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Modelling and Identification of Flight Dynamics 
in Mini-Helicopters Using Neural Networks 

Rodrigo San Martin Muñoz, Claudio Rossi and Antonio Barrientos Cruz 
Universidad Politécnica de Madrid, Robotics and Cybernetics Research Group 

Spain 

1. Introduction     

Unmanned Aerial Vehicles have widely demonstrated their utility in military applications. 
Different vehicle types - airplanes in particular - have been used for surveillance and 
reconnaissance missions. Civil use of UAVs, as applied to early alert, inspection and aerial-
imagery systems, among others, is more recent (OSD, 2005). For many of these applications, 
the most suitable vehicle is the helicopter because it offers a good balance between 
manoeuvrability and speed, as well as for its hovering capability. 
A mathematical model of a helicopter’s flight dynamics is critical for the development of 
controllers that enable autonomous flight. Control strategies are first tested within simulators 
where an accurate identification process guarantees good performance under real conditions. 
The model, used as a simulator, may also be an excellent output predictor for cases in which 
data cannot be collected by the embedded system due to malfunction (e.g. transmission delay 
or lack of signal). With this technology, more robust fail-safe modes are possible. 
The state of a helicopter is described by its attitude and position and the characteristics of its 
dynamics system correspond to those of a non-linear, multivariable, highly coupled and 
unstable system (Lopez, 1993). The identification process can be performed in different ways, 
on analytical, empirical or hybrid models, each with its advantages and disadvantages. 
This Chapter describes how to model the dynamic of a mini-helicopter using different kinds of 
supervised neural networks, an empirical model. Specifically, the networks are used for the 
identification of both attitude and position of a radio controlled mini helicopter. Different 
hybrid supervised neural network architectures, as well as different training strategies, will be 
discussed and compared on different flight stages. The final aim of the identification process is 
to build a realistic flight model to be incorporated in a flight simulator.  
Although several neural network-based controllers for UAVs can be found in the literature, 
there is little work on flight simulator models. Simulators are valuable tools for in-lab testing 
and experimenting of different control algorithms and techniques for autonomous flight. A 
model of a helicopter’s flight dynamics is critical for the development of good a simulator. 
Moreover, a model may also be used during flight as predictor for anticipating the behaviour 
of the helicopter in response to control inputs. 
The Chapter first focuses on two neural-network architectures that are well suited for the 
particular case of mini-helicopters, and describes two algorithms for the training of such 
neural-network models. These architectures can be used for both multi-layer and radial-based 
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hybrid networks. The advantages and disadvantages of using neural networks will also be 
discussed. Then, a methodology for acquiring the training patterns and training the networks 
for different flight stages is presented, and an algorithm for using the networks during 
simulations is described. The methodology is result of several years of experience in UAVs. 
Finally, the two architectures and training methods are tested on real flight data and 
simulation data, and the results are compared and analysed. 

2. Network Architectures for Modelling Dynamics Systems 

Modelling a dynamic system like a mini-helicopter, requires estimating the effect of both the 
inputs and the system’s internal state on the outputs (Norgaard et al., 2001). Considering the 
system's identification by means of state variables, a dynamic system can be described in a 
discrete space as shown in (1), where v is the state variable, x the input and y the output. 
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The first equation shows the dependence of the state at a certain time with regard to the 
state and inputs in a previous instant, similar to recurrent neural networks, for example 
Hopfield Neural Network (Hopfield, 1982). The second equation shows the dependence of 
the outputs in instant k with regard to the state and inputs in the same instant, as in non-
recurrent neural networks, for example Radial Basis (RB) or multi-layer Perceptron (MLP) 
Neural Network (Freeman & Skapura, 1991). These equations suggest the use of a mixed 
neural network with recurrent and non-recurrent properties (Narendra & Parthasarathy, 
1990). The recurrent component is used to describe the system’s state, while the non-
recurrent component defines the system’s outputs. There are two mains types of mixed 
networks, Jordan’s (Jordan, 1986) and Elman’s (Elman, 1990). In this case, theses networks 
are not applicable. For this reason, will be used a new proposed hybrid networks which is 
suitable for modelling of flight dynamics in mini-helicopters. 

2.1 Jordan’s Network 

Jordan’s network (Jordan, 1986) consists of a multi-layer network with external inputs X=[x1 
x2 ... xn] and contextual neurons C=[c1 c2 ... cm], that represent the internal states (see Figure 
1). These contextual neurons are recurrent because they use both their previous output C(t-
1) and the previous system’s output as inputs. This means that they store the systems’ past 

states adjusted by µ (store weight), as shown in (2). 
This architecture works, basically, as a multi-layer network with the particularity that the 
network’s external input and contextual neurons create a new input vector U=[x1 x2 ... xn c1 c2 

... cm]. In (2) it is possible to observe that the i-th output corresponds to the composition of 
the outputs of every layer, as in a non-recurrent network. 
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Where ui corresponds to the elements of vector U, wjh are the weights in the hidden layers 

(N), wij are the weights in the output layer (S) and µ is the weight of time constant.  

 

Figure 1. Jordan’s network, where Z-1 is a sample delayed in the time 

Rewriting (2) results in (3), where Y it is defined by a function whose inputs are the elements 
u, which are defined by vectors C and X, and C is defined by a weighted sum of Y, which is 
nothing more than C and X.  
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2.2 Elman’s Network 

Elman’s network (Elman, 1990) (Fig. 2), unlike Jordan’s, does not feed back the contextual 
neuron output or the system output, as shown in (4). Instead, it feeds back the output of an 
intermediate layer. 

 
Figure 2. Elman’s network 

The input vector is exactly the same as in Jordan’s network, the only difference being the 
value of the contextual neurons, as defined in (4). In this case, the contextual neurons do not 
preserve past states, but save only the last state value. 

 kikakC ii ,...,2,1)1()( =∀−=  (4) 
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2.3 Proposed Hybrid Network 

Other neural network architectures are possible, in which the context neurons appear only 
in the first layer of the network. The architecture of (Narendra & Parthasarathy, 1990) tries 
to generate the contextual neurons at all levels, that is, both for the outputs and for the 
inputs. This idea is the basis of the architecture that will be developed in this work. 
The proposed hybrid network consists of two blocks: the first is the recurrent component with 
context neurons for the inputs and outputs. These neurons use past states as inputs and the 
number of states is defined automatically by the training algorithm or by means of some 
stochastic model. The second block is a non-recurrent network that may be either an MLP or an 
RB. Fig. 2.3 shows a hybrid network in which Block A consists of a non-recurrent network and 
Block B corresponds to context neurons (recurrent network). Block’s B neurons do not follow 
Elman’s or Jordan’s architecture, but rather a mix: the feedback is d past system outputs and h 
past system inputs. The number of past states to use is adjustable, as is the number of neurons 
in the hidden layer of Block A. This flexibility is necessary because the system is unknown and 
the network must adapt during the training process to attain the minimum error. 
The external inputs are represented by vector X=[x1 x2 ... xn] and these are stored in the 
contextual neurons Cxi1 to Cxid. The outputs are represented by vector Y=[y1 y2 ... ym] which 
is also stored in contextual neurons Cyi1 to Cyih. As opposed to Jordan’s network (2) these 
contextual neurons keep d past inputs and h past outputs, which yields the vectors 
Cxi=[xi(k-1) … xi(k-d)] and Cyi=[yi(k-1) … yi(k-h)] for the i-th iteration. Thus, the input 
vector for the non-recurrent network in Block A is U=[X Cx1 … Cxn Cy1 Cym]. This means that 
U contains n elements from the input vector X, n elements for every previous state d, m 
elements from the output vector Y and m elements for every previous state h. To sum up, 
the amount of elements for vector U is: n+(n�d)+(m�h). 

BLOCK
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Xn

X1(k-1)

Xn(k-1)

X1(k-d)

Xn(k-d)
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Ym

BLOCK A

Z
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Z
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Figure 3. Hybrid network 
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A slightly modified Elman’s network is very close to this idea, the main difference being 
that Elman’s feeds back from the hidden layer. The modification consists of a feedback loop 
that involves not only a delay Z-1, but also a delay block similar to Block B in the hybrid 
network (Fig. 3). On the other hand, the Jordan’s network does feed back the output, but 
does not consider all previous states with the same weight. Equation (2) shows how each 
previous value is stored in the memory of the contextual neuron itself, which causes the 
value of the contextual neuron to be the result of adding all the weighted previous states. In 
other words, the hybrid network has a finite number of previous states that generate the 
same amount of contextual neurons; in contrast, Jordan’s network generates a contextual 
neuron with an infinite amount of previous states by performing a weighted sum of them. 
When creating a hybrid network, principles from both networks are taken into account, but 
the possibility of additional modifications for future improvement is left open. For example, 
consider a contextual neuron for storing the rest of the previous states, as done by Jordan. 
Also, it is possible to feed back the output of the first layer, as suggested by Elman. The 
possibilities are manifold, but it is necessary to choose one architecture in order to be able to 
start performing any tests. 
As mentioned before, Block B corresponds to the recurrent stage, where the previous states 
are stored, and it is an integral part of the network architecture. In the case of a system with 
substantial inertia, the order of the delays (d and h) will increase. Block A corresponds to 
the non-recurrent stage, which performs the system output signal tracking and is able to 
operate internally both with Multi-layer Perceptron and Radial Basis networks. 
Similar to the mixed networks mentioned previously, the hybrid network can be converted 
to the form (3), where functions F and G will depend on the architecture selected for Block 

A, either an RB or MLP network, as well as the internal transfer functions of the recurrent 
networks. The following section describes the hybrid network used for the UAV system and 
justifies its architecture. 

3. Proposed Hybrid Network Architecture for the Identification of a Mini-
Helicopters (UAV) 

For the identification of a system like the mini-helicopter, some adjustments need to be 
made to the hybrid network and the simulation strategy must be planned. A helicopter 
flight is based on the angle-of-attack and angular velocity of its blades. These values define 
the attitude and lift that, in turn, change the position of the aircraft (Lopez, 1993). Due to 
these circumstances, two stages are considered in the identification process: computing the 
attitude using the control commands as inputs, and then using the attitude to obtain, in this 
case, the vehicle position. Hybrid networks can be used to model both stages (Fig. 2.3).  
In summary, the dynamic system to be modelled corresponds to a system which, after 

receiving some control commands, modifies its attitude (θ, φ, ψ) and consequently, its 
position (X, Y, Z) (as shown in Fig. 4). 
The neural network’s outputs are the helicopter’s attitude and position, and its inputs are 
the roll, pitch and yaw cyclic steps and the collective, labelled Croll, Cpitch, Cyaw and 
Ccole, respectively. Croll and Cpitch control the cyclic angle-of-attack of the main rotor 
blades, Cyaw commands the tail rotor and Ccole is a combination of the main rotor blade’s 
angle-of-attack and the engine throttle. These control signals are the same ones a human 
pilot uses to command a mini-helicopter and represent the inputs of the radio-controller. 
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Figure 4. Attitude angle and position 

With this architecture, based on two hybrid networks, two training methods are possible. The 
first connects the system as a daisy chain: the output of the attitude system’s training is used as 
the input for the position system’s training. The second training method places the systems in 
parallel and uses real flight data to train both networks. It is important to note that both 
training methods require carefully selected parameters: number of inputs n and outputs m, 
order of contextual neurons for inputs d and outputs h and type of network in Block A (MLP 
or RB). The method used to set these parameters will be described in the following sections. 

3.1 Training Architectures 

The data obtained from the avionics (attitude: θ roll, φ pitch, ψ yaw, and position: X, Y, Z) 
and the radio transmitter (control commands: Croll, Cpitch, Cyaw, Cole), are the patterns 
used for the training. The position and attitude degrees of a helicopter’s flight system are 
depicted in Fig.4, where its position being defined by its attitude. 
As mentioned above, there are two training methods: 
Daisy chain Architecture: the attitude system is trained as a single and isolated system, 

which is possible thanks to the previous knowledge of the attitude data (roll θ, pitch φ, yaw 

ψ). The values obtained from the attitude network, estimated data, (roll', pitch' and yaw') are 
used as inputs for training the position network. 
For the attitude system, the training pattern for Block Aa is vector Pa (5), with an external input 
vector Xa consisting of the different radio control commands (Croll, Cpitch, Cyaw and Ccole), 
another vector name Cin_a, that corresponds to the input contextual neurons, and finally Cout_a, 
which represents the attitude system's feedback output contextual neurons. The training 
pattern is represented by vector Ta (6), which is the real attitude data provided by the avionics. 
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Figure 5.  Daisy chain Architecture 

Once the patterns are obtained, the training of Block Aa starts by comparing the desired 
system output Ta (6) with the current network output Ya (7). 

  ]',','[ yawpitchrollYa =  (7) 

All necessary adjustments are performed with this error according to the training rules of a 
recurrent network. Basically, as long as the network is correctly trained, a minimum error is 
expected in the comparison between the desired output Ta and the real output Ya. 
After adequate training of the attitude, the network is used as a simulator and its Ya vector (7) 
is used as the input pattern for the position system. This pattern will be very similar to the one 
used in the previous network, the main difference being the input vector Xp (8), which does 
not have avionics-acquired values but simulated data from the previous network. The output 
pattern for the training is vector Tp (9), which contains the avionics-acquired (GPS) position. 
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The value obtained at the output of the network is Yp (10) 

 )]('),('),('[ tztytxY p =  (10) 
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Decoupled Training Architecture: the only difference between the training architectures 
(Fig. 6.) is the input data used for the training process of the position network: a decoupled 
trainer uses the external input Xp (11), which contains avionics-acquired attitude values 
instead of simulated data. The attitude network training is identical.  
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The process of training both networks (attitude and position) is, in this case, independent, 
and is done in parallel, because the attitude network outputs are not used for the position 
network training. 

 

Figure 6.  Decoupled architecture 

The training and simulation errors of the attitude network are the same for both 
architectures, as the training process is the same. The training error for the position network 
is lower when the decoupled architecture is used, and one could assume that this would 
lead to a lower simulation error (when real-time data from the avionics is used to simulate 
the UAV’s position). However, this is not the case. Real-time simulation of the UAV works 
in daisy chain: flight-data is fed to the attitude network, which in turn feeds the position 
network. Position networks trained with the daisy-chain architecture have a lower 
simulation error because they have been trained with simulated data and have learned to 
compensate for the simulation error. 
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3.2 Proposed Hybrid Network Architecture 

The modelled system has significant inertia and dynamics. Therefore, the order of the 
contextual neurons depends on the correlation between the command signals and attitude, 
and between attitude and position. This correlation is expressed as the delay between a 
significant change in the inputs and a significant change in the outputs (i.e., inertia). Careful 
analysis of flight data shows that the delay fluctuates between 500 and 900 ms (the sampling 
period is 100 ms). Considering worst-case scenarios, a delay of 10 samples was used for the 
output contextual neurons Cout and a delay of 5 samples was used for the input contextual 
neurons Cin, for both the attitude and the position system. This decision is based on 
extensive tests that have proven that these values provide the best performance. 
The contextual neuron order affects the training patterns and their conformation as well as 
the number of neurons in the hidden layer of the MLP, which is based on the amount of 
inputs (Li et al., 1988). The input vector for the attitude network of Block Aa is formed as 
follows: 4 direct inputs from the radio transmitter Xa (5), which also generates vector Cin_a 
(5) with an order d = 5, for a total of 20 contextual neurons; the output vector Ya (7) is used 
to create vector Cout_a (5) with an order h = 10, which results in 30 neurons. All of them yield 
the input vector Pa (5), with 54 neurons. This number is kept fixed both for the Radial Basis 
networks and the MLP. The input vector Pp (11) for the position system of Block Ap has 48 
neurons: 3 direct inputs, corresponding to the attitude outputs Xp (11) that in turn generate 
the 15 contextual neurons of vector Cin_p, with order d = 5; the contextual neurons for the 
output is vector Cout_p (11), with order h = 10 and 30 elements. 
For both the MLP and the RB the training error threshold is 10-5. The number of epochs for 
the RB networks is subject to the number of neurons in the hidden layer and is, therefore, 
variable. For the MLP the number of epochs is fixed at 40,000. 

4. Training Pattern Generation 

The success of systems identification depends on a good experimental method, even more 
so with a model based on neural networks. Moreover, it is well known that a wide range of 
flight scenarios is needed to successfully train the network. This is why it is important to 
choose the flight data carefully and assess its quality. The data-acquisition equipment is 
described below, and its capabilities are known. However, there are other important factors 
to be considered, for example: sampling intervals, wind speed, GPS precision variations, 
hardware malfunction, vibration, air temperature, etc. For all these reasons many data-
gathering flights are needed to guarantee representative and high-quality samples for 
different kind of conditions and actions (take-off, hover, etc.). 
The modelled UAV is an in-house prototype with a 5 kg payload capacity and embedded 
avionics and control systems, built with a 26cc Benzin Trainer radio-controlled helicopter by 
Vario. This UAV was developed within Project DPI 2003-01767 of the Ministerio de Educación 
y Ciencia of Spain. 
The dynamic system to be modelled corresponds to a system which, after receiving some 

control commands, modifies its attitude (θ, φ, ψ) and consequently, its position (X, Y, Z) (as 
shown in Fig. 3.1). Both the attitude and position are acquired and pre-processed by the 
avionics with three sensors: a Mircroinfinity A3350M IMU (referential unit), a Honeywell 
HMR3000 compass and a Novatel OEM-4 DPGS (capable of using RT-2 corrections for 2 cm 
accuracy). The avionics system is built around a PC-104 board, the OctagonPC/770 with a 
1GHz Pentium III processor, running Redhat Linux 8.0 with a Linux/RT kernel. Power is 
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supplied by an HPWR104+HR DC/DC converter and two 4LP055080+pc 14,8V-2000mAh 
battery packs, offering two hours of autonomy. 
The system’s output (attitude, position and related linear/angular velocities and 
accelerations) and input (control commands) signals are stored synchronously in a data file. 
Additional information is appended (e.g. GPS signal quality, servo PWM input, etc.) such 
that different flight phases and actions (take-off, landing, etc.) can be identified and used to 
build different training patterns for the neural network (Nguyen & Prasad, 1999). 

4.1 Acquisition Procedure 

The experiments are performed with a helicopter controlled by means of a radio controller 
in the hands of an expert pilot who commands the vehicle through a set of predefined 
manoeuvres. 
A validation procedure has been established, repeated for each flight, that is, essentially, the 
first quality filter for the flight data. This procedure, shown in Fig. 7, consists of a permanent 
health evaluation of the helicopter's hardware and software. Usually the hardware (Fig. 7.a) is 
verified in the lab with routine tests and benchmarks; batteries are fully charged for each test 
and periodically tested. After a successful boot of the avionics computer, the communication 
links between the helicopter and the ground station are verified and the DGPS quality is 
asserted (Fig. 7.b). Then the pilot does an extensive pre-flight verification (e.g. radio-controller 
range, servo condition, etc.). If all the requirements are met, the system is ready for take-off. 
The main objective of these tests is to guarantee flawless operation of the helicopter. 

 

Figure 7.  Data acquisition procedure (a) Hardware checking in the lab (b) Ground check of 
the communications and position systems (c) low height flight (d) data acquisition 

A low-height flight ensures that all subsystems are operating correctly and that atmospheric 
conditions are within pre-established limits (Fig. 7.c). As part of routine checks or when 
hardware/software malfunction is suspected, the flight data is stored for detailed 
examination (Fig. 7.c). These tests may reveal subtle problems, such as the intermittent loss 
of the radio link with the ground station. 
Once the system and environmental conditions are considered satisfactory, the system is set 
up to obtain the experimental data (Fig. 7.d) based on the flight plan. This plan includes five 
flight stages: start, take-off, manoeuvre, landing and end (see Fig. 8). 

 

Figure 8. Flight stages stored in the text file. (a) start (b) take-off (c) flight (d) landing (e) end 
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Start stage: data from the helicopter standing on the ground, initial conditions. (Motor state: 
off)  
Take-off: data from the moment that the helicopter is standing on the ground until it reaches 
the cruise height, before performing any manoeuvre. These values are affected by the 
ground effect. 
Flight: data from the manoeuvres chosen for the current session (the manoeuvre plan). 
Landing: data from the moment the landing procedure starts until the helicopter stands on 
the ground and stops. 
End stage: data after landing; this data and the start data are necessary to check the correct 
operation of the equipment. (Motor state: off) 

4.2 Data Selection Criteria 

Flight data is analysed after the data acquisition process. The purpose of these inspections is 
to validate data quality before the data is used to build the training patterns. Two sets of 
criteria are established: the first is signal quality, altered by environmental conditions and 
equipment state. The second set is form: the type of flight performed and the similarity 
between the desired flight-manoeuvre plan and the actual flight. 
Quality criteria: the objective here is to separate samples into suitable and unsuitable. It is 
important to note that suitability is defined by the requirements of different tasks. For 
example, samples may be suitable for simulation or training or observation, depending on 
their quality and significance. The quality criteria are: 

• Atmospheric: represents the reliability of the data depending on the weather conditions 
present during the acquisition process, e.g., wind speed. 

• Position data quality: in general the quality of the GPS solution for position must be 
better than narrow float (Novatel, 2002). 

• Attitude data quality: in order to ensure the reliability of this data set, the attitude data 
obtained from the IMU at the start and end stages is compared (Fig. 8.a and Fig. 4.2.e). 
Considering a flat surface for the take-off and the landing manoeuvres, roll and pitch 
must be similar and close to zero. 

• Timing quality: this criterion verifies the periodicity of the samples (i.e. timestamps). 
The sampling period is 100 ms and various malfunction conditions may lead to 
significant deviations. Data with a sampling period of more than 200 ms is considered 
to be of low quality. 

Any sample that does not satisfy all quality criteria is marked unsuitable for training and 
discarded immediately. 
Form criteria: these criteria define the experiment or type of flight. Not all flights are aimed at 
data acquisition since there are test and training flights (see Fig. 7 b and c). There are three 
flight types: 

• Standardisation: corresponds to tests that bring the equipment to its ranges limits, e.g. 
signal limits for sensors or radio controller. In most cases, these tests are carried out 
while on the ground. 

• Test Flight: used for system analysis. The data is not stored for further training, 
simulations or standardisations; it is only used to correct and measure acquisition 
errors like, for example, atmospheric conditions. 
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• Displacements and Hovering Flight: corresponds to lateral, longitudinal and vertical 
displacements and hovering. Different manoeuvres make it possible to train the 
network under different conditions and scenarios. 

4.3 Pattern Transformation 

System identification with neural networks requires pre-processing the flight data: 
normalization, periodicity and yaw adjustments. 
Normalisation: in general transfer functions of neural networks operate in the ranges [-1 1] or 
[0 1]. Therefore, the pattern data must be normalised. Equations (12) and (13), respectively, 
normalise each entry xk of vector X=[x1…xk…xn] using the maximum and minimum values 
of X. 
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Periodicity: training a network is considered a process in discrete time. Therefore, it is 
necessary that samples be obtained periodically. Due to malfunction, the sampling period 
may not be constant, and depending on the severity of the deviation, samples may be 
discarded (timing quality factor) or interpolation/extrapolation algorithms may be applied. 
Yaw reference: roll and pitch are easily validated since the helicopter's attitude while standing 
on a horizontal surface must be very close to zero. The yaw reference is the magnetic north 
and does not necessarily begin or end at zero. To simplify the network training, the initial 
yaw is considered as an offset so the initial values are close to zero. 

5. Hybrid Network Algorithm Description 

The training and simulation algorithms were developed with MATLAB, using the Neural 
Network Toolbox (Demuth & Beale, 2004) and many custom tools that had to be developed 
since standard toolboxes are not suited to our particular architecture and dynamic 
characteristics of the modelled system. 

5.1 Training Algorithm 

Fig. 9 shows the training block for a hybrid network used MLP architecture. Although the 
training block of a RB network is similar (Freeman & Skapura, 1991), the propagation is 
different. Pattern P is obtained from the data adaptation algorithm and is used for training 
the hybrid network. The first samples of the state variables P are considered as the system's 
initial values and then the input values are propagated - or their equivalent in the case of the 
RB network. The system output Y, which is calculated for that input sample, enables the 
calculation of the corresponding errors between Y and the train pattern T, which are stored 
in a delta error (Ed), however the network's weights are left unchanged. Then the next 
sample is obtained and the state variables are replaced with the output Y calculated 
previously and result in a new propagation. The cycle continues until the end of the epoch 
(i=nsample). Once the epoch reaches its end, the training error E is calculated, the 
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parameters adjusted (weights and bias) and the training parameters are updated 
(momentum and learn rate). 
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Figure 9. Training Algorithm for Hybrid Network 

The process is interrupted when the target error E is attained or the maximum number of 
epochs (end) is reached. The training process is considered successful only if Error is lower 
than E, and trainings that reach end epochs are re-run with adjusted parameters 
(momentum, learning factor, number of neurons for the hidden layer, etc.). 
The specific training algorithms for the decoupled and daisy chain architectures, both for 
MLP and RB networks, are adaptations of this generic description, defined in Section 3.1. 

5.2 Simulation Algorithm 

Figure 10 shows the decoupled simulation algorithm for a generic network, which can be 
applied to attitude or position networks (the only difference is the input vector X). The 
algorithm will run until the final condition is reached (while(input exists)), which is the 
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same as saying that it will run until it iterates through all the input data. The algorithm is 
capable of running with real-time input data. 

 

Figure 10. Simulation Algorithm for hybrid network 

The first sample (input=1) sets the initial conditions, which are determined empirically 
when running in real-time with real-flight data or obtained from the input file when 
running with stored flight data. After this initialisation step, the system iterates through the 
simulation process (sim(network,input)) and the output vector Y is stored in a matrix, to be 
used as input in successive iterations. 

6. Test and Results 

The training patterns were built with data from 9 flight sessions that adhere to the quality 
and form criteria. Each session has approximately 3 minutes of high-quality flight data. The 
system identification process will be used to model complete flights and the 5 flight stages 
(see Fig. 8). The objective is to have different models for each type of manoeuvre and 
compare the performance of the training architectures and network types (MLP vs. RB). 

6.1 Complete Flight vs. Flight stages 

The dynamic behaviour of the helicopter is different for each one of the flight stages 
described in Section 4. For example, the ground effect is present during take-off and landing 
procedures but is nonexistent above a certain altitude. This is why it is necessary to 
differentiate between flight stages and to analyse the performance of universal models vs. 
groups of models specialised in different stages. 
Fig. 11 shows the results for attitude simulation with MLP (Fig. 11.a) and RB (Fig. 11.b) 
based networks, both for complete-flight and flight-stage models. Table 1 compares the 
performance of complete-flight models with the average performance of flight-stage models 
for three stages (take-off, manoeuvres, landing). Finally, Table 2 shows the mean square 
error (MSE) for the flight-stage models whose average appears in Table 1. 
Table 1 shows that the differences in performance observed between complete-flight and 
flight-stage models for the attitude simulation are significant. Thus, this experiment has not 
been repeated for the position simulation since the attitude errors will be propagate. 
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Figure11.a Attitude simulation with MLP 
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Figure 11.b Attitude simulation with RB 
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  Complete-flight Average flight-stages 

Attitude MLP MLP 

Roll 2,27E-04 4,17E-06 
Pitch 7,48E-04 2,82E-06 
Yaw 1,08E-04 3,51E-06 

  RB RB 

Roll 4,56E-03 3,47E-07 
Pitch 2,44E-03 3,00E-07 
Yaw 5,91E-03 4,23E-07 

Table 1. Comparison MSE for complete-flight models with flight-stage models  

  Take-off Manoeuvres Landing 

Attitude MLP MLP MLP 

Roll 4,17E-6 8,53E-5 3,13E-6 
Pitch 2,82E-6 9,57E-5 4,76E-6 
Yaw 3,51E-6 2,63E-5 2,81E-6 

  RB RB RB 

Roll 3,47E-7 1,72E-4 2,34E-6 
Pitch 3,00E-7 5,01E-3 2,27E-6 
Yaw 4,23E-7 1,18E-2 6,14E-7 

Table 2. MSE flight-stage models (take-off, manoeuvres and landing)  

6.2 Radial Basis vs. Multi-layer Perceptron 

Radial Basis and MLP networks were compared for the same flight stage. Fig. 12.a shows 
the attitude simulation for both networks versus the real attitude. Fig. 12.b shows the 
position simulation for each network during take-off versus the real position. 
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Figure 12.a. Real flight attitude vs. simulated flight attitude with MLP and RB 
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Figure 12.b. Real takeoff position vs. simulated takeoff position with MLP and RB 

Table 3 summarises the errors for the degrees of freedom of attitude and position, 
respectively. 

 

                            Takeoff                                Flight                        Landing 

Attitude MLP Radial MLP Radial MLP Radial 

4.17E-06

2.82E-06

3.47E-07 

3,.00E-07

8.53E-05 

9.57E-05 

1.72E-04 

5.01E-03 

3.13E-05

4.76E-05

2.34E-05 

2.27E-05 

Roll 

Pitch 

Yaw 3.51E-06 4.23E-07 2.63E-05 1.18E-02 2.81E-05 6.14E-06 

Position MLP Radial MLP Radial MLP Radial 

X 

Y 

Z 

8.13E-06 

6.69E-06 

7.33E-06 

2.08E-04 

3.39E-04 

3.20E-04 

2.06E-04 

1.13E-04 

1.09E-04 

2.53E-01 

6.37E-01 

7.16E-03 

8.66E-05

6.25E-05

8.43E-05

6.76E-05 

9.25E-05 

4.17E-05 

Table 3.MSE for RB and MLP 

In general the MLP shows a better performance, even though the RB signal tracking is 
remarkable. However the MLP requires 18 hours of training while the RB is trained in 
minutes. It is important to note that each simulation step is ‘instantaneous’ because it only 
requires few matrix multiplications. 
It must be noted that RB networks have a better performance for local approximations 
(Chen et al., 1991) (Craddock & Warwick, 1996), which is confirmed by the data shown in 
Table 3 for the position simulation for take-off and landing. 
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6.3 Decoupled Training vs. Daisy Chain Training 

Both scenarios require a trained attitude network which is the result of the previous sections 
analysis. The best attitude models are used with MLP or RB networks to simulate the 
position. 

 

 

Figure 13. Attitude simulation for flight manoeuvres (Up) and position simulation for flight 
manoeuvres (down), with Daisy chain and Decoupled architectures 
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Fig. 13 shows the values of simulated versus real data for both systems (control-signals-to-
attitude and attitude-to-position) for the two training architectures. Note that for the 
attitude simulation no distinction is made between the two architectures because the results 
are equivalent. Table 4 shows the quantitative results in terms of the MSE for six different 
flights sessions. It is important to note that these sessions are not the ones used for training. 
Both the graphic and quantitative results show that the daisy chain architecture has a better 
performance. 

 Flight A Flight B Flight C Flight D Flight E Flight F 

Daisy chain 

X 1.50E-04 1.13E-04 2.13E-04 2.06E-04 1.25E-04 9.13E-05 

Y 2.36E-04 1.44E-04 4.55E-04 1.13E-04 8.34E-05 1.49E-04 

Z 8.58E-05 9.38E-05 8.23E-05 1.09E-04 1.09E-04 1.06E-04 

Decoupled 

X 5.85E-03 2.00E-04 6.08E-03 5.99E-03 1.97E-04 3.87E-03 

Y 1.28E-04 3.28E-03 6.35E-04 1.19E-03 9.20E-04 1.09E-03 

Z 9.84E-02 3.77E-04 1.73E-02 6.85E-04 1.12E-04 2.55E-03 

Table 4. Comparison of MSE for real vs. simulated position, for different flight sessions (only 
the flight manoeuvre stage is considered) 

7. Conclusion 

The main objective of this study was to show a new method for identifying dynamic and 
complex systems as in UAVs, by means of supervised neural networks. The methods 
described and the results obtained confirm the viability and performance of this alternative 
method. 
It was observed that even though a decoupled architecture has a lower training error, the 
daisy chain architecture has better simulation performance. This is due to the fact that a 
network trained with a decoupled architecture does not consider the error propagated from 
the attitude simulation to the position model. 
Empirical results show that the helicopter is modelled better if different flight stages are 
treated independently. One of the most significant variations in the vehicle dynamics is 
ground effect, a variation that cannot be accommodated by a single neural network. This 
means that different models are needed not only for take-off, landing and free flight, but 
also for particular manoeuvres in different physical and weather conditions. 
In general, a better performance was observed with MLP, although the signal tracking 
achieved by the Radial Base network is remarkable. The main difference lies in the error 
rate, which in this case is better for MLP. But while an RB network needs 30 minutes 
training and yields the results mentioned above, MLP needs 18 hours. 
It must be taken into account that Radial Basis networks have a better performance for local 
approximations, as shown in the fig. 6.2.b and table 3 corresponding to take-off and landing. 
On the other hand, global approximations are better with MLP. This is also shown in the 
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flight versus simulated data figures, where MLP exceeds the error rates of the Radial Basis 
networks. 
The importance of this work lies in the confirmation of neural networks as a valid tool for 
dynamic system identification. Although this is only a first approach, the results obtained 
with this identification are very encouraging and an excellent basis for future work, where 
each flight stages have its hybrid networks like an fuzzy systems models each flight stages 
in Sugeno works (Nguyen & Prasad, 1999). 
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