1) b (k 1) (k 1)  are uniformly bounded from 

Lemma 1 (properties ii and iii). Also, ≠1b̂ (k) 0  since the adaptation of the multirate gains 

makes such a parameter fixed to a prefixed one which is suitably chosen and −iŝ (k 1)  is 

uniformly bounded from the resolution of a equation being similar to that of (14) replacing 

polynomials A(z)  and S(z)  by time-varying polynomials −Â(z,k 1)  and −Ŝ(z,k 1) , 

respectively. 
 The following theorem, whose proof is presented in Appendix B, establishes the main 
stability result of the adaptive control system. 
 
Theorem 1. Main stability result. 
(i) The adaptive control law stabilizes the discrete-time plant model (6) in the sense that 

{ }u(k)  and { }y(k)  are bounded for all finite initial states and any uniformly bounded 

reference input sequence { }c(k)  subject to Assumptions 1, 

(ii) { }y(k)  converges to { }my (k)  as k  tends to infinity, and 

(iii) the continuous plant input and output signals, u(t)  and y(t) , are bounded for all t.  *** 
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5. Simulations Results 
 

Some simulation results which illustrate the effectiveness of the proposed method are 
shown in the current section. A continuous-time unstable plant of transfer function 

−
=

− +
s 2

G(s)
(s 1)(s 3)

 with an unstable zero, and whose internal representation is defined by 

the matrices 
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

3 0
A

0 1
, [ ]=

T
B 1 1  and [ ]= −C 1.25 0.25 , is considered. A suitable 

multirate scheme with fast input sampling through a FROH device is used to place the zeros 
of the discretized plant within the stability region and a discrete-time controller is 
synthesized so that the discrete-time closed-loop system matches a reference model. The 
results for the case of known plant parameters are presented in a first example and then two 
more examples with the described adaptive control strategies are considered. The difference 
among such adaptive control strategies relies on the way of updating the multirate gains for 
ensuring the stability of the estimated discretized plant zeros. 

 
5.1. Known Plant Parameters 

The discretization of the continuous-time plant with a multirate, =N 3 , and a FROH device 

with β = 0.7  for a slow sampling time =T 0.3  is performed leading to the discrete transfer 

function 
+ +

= =
− +

2
1 2 3

2

b (g)z b (g)z b (g)B(z)
H(z)

A(z) z(z 1.7564z 0.5488)
 where = α + α + α1 1 2 3b (g) 0.0307 0.0693 0.13 , 

= − α + α + α2 1 2 3b (g) (0.0788 0.1488 0.2631 )  and = α + α + α3 1 2 3b (g) 0.0083 0.0343 0.0797  are the 

coefficients of the transfer function numerator of the discretized model. Such coefficients 

depend on the multirate gains αi , for { }∈i 1,  2,  3 , included as components in the vector g . 

The zeros of such a discretized plant can be fixed within the stability domain via a suitable 

choice of the multirate gains. In this example such gains are α = −1 621.8706 , α =2 848.4241  

and α = −3 297.4867  so that ′= = + +2B(z) B (z) z z 0.25  and then both zeros are placed at 

= −0z 0.5 . The control objective is the matching of the reference model defined by the 

transfer function 
+ −

=
+

2

m 3

z z 0.272
G (z)

(z 0.2)
. For such a purpose, the controller has to cancel the 

discretized plant zeros, which are stable, and add those of the reference model to the 
discrete-time closed-loop system. The values of the control parameters to meet such an 

objective are =1s 2.3564 , = −2s 0.4288  and =3s 0.008 . A unitary step is considered as 

external input signal. Figure 1 displays the time evolution of the closed-loop system output, 
its values at the slow sampling instants and the sequence of the discrete-time reference 
model output. Figure 2 shows the plant input signal. Note that perfect model matching is 
achieved, at the slow sampling instants, without any constraints in the choice of the zeros of 

the reference model mG (z) , in spite of the continuous-time plant possesses an unstable zero. 

Furthermore, the continuous-time output and input signals are maintained bounded for all 
time. 
 

www.intechopen.com



Discrete Model Matching Adaptive Control for Potentially Inversely Non-Stable Continuous-Time  
Plants by Using Multirate Sampling 

 

125 

 
Fig. 1. Plant and reference model output signals 
 

 
Fig. 2. Plant input signal 
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5.2. Unknown Plant Parameters 

An adaptive version of the discrete-time controller designed in the previous example is 
considered with the parameters estimation algorithm being initialized with 

[ ]−θ = × − − − −
T0 2ˆ (0) 10 263.46 82.32 4.61 10.39 19.51 11.82 22.33 39.46 1.25 5.15 11.95  

and = ⋅ 11P(0) 1000 I . Furthermore, the values −δ = δ = 6
0 10  are chosen for the modification 

algorithm included in such an estimation process. Two different methods are considered to 
update the multirate gains. The first one consists of updating such gains at all the slow 
sampling instants so that the discretized zeros are maintained constant within the stability 
domain (Algorithm 1). The second one consists of changing the value of the multirate gains 
only when at least one of the discretized zeros, which are time-varying, is going out of the 
stability domain. Otherwise, the values for the multirate gains are maintained equal to those 
of the previous slow sampling instant (Algorithm 2). 

 
5.2.1. Algorithm 1: Discretized plant zeros are maintained constant 

Figure 3 displays the time evolution of the closed-loop adaptive control system output, its 
values at the slow sampling instants and the sequence of the discrete-time reference model 
output under a unitary step as external input signal. Note that the discrete-time model 
matching is reached after a transient time interval. Figures 4 and 5 show, respectively, the 
plant output signal and the input signal generated from the multirate with the FROH 

applied to the control sequence { }u(k) . It can be observed that both signals are bounded for 

all time. Finally, Figures 6 and 7 display, respectively, the time evolution of the multirate 
gains and the adaptive controller parameters. Note that the multirate gains and the adaptive 
control parameters are time-varying until they converge to constant values. 
 

 
Fig. 3. Plant and reference model output signals 
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Fig. 4. Plant output signal 

 

 
Fig. 5. Plant input signal 
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Fig. 6. Multirate gains 
 

 
Fig. 7. Adaptive control parameters 
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5.2.2. Algorithm 2: Discretized plant zeros are time-varying 

The multirate gains are maintained constant to their values at the previous slow sampling 
instant until at least one of the discretized plant zeros is going out of the stability domain. In 
this sense, note that the discretized zeros vary when the values of the multirate gains are 
maintained constant and eventually they can go out of the stability domain. When this 

happens such gains are again calculated to place both discretized zeros at = −0z 0.5 . The 

discrete-time model matching is reached after a transient time interval and the continuous-
time plant output and input signals are bounded for all time as it can be observed from 
Figures 8, 9 and 10 where the response to a unitary step is shown. The maximum values 
reached by both continuous-time output and input signals are larger than those obtained 
with the previous method (Algorithm 1) for updating the multirate gains. Figures 11 and 12 
display, respectively, the evolution of the multirate gains and the controller parameters. The 
adaptive control parameters are time-varying until they converge to constant values while 
the multirate gains are piecewise constant and also they converge to constant values. Note 
that this second method ensures a small number of changes in the values of the multirate 
gains compared with the first method since such gains only vary when it is necessary to 
maintain the zeros within the stability domain. This fact gives place to a less computational 
effort to generate the control law than that required with the first method. However, the 
behaviour of the continuous-time plant output and input signals is worse with the use of 
this second alternative in this particular example. Finally, the evolution of the modules of 
the discretized plant zeros and the coefficients of the time-varying numerator of such an 
estimated model are, respectively, shown in Figures 13 and 14. 
 

 
Fig. 8. Plant and reference model output signals 
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Fig. 9. Plant output signal 
 

 
Fig. 10. Plant input signal 
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Fig. 11. Multirate gains 
 

 
Fig. 12. Adaptive control parameters 
 

 
Fig. 13. Modules of the estimated discretized plant zeros 
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Fig. 14. Coefficients of the estimated discretized plant numerator 

 
6. Conclusion 
 

This paper deals with the stabilization of an unstable and possibly non-inversely stable 
continuous-time plant. The mechanism used to fulfill the stabilization objective consists of 
two steps. The first one is the discretization of the continuous-time plant by using a FROH 
device combined with a multirate input in order to obtain an inversely stable discretized 
model of the plant. Then, a discrete-time controller is designed to match a discrete-time 
reference model by such a discretized plant. There is not any restriction in the choice of the 
reference model since the zeros of the discretized plant model are guaranteed to be stable by 
the fast sampled input generated by the multirate sampling device. 
 An adaptive version of such a controller constitutes the main contribution of the 
present manuscript. The model matching between the discretized plant and the discrete-
time reference model is asymptotically reached in the adaptive case of unknown plant. Also, 
the boundedness of the continuous-time plant input and output signals are ensured, as it is 
illustrated by means of some simulation examples. In this context, the behaviour of the 
designed adaptive control system in the inter-samples period may be improved. In this 
sense, an improvement in such a behaviour has been already reached with a multi-
estimation scheme where several discretization/estimation processes, each one with its 
proper FROH and multirate device, are working in parallel providing different discretized 
plant estimated models (Alonso-Quesada & De la Sen, 2007). Such a scheme is completed 
with a supervisory system which activates one of the discretization/estimation processes. 
Such a process optimizes a performance index related with the inter-sample behaviour. In 
this sense, each of the discretization/estimation processes gives a measure of its quality by 
means of such an index which may measure the size of the tracking-error and/or the size of 
the plant input for the inter-sample period. The supervisor switches on-line from the current 
process to a new one when the last is better than the former, i.e. the performance index of 
the new process is smaller than that of the current one. Moreover, the supervisor has to 
guarantee a minimum residence time between two consecutive switches in order to ensure 
the stability of the adaptive control system. 
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7. Appendix A. Proof of Lemma 1 
 

(i) P(k)  is a monotonic non-increasing matrix sequence since − − ≤P(k) P(k 1) 0  for all 

integer >k 0  from (16). Moreover, if =1P(k ) 0  for any integer >1k 0  then 

+ − =1 1P(k 1) P(k ) 0  from (16) and then =P(k) 0  for all integer ≥ 1k k . Thus, 

≤ ≤0 P(k) P(0)  and P(k)  asymptotically converges to a finite limit as →∞k . 

(ii) By considering the non-negative sequence −= θ θ% %T0 1 0V(k) (k)P (k) (k)  and applying the 

matrix inversion lemma (Goodwin & Sin, 1984) to (16) it follows that, 
 

( )
− − = − ≤

+ ϕ − − ϕ −

20

T

e (k)
V(k) V(k 1) 0

1 (k 1)P(k 1) (k 1)
                            (23) 

 

where (16) and the definition of the estimation error have been used. Then, ≤V(k) V(0)  

and 
{ }
{ }

λ
θ ≤ θ < ∞

λ
% %max0 0

min

P(0)
(k) (0)

P(0)
 where { }λmax P(0)  and { }λmin P(0)  denote the 

maximum and the minimum eigenvalues of P(0) , respectively. It implies that θ% 0(k) , 

and then also θ0ˆ (k) , is uniformly bounded. Then, θ̂(k)  is also bounded since the 

modification algorithm guarantees the boundedness of M̂(k)  provided that θ0ˆ (k)  is 

bounded. On other hand, V(k)  asymptotically converges to a finite limit as →∞k  from 

its definition and the fact that such a sequence is non-negative and monotonic non-

increasing. Then, θ% 0(k) , and also θ0ˆ (k) , converges to a finite limit as →∞k  since P(k)  

also converges as it has been proved in (i). Then, M̂(k)  and θ̂(k)  also converge to finite 

limits as →∞k . 

(iii) The boundedness and convergence of the estimation model parameters vector together 

with the non-singularity of the matrix M̂(k) , guaranteed by the modification algorithm, 

implies the boundedness and convergence of the vector ĝ(k)  obtained by resolution of 

equation (17). 

(iv) It follows that 
( )

=

= − ≤ < ∞
+ ϕ − − ϕ −∑

20k

T
i 1

e (i)
V(0) V(k) V(0)

1 (i 1)P(i 1) (i 1)
 from (23), then 

( )
+ ϕ − − ϕ −

20

T

e (k)

1 (k 1)P(k 1) (k 1)
 is uniformly bounded and it converges to zero as →∞k . 

(v) It follows that { }
→∞

=0

k
lim e (k) 0  irrespective of the boundedness of ϕ −(k 1)  from the fact 

that 
( )

→∞

⎧ ⎫⎪ ⎪ =⎨ ⎬
+ ϕ − − ϕ −⎪ ⎪⎩ ⎭

20

Tk

e (k)
lim 0

1 (k 1)P(k 1) (k 1)
. On one hand, if ϕ −(k 1)  is bounded then 
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( )
→∞

⎧ ⎫⎪ ⎪ =⎨ ⎬
+ ϕ − − ϕ −⎪ ⎪⎩ ⎭

20

Tk

e (k)
lim 0

1 (k 1)P(k 1) (k 1)
 implies directly that { }

→∞
=0

k
lim e (k) 0 . On the other 

hand, if ϕ −(k 1)  is unbounded then 
( )

→∞

⎧ ⎫⎪ ⎪ =⎨ ⎬
+ ϕ − − ϕ −⎪ ⎪⎩ ⎭

20

Tk

e (k)
lim 0

1 (k 1)P(k 1) (k 1)
 implies that 

→∞

⎧ ⎫θ −⎪ ⎪ =⎨ ⎬
−⎪ ⎪⎩ ⎭

% 2
0

2
k

(k 1)
lim 0

P(k 1)
 since = θ − ϕ −% T0 0e (k) (k 1) (k 1)  and then { }→∞

θ − =% 2
0

k
lim (k 1) 0  from 

the fact that P(k)  is uniformly bounded. Thus, { }
→∞

=0

k
lim e (k) 0 . 

(vi) Provided that the external input sequence { }c(k)  is sufficiently rich such that ϕ −(k 1)  is 

persistently exciting, θ0ˆ (k)  tends to the true parameters vector θ  as →∞k  (Goodwin & 

Sin, 1984). Then, M̂(k)  tends to 0M̂ (k)  from the modification algorithm and, 

consequently, θ̂(k)  tends to θ0ˆ (k)  and e(k)  tends to zero as →∞k .   *** 

 
8. Appendix B. Proof of Theorem 1 
 

(i) Λ(k)  is bounded since the estimation model parameters iâ (k)  and jb̂ (k) , and the 

controller parameters jŝ (k) , for { }∈ Ki 1,  2,  ,  n  and { }∈ +Kj 1,  2,  ,  n 1 , are bounded 

thanks to the estimated parameters vector θ̂(k)  and the multirate gains vector ĝ(k)  are 

bounded for all integer ≥k 0 . The eigenvalues of Λ(k)  are in <z 1  since they are the 

roots of mA (z)  and sA (z) , due to the designed control law, and the roots of B̂(z,k)  

which are within the unit circle due to the suitable adaptation of the multirate gains. 
Besides, 

 

′= +

′ ′Λ − Λ − ≤ γ + γ −∑
0

k
2

0 1 0
k k 1

(k ) (k 1) (k k )                                     (24) 

 

for all integers k  and 0k  such that > ≥0k k 0 , and some sufficiently small positive real 

constants γ0  and γ1  (Bilbao-Guillerna et al., 2005). Note that (24) is fulfilled with a slow 

enough estimation rate via a suitable choice of P(0)  in (16) so that γ1  is sufficiently 

small. Thus, the time-varying homogeneous system = Λ − −x(k) (k 1) x(k 1)  is 

exponentially stable and its transition matrix 
−

′=

′φ = Λ∏
k 1

j k

(k,k ) ( j)  satisfies ′−′φ ≤ ρ σk k
1 0(k,k )  

for all ′≥k k  where ( )σ ∈0 0,1  and ρ1  is a non-dependent constant (Alonso-Quesada & 

De la Sen, 2004). It follows from (21) that: 
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( )
′=

′ ′ ′= φ + φ Ψ + Ψ ϑ∑
0

k

0 0 1 2
k k

x(k) (k,k ) x(k ) (k,k ) e(k ) (k )                             (25) 

for all integer ≥ ≥0k k 0 . Then, 

 

( )′− −

′=

′ ′= ρ σ + ρ σ ρ + ρ + ρ δ∑0

0

k
k k k k

1 0 0 1 0 2 3 4
k k

x(k) x(k ) e(k ) (k )                      (26) 

 

for some positive real constants ρ2 , ρ3  and ρ4 , provided that the input reference 

sequence { }c(k)  is bounded. It follows that 
→∞

− − =i i
k

ˆ ˆlim a (k) a (k 1) 0  and 

→∞
− − =j j

k

ˆ ˆlim b (k) b (k 1) 0  for all { }∈ Ki 1,  2,  ,  n  and { }∈ +Kj 1,  2,  ,  n 1  from the 

convergence property of the estimation algorithm. Then, 
→∞

− − =i i
k

ˆ ˆlim s (k) s (k 1) 0  as it 

follows from the adaptive control resolution. Consequently, 
→∞

δ =
k
lim (k) 0 . Besides, 

→∞
=

k
lim e(k) 0  from the estimation algorithm. Then, x(k)  is bounded from (26), which 

implies that sequences { }u(k)  and { }y(k)  are also bounded. 

(ii) On one hand, the adaptive control law ensures that the estimated sequence { }ŷ(k)  

matches the reference model one { }my (k)  for all integer ≥k 0 . On the other hand, the 

estimation algorithm guarantees the asymptotic convergence of the estimation error 

e(k)  to zero. Then, the output sequence { }y(k)  tends to { }my (k)  asymptotically as 

→∞k . 

(iii) The adaptive control algorithm ensures that there is no finite escapes. Then, the 

boundedness of the sequences { }u(k)  and { }y(k)  implies that the plant input and 

output continuous-time signals u(t)  and y(t)  are bounded for all t. 
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