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1. Introduction     

In biological research, there are thousands of specialized data repositories, focusing on 
particular molecules, organisms or diseases, which offer sets of richly annotated records. To 
ensure data of the highest quality, manual data entry and curation (annotation) processes 
are generally performed on these databases. Database curators are domain experts who 
search biomedical research literature for facts of interest, and manually transfer knowledge 
from published papers to the database. This helps experts to consolidate data about a single 
organism or a single class of entity, often in conjunction with sequence information. Most 
importantly, this process makes the information searchable through a variety of automated 
techniques, given that the curators use standardized terminologies or ontologies. However, 
as the volume of biomedical literature increases, so does the burden of curation, making 
annotation databases incomplete and inconsistent with the literature. It has been shown 
empirically that manual annotation cannot keep up with the rate of biological data 
generation (Baumgartner et al., 2007). Seemingly, simple tasks of gene annotation by means 
of a controlled vocabulary becomes very laborious since an expert is required to inspect 
carefully the whole literature associated to each gene, to identify the appropriate terms. On 
the other hand, the contribution of the manual annotation community is essential to the 
understanding of the ever more complicated biological landscape and it is widely accepted 
that it produces the most accurate annotations currently available. To reduce the cost of 
obtaining annotations, several initiatives for collaborative curation, such as community 
annotation projects (e.g., http://www.pseudomonas.com/) and wiki-based prototypes (e.g., 
http://www.wikiprofessional.org/) have been recently promoted. Nevertheless, there is 
not enough evidence to clearly assess if collaborative curation solves the problem (Lu et al., 
2007). As of now, PubMed remains the richest and most updated source of information 
about biological data despite its unstructured nature. This motivates the upsurge of interest 
in text mining techniques which enable various degrees of automation in the analysis of O
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scientific literature, such as identification of named entities, classification of documents, 
extraction of relevant facts (i.e., relationships between two or more named entities 
expressing a fact), and generation of hypotheses (Cohen & Hersh, 2005; Jensen et al., 2006; 
Krallinger et al., 2005). The fundamental challenge in the application of data mining to text 
data is the translation of text into such a structured form that should, intrinsically, 
encapsulate the data semantics. 
Despite the fact that many text mining systems have been deployed in the biomedical 
context and reasonable levels of performances on gold standard data have been achieved 
(Hirschman et al. 2005; Cussens and Nedellec, 2005; Shatkay and Feldman, 2003), the actual 
contribution to database curation efforts is still unclear (Yeh et al., 2003; Rebholz-
Schuhmann et al., 2005). Most of these systems have been developed to solve very specific 
problems on task-tailored data and very few of them have been concretely used to assist 
curators in the population of biological databases. An example in this direction is the 
PreBIND system (Alfarano et al, 2005) which serves to curate the BIND (http://bind.ca/) 
protein-protein interactions database. This uses a combination of statistical methods for 
relevant document retrieval and rule-based methods for bio-molecule name recognition 
with the aim to find statements about protein interactions. It is reported that the system is 
able to reduce the time necessary to perform a representative task by 70%, savings 176 
person days thanks to its ability to suggest candidate additions. Similar example is the LSAT 
system (Shah and Bork, 2006) developed for the extraction of alternative transcripts to 
populate the ASD database (http://www.ebi.ac.uk/asd). The MuteXt system (Horn et al., 
2004) extracts from literature point mutations useful for the maintenance of the GPCRDB 
(www.gpcr.org/7tm/mutation/) and the NucleaRDB (www.receptors.org/NR/mutation/) 
protein databases. LSAT performs automatic classification of sentences about transcripts 
and automatic role labelling of text tokens. MuteXt exploits manually encoded regular 
expressions to capture textual patterns. In both cases, a considerable additional effort is 
necessary since extracted knowledge requires to be manually combined with sequence and 
structural information. In fact, the nomenclature adopted for entries in a database often uses 
wording that is very different from what is explicitly stated in text passages; it is also 
possible that the information to be extracted has to be deduced from more than one portion 
of text. Links to entries on different databases should be disambiguated and added to make 
the annotation result useful for data analysis. These aspects further complicate the feasibility 
of involving completely automatic tools for database annotation. It appears clear that text 
mining technology can contribute to this field by operating together with curators to 
minimize their involvement and speed up the pace of research, but it will not completely 
substitute their role.  
In this work, we tackle the problem of supporting biological database annotation through a 
data mining approach to Information Extraction (IE). IE is the discipline that aims to extract 
relevant information from natural language documents. The goal of an IE process is to map 
unstructured text into structured form, such as databases or knowledge bases, by filling pre-
specified information templates describing objects of interest (i.e., entities such as a protein 
or, more specifically, a kinase) and facts about them (e.g., phosporylation or interaction 
relationships). This is achieved by supplying quite sophisticated language processing 
methodologies (e.g., taggers, chunkers, light semantic interpreters, information extraction 
rules) and domain-specific resource developments (e.g., dictionaries and ontologies). While 
significant progresses have been made in developing tools for IE from biomedical data, the 
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difficulties encountered in adapting systems to new applications and domains remain the 
main barriers to their wider use. Thanks to their ability to analyse large volumes of 
unstructured data, data mining methods are promising candidates to alleviate the burden in 
developing and customizing IE systems to extract the required domain-specific knowledge. 
More precisely, we address the problem of mining extraction patterns for information 
template filling, i.e., to discover conditions to fill slots of templates of interest. Domain 
experts are asked to define annotation schema in terms of entities and templates (i.e., a set of 
properties characterizing each entity) and to provide examples of documents labelled with 
filled templates. Discovered patterns allow the IE system to automatically identify template 
instances occurring in new documents. We describe a strategy for extraction pattern mining 
which is based on an Inductive Logic Programming (ILP) approach to recursive theory 
learning from examples. It is implemented in the ATRE1 system which works on logical 
representations of the textual content. Implemented methods are general and domain-
dependency is limited to specific thesauri of the biomedical domain. We present a real-
world case study concerning the annotation in HmtDB2 of mitochondrial (mt) DNA. HmtDB 
stores human mt genomes from healthy or pathological phenotypes and their variability 
and clinical data associated to diseases are annotated (Attimonelli et al., 2005).  

2. Background 

Text mining tasks for biomedical literature mining can be grouped into some few main 
classes (Jensen et al., 2006; Shatkay & Feldman, 2003; Cohen & Hersh, 2005). First, named 
entity recognition aims to identify, within a collection of text, all of the instances of a name for 
a specific type of thing. The detection of biologically significant entities such as gene and 
protein names is a very important task for biological database curation since these constitute 
the main entry points for biological databases. Second, text classification attempts to 
determine automatically whether a document or part of a document discusses a given topic 
or contains a certain type of information. Accurate text classification systems can be 
especially valuable to database curators, who may have to review many documents to find a 
few that contain the kind of information they are collecting in their database. Third, 
terminology extraction aims to collect synonyms and abbreviations of biomedical entities to 
aid literature search engines and mining systems to be more precise. Fourth, relationship 
extraction systems detect occurrences of a pre-specified type of relationship between a pair of 
entities of given types. Finally, hypothesis generation (Srinivasan, 2004) attempts to uncover 
relationships that are not present in the text but may be inferred by the presence of other 
more explicit relationships (e.g., if “BRCA1” and “breast cancer” occur in the same sentence, 
a relationship between breast cancer and the BRCA1 gene might be assumed). 
In the IE literature for biomedicine, little attention has been devoted to classic IE tasks of 
template filling (Gaizauskas and Wilks, 1998), despite the fact that these naturally fit in 
database annotation problems. For instance, considering the annotation schema adopted to 
develop and maintain the IARC TP53 database (http://www-p53.iarc.fr/ 
Help.html#annotations) which compiles all TP53 mutations that have been reported in the 

                                                 

 

1 http://www.di.uniba.it/~malerba/software/atre  
2 http://www.hmtdb.uniba.it  
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published literature since 1989, we can observe that main annotations (i.e., mutation, 
tumour, demographic information, reference and detection method) are structured in form 
of templates. Each template correlates some entities (e.g., the detection method is added to 
the database by collecting information on tissue processing, start material, pre-screening 
method, sequenced material, etc.). Instances of each template can be extracted from a paper 
pertaining TP53 mutations by analysing relationships implicitly expressed to link target 
entities. While in a named entity recognition task, the goal is to identify peculiar objects of 
interest, such as all the disease names occurring in a text, in a template filling task, 
conceptual relationships between named entities, such as the DNA position and the mutant 
base pairs characterizing a mutation, should be taken into account. 
Several strategies ranging from hand-coded patterns to various machine learning based 
approaches have been employed to solve this class of problems (Nédellec, 2004). In this 
work, we follow a different strategy based on the remark that template filling tasks, which 
are generally based on the results of a named entity recognition task, can be simplified when 
tagging of named entities is, in its turn, performed by considering conceptual dependencies 
implicitly defined at either the syntactic or structural level (e.g., the type of mutation is 
normally reported before the DNA position). Therefore, we adopt a method to learn tagging 
models in the form of recursive logical theories which can naturally represent conceptual 
dependencies between named entities. We report results of a first tentative to annotate 
HmtDB data related to human mtDNA mutations in diseased phenotypes. Thus, the issue is 
to extract from relevant papers information regarding the mutation and the features 
associated to the phenotype.  

3. Issues 

Recursive theory learning falls within the class of supervised concept learning methods, 
which are supplied with information about objects whose class (or concept) membership is 
known (i.e., training examples) and produces from this a characterization of each class in 
some formal language. If U is a universal set of objects (or observations), a concept C can be 
formalized as a subset of objects in U: C ⊆ U. To learn a concept C means to learn to 
recognize objects in C.  
Inductive concept learning. Given a set E of positive and negative examples of a concept C, 
find a hypothesis H, expressed in a given concept description language L, such that every 
positive example is covered by H and no negative example is covered by H.  
In Inductive Logic Programming (ILP) (Muggleton, 1992; Nienhuys-Cheng and de Wolf, 
1997) the formal languages for describing objects and concepts are typically based on Horn 
clausal logic. More precisely, concepts to be learned are represented by means of predicate 
symbols, and the result of the learning process is a logical theory. In the IE framework 
considered in this work, concepts to be learned correspond to entities involved in a template 
of interest and the logical theory includes clauses expressing the conditions to fill template 
slots.  
The typical formalism adopted in ILP allows the representation of relational (or structural) 
patterns. In particular, classification rules can express conditions on both properties of single 
objects and relations between them. In addition classification rules can also express 
dependencies or relations between concepts. This is a main issue in information extraction 
from biomedical text since it is the typical application where examples, in addition to their 
inherent relational structure, present relations to other examples. Some authors have already 
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used ILP to construct theories for information extraction (Aitken, 2002; Goadrich et al., 
2004). In particular, the work by Goadrich et al. (2004) tackles the problem of learning 
biomedical target relationships (i.e., protein-location) between items of text, namely multi-
slot extraction (i.e., two-slot extraction). Our goal is to learn single-slot extraction rules that 
should take into account implicit relations expressed in the text between entities of the same 
template. For this reason, we resort to recursive theory induction as learning framework, 
since recursive theories can express well-defined mutual dependencies between predicates. 
A different IE problem is handled with ILP in (Ramakrishnan et al., 2007), that is automatic 
feature construction. The authors employ ILP to define new features given a logical 
representation of texts and some background knowledge. This is an important problem 
since one of the issues in IE concerns the definition of the appropriate representation of text. 
Afterwards, additional issues are raised by the complexity of text processing operations 
necessary to produce logical representations of textual content. Several sources of difficulties 
are peculiar of the biomedical language such as ambiguities occurring when the same term 
denotes more than one semantic class (e.g., p53 is used to specify both a gene and a protein) 
or when many terms lead to the same semantic class (abbreviations, acronym variations); 
continuous creation of new biological terms or evolutions of the same biological object (e.g., 
genes are renamed once their function is known); use of non standard grammatical 
structures as well as domain-specific jargon; gene symbol polysemy (i.e., a symbol can refer 
to more than one gene, both within a single species an disparate organisms). This makes the 
preparation of training data really difficult. A number of controlled vocabularies, lexicons 
and ontologies for biomedicine which can be exploited both in the data preparation and 
reasoning steps are available. This further motivates an ILP approach which can naturally 
handle external background knowledge. 
In the rest of the chapter we briefly introduce the HmtDB resource and the information 
extraction problem involved in curation activities. Our approach to training data 
preparation and rule learning is proposed. A framework which integrates the proposed 
solution to support experts in the training of the mining module and to revise annotation 
results is described.  

4. The HmtDB annotation case study 

4.1 The biomedical problem 

Mitochondrial DNA (mtDNA) has been widely studied both in population genetics and 
mitochondrial disease studies. In particular, the high mutation rate, absence of 
recombination, and maternal transmission all make this DNA different from its nuclear 
counterpart and suitable for evolutionary studies aimed at tracing the migrations which led 
to the colonization of the various geographic areas of the world. The mtDNA genome of two 
unrelated individuals may differ in the presence of about 50 mitochondrial Single 
Nucleotide Polymorphisms (mtSNPs) (Wallace D. C. et al. 1999; Smeitink J. et al., 2001). 
Study of these polymorphisms in various human populations has allowed us to group 
differing human mtDNAs in haplogroups, each containing a subset of mtDNA sharing 
characteristic mutations acquired from the same ancestral mtDNA molecule. Hence, various 
population lineages may be described by means of a phylogenetic network, in which the top 
nodes define haplogroups and the tips define haplotypes represented by the sequence of the 
entire mitochondrial genome in the best situation (Torroni A. et al., 2001). Nevertheless, 

www.intechopen.com



 Data Mining in Medical and Biological Research 
 

 

272 

mitochondrial DNA also plays an important role in the oxidative metabolism of the cell. 
Hence, mutations occurring in mitochondrial DNA can alter the oxidative phosphorylation, 
which seriously damages cells and tissues, causing mitochondrial diseases. Mitochondrial 
disorders - associated with dysfunctions of the Oxidative Phosphorylation (OXPHOS) 
system - are caused by genetic defects both in the mitochondrial and nuclear genome, 
leading to energy metabolism errors, and have an estimated frequency of 1 out of 10000 live 
births. Due to the important role played by the OXPHOS system in ATP production, the 
causes and effects of mitochondrial disorders are extremely heterogeneous and complex. 
This explains the pressing need for further research on this topic, despite the many studies 
on mitochondrial disorders published in the last 20 years. In this scenario HmtDB 
(Attimonelli M. et al., 2005) plays an important role, gathering all complete human 
mitochondrial genomes worldwide distributed and enriching sequence information with 
statistically validated variability data estimated through the application of specific 
algorithms implemented in an automatically running Variability Generation Work Flow 
(VGWF). Knowledge through HmtDB of the variability of specific position of the genome is 
highly informative, as shown in a recent study by Accetturo et al. (2006), which 
demonstrates that continent specific high variability values can act as haplogroup markers. 

4.2 Database description 

HmtDB consists of a database of Human Mitochondrial Genomes annotated with population 
and variability data, the latter estimated through the application of a new approach based on 
site-specific nucleotidic and aminoacidic variability calculation (Pesole & Saccone, 2001; 
Horner & Pesole, 2003). Currently, HmtDB stores data from entire human mt genomes only, 
while a great quantity of published data related to single human mtDNA mutations and 
associated to clinical studies available through PubMed are not annotated in HmtDB. 
In particular, HmtDB  

• collects and integrates the publicly available human mitochondrial genomes data; 

• produces and provides the scientific community with site-specific nucleotide and 
aminoacid variability data estimated on all the collected human mitochondrial genome 
sequences; 

• allows all researchers to analyse their own human mitochondrial sequences (both 
complete and partial mitochondrial genomes) in order to automatically detect the 
nucleotide variants compared to the revised Cambridge Reference Sequence (rCRS) 
(Andrews et al., 1999) and to predict their haplogroup paternity. 

At present, HmtDB contains 4061 human mitochondrial genomes. They are stored and 
analysed as a whole dataset and grouped into continent-specific subsets (AF: Africa (347 
mtGenomes), AM: America (216), AS: Asia (1493), EU: Europe (1233), OC: Oceania (133)); 
729 genomes are unclassified as regards the geographic origin of individual donors of DNA. 
Human mtDNA is composed by 16569 nucleotides, of which 4542 (data from HmtDB) 
present variability values differing from 0. 
HmtDB can be queried according to different criteria combined among them through the 

AND Boolean Operator. The most important selection criteria are listed in table 1. 

Multi-alignment and site-variability analysis tools included in HmtDB are clustered in two 
workflows: the Variability Generation Work Flow (VGWF) and the Classification Work 
Flow (CWF), which are applied both to human mitochondrial genomes stored in the 
database and to newly sequenced genomes submitted by users, respectively. 
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Selection criteria in HmtDB Meaning of criteria 

Subjects' geographical origin Continent and Country origin of the subject 

Haplogroup Code Code assigned by population genetists to human 
mtDNA genomes clustered according to common 
mtSNPs 

SNP Position Position of the genome where variation is sought 

Variation type Transition, trasversion, deletion, insertion 

Subject Age (year) Age of the subject when DNA was extracted 

Subject Sex Sex of the subject donor of the DNA 

DNA source Blood, tumor tissue, buccal swab, blood, etc 

Individual type Returns genomes correlated to the selected phenotype: 
Normal, Patient, Control or Disease Phenotype 

References Journal, Authors, Haplotype paper code, PubMedID 

Table 1. Database search criteria 

4.3 Database annotation 

HmtDB currently stores data derived from the knowledge of complete mt genomes. 635 out 
of the 4061 genomes stored in HmtDB are related to disease phenotypes associated to 13 
different diseases. This last datum highlights the real need of the experience presented here. 
The number of mt diseases is far higher than 13, and literature reports data from single mt 
mutations screened in families and populations to assess associations of mutation with mt 
diseases. This type of information is available through MITOMAP3, but here the mtSNP is 
associated with the various phenotypes and literature data in a qualitative way and thus the 
data structure does not allow any quantitative estimate of the occurrence of the mutation in 
different phenotypes and different populations. Our goal is to include in HmtDB data 
extracted from the great quantity of papers available on the topic “mtDNA mutation and 
disease” and to integrate the data, structured and analysed with statistical tools, with the 
variability data derived from the human mt complete genomes already in HmtDB, thus 
allowing a comprehensive study of mtDNA variability related to population genetics and 
mt diseases. Until now, this has been partially carried out through manual inspection of 
mitochondrial literature. We are currently testing the text mining approach proposed in this 
work to perform automatic extraction of information from PubMed. Desired information 
concerns mutations, method of detecting mutations, and demographic details. More 
precisely, the nature of a mutation (e.g, insertion, deletion, transversion, etc.), mutant base 
(i.e. nucleotide), involved gene (i.e., locus), type of pathology, age, sex and nationality of 
patients/individuals, method and source of analysis (e.g., tissue, blood, etc.) are all 
categories of terms to be automatically identified in texts.  

4.4 Literature preparation 

Generating a reliable training set is a slow and labour-intensive task since there are no 
publicly available datasets about mtDNA annotation from the literature. For this aim, 

                                                 

 

3 http://www.mitomap.org/ 
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HmtDB curators have performed several steps: (1) retrieval of relevant literature, (2) 
definition of annotation schema, (3) collection of domain-dependent language resources, (4) 
manual annotation of text. The first and the last steps were the most demanding. To retrieve 
literature pertaining to the HmtDB scope, PubMed was queried for “mitochondrial disease”, 
looking for papers published after 2000 concerning human mtDNA and where mutations 
involving mitochondrial genes were studied. Papers that do not report strictly clinical data 
were discarded. All papers in which mitochondrial mutations and diseases were associated 
on the basis of alternative information such as biochemical experiments, drug treatment or 
therapy, species different from the human type, etc. were also excluded from the dataset as 
well. Then, a suitable annotation schema was defined. Two main schema appear to meet the 
database annotation requirements: one to describe features reported on the mutation and the 
other describing subjects from whom the DNA comes. As shown in table 2, the mutation 
template includes ten categories of information, while the subjects template involves seven.  
 

Template Entity Definition 

heteroplasmy Quantity of mutant mtDNA (%) 

locus Gene where mutation is found 

novelty Flag stating that mutation is published for the first time 

pathology Disease or syndrome (phenotype) 

penetrance Different pathological phenotype expression 

position Nucleotide position in mtDNA where mutation is located 

risk Probability of expressing a pathological phenotype 

substitution Nucleotide changed, compared with reference sequence 
(rCRS) 

type Type of mutation 

mutation 

type_position Type and position encoded by a single alphanumeric 
string 

age Age of the subject 

category Single patient or pedigree 

gender Gender of subject 

method Biomolecular method to detect mutation 

nationality Geographic origin  

number Number of subjects affected  

subjects 

source Biological source of mtDNA 

Table 2. Database annotation schema 

Domain-dependent dictionaries to guide the annotation process are carefully selected by 

curators. Some dictionaries are obtained by directly extracting controlled vocabularies 

stored in the database, like methods, diseases, ethnic groups, locus and sources.  

In the final step, selected papers were manually analysed to identify pieces of text satisfying 
the annotation schema. This was the most laborious phase, as curators are asked to perform 
manual tagging in the most homogeneous way by inevitably facing different difficulties due 
to the non-standard way of publishing information. A first problem is raised by gene 
referencing, since each gene typically has several names and abbreviations (e.g., the ATP6 
mt gene can be also mentioned as “ATP synthase F0 subunit 6” or “MTATPase6” or 
“adenosine triphosphatase 6” as well) and sometimes authors and publishers do not agree 
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on standards. A mt gene abbreviation dictionary has been prepared by curators to give 
direction to a locus annotation strategy. However, the most complex activity concerns the 
identification of the pathology associated with the mutation. This results to be very hard 
because many different clinical presentations of mitochondrial diseases are possible. Hence, 
the diagnosis is often not really established by the authors themselves, while one or more 
terms are used to describe a large collection of disorders. For instance, in the following 
abstract:  
“The authors describe a novel pathogenic G5540A transition in the mitochondrial transfer RNA 
(tRNA)Trp gene of a sporadic encephalomyopathy characterized by spinocerebellar ataxia. Clinical 
features also included neurosensorial deafness, peripheral neuropathy, and dementia” 
the pathological condition is defined by a standard “encephalomyopathy” disease with 

additional symptoms such as “spinocerebellar ataxia”, “neurosensorial deafness”, etc. In 

addition, typical mitochondrial disease names are obtained by grouping different symptoms 

(e.g., the “MELAS” syndrome is considered in the case of “mitochondrial myopathy, 

encephalopathy, lactic acidosis, and strokelike episodes”) but a standard nomenclature of 

mitochondrial diseases is not available in the scientific community; in fact, there are also 

cases, as in the abstract reported below, where atypical combinations of symptoms are 

connected to the mutation.  
”Mitochondrial cytochrome b mutations have been reported to have a homogenous phenotype of pure 
exercise intolerance. We describe a novel mutation in the cytochrome b gene of mitochondrial DNA 
(A15579G) associated with a selective decrease of muscle complex III activity in a patient who, 
besides severe exercise intolerance, also has multisystem manifestations (deafness, mental retardation, 
retinitis pigmentosa, cataract, growth retardation, epilepsy)”.  
To manage such cases, the MITOMAP annotation of diseases associated with mtDNA 

mutations from the perspective of phenotype was adopted as a reference. There are also 

some papers describing not only a patient but their family pedigrees, which lead to very 

heterogeneous clinical presentations also creating coreference resolution problems. E.g., 

“The proband showed isolated, spastic paraparesis. A brother, who had suffered from a multisystem 

progressive disorder, ultimately died of cardiomyopathy. Another brother is healthy. The proband's 

mother showed truncal ataxia, dysarthria, severe hearing loss, mental regression, ptosis, 

ophthalmoparesis, distal cyclones, and diabetes mellitus. ... Sequence analysis of mtDNA showed a 

heteroplasmic mutation of the tRNA(Ile) gene (G4284A). ...” 

The curators decided to consider the abstract and the title of each article, since other 
mutations and populations that are not being studied are often cited in the introduction and 
discussion sections of papers. Indeed, selecting relevant portions of text is a prerequisite 
step for IE, since the sparseness of data and lack of robustness of IE methods makes them 
inapplicable to large corpora or irrelevant texts.  

5. The approach 

5.1 Problem definition 

The problem we are addressing is the typical template filling task reported in the IE 

literature (Gaizauskas & Wilks, 1998). This means that, rather than learning one extraction 

pattern for each slot of interest, a single model for all slots of interest is learned. 

Dependencies among facts are also investigated in the context of template filling, since the 

pattern should link isolated facts in some way. 
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Let us consider the following example of a text fragment of the collection described in the 
previous section: 
“Cytoplasts from two unrelated patients with MELAS (mitochondrial myopathy, encephalopathy, 
lactic acidosis, and strokelike episodes) harboring an A-*G transition at nucleotide position 3243 in 
the tRNALeU(UUR) gene of the mitochondrial genome were fused with human cells lacking 
endogenous mitochondrial DNA (mtDNA)” 
Here “MELAS” is an instance of the pathology associated to the mutation in question, “A-*G” 
is an instance of the substitution that causes the mutation, “transition” is the type of the 
mutation, “3243” stands for the position in the DNA where the mutation occurs, 
“tRNALeU(UUR)” is the gene associated with the mutation, “two” is the number of subjects 
under study. An extraction pattern relating type and substitution items is exemplified by the 
following two Horn clauses: 
 

substitution(X) ä follows(Y,X), type(Y) 
type(X) ä distance(X,Y,3), position(Y),  

word_between(X,Y,‘‘nucleotide position’’) 
 

The first clause states that a token X is recognized as the substitution (i.e., which nucleotide is 
substituted by which other, A in G in the specimen text) if it is followed by a token Y which 
has been recognized as mutation type (transition). The second clause states that X fills the 
mutation type (transition) slot if it is three words far from a token Y that has been associated 
with the mutation position (3243) slot and there is the intermediate word “nucleotide 
position”. 
It should be noted that, in the above example, some dependencies between slots of the same 
template (mutation) are shown. As previously mentioned, learning information extraction 
rules which express these dependencies may lead to more accurate models, which reflect 
some co-occurrence of named entities in the text. In addition, when automated annotation is 
performed, context-sensitive recognition of named entities is possible, thanks to learned 
models which reflect dependencies among annotation classes. A solution to the problem of 
searching for concept dependencies (i.e., mutual recursion) in the space of candidate 
patterns and to reason in the presence of relational knowledge is provided by the learning 
algorithm reported in Section 5.4. 

5.2 Data preprocessing 

Texts are preprocessed by means of natural language facilities provided in the GATE 
(General Architecture for Text Engineering) system (Cunningham et al., 2002). We exploit 
the ANNIE (A Nearly-New IE system) component which contains finite-state algorithms 
and the JAPE (a Java Annotation Patterns Engine) language which is also a finite-state 
transduction engine to recognize regular expressions. We use ANNIE to perform 
tokenization, sentence splitting, part-of-speech tagging, general purpose named-entity 
recognition (e.g., persons, locations, organizations) and mapping into dictionaries. We use 
both predefined dictionaries available with ANNIE (e.g., organization names, job titles, 
geographical locations, dates, etc.) and domain-specific dictionaries prepared by curators. 
General domain dictionaries are used to clarify some terms (e.g., places and geographical 
locations are useful in recognizing terms about the ethnic origin of the diseased sample). 
Domain-specific dictionaries are flat dictionaries of canonical forms and variants of names of 
mitochondrial genetics. Some general-purpose biological dictionaries were also considered 
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e.g., those on enzymes, units of measurement, and nucleic acids. They are exploited to 
reduce data heterogeneity and to perform syntactic and semantic normalization, such as 
rough resolution of acronyms which, as already stated, are one of the sources of redundancy 
and ambiguity. JAPE grammars have been defined to identify appositions occurring in texts 
as well as some numeric and alphanumeric strings which are frequent in this domain. 
Lastly, stopwords (e.g., articles, adverbs, and prepositions) are removed and stemming is 
performed by means of the Porter’s algorithm for English texts (Porter, 1997). 

5.3 Data representation 

In this work, the units of analysis are sentences, which are composed of tokens. Each 
sentence or token is given a unique identifier (in the context of an abstract or a title of 
selected papers) based on its ordering within the given text. The relational (or structural) 
representation of a sentence is described by a set of predicates expressing properties of 
occurring tokens and relations between them. 
Properties, which are represented by unary function symbols (or descriptors), express 
statistical (e.g., token frequency), lexical (e.g., alphanumeric, capitalized token), structural 
(e.g., structure of complex tokens such as alphanumeric string, abbreviations, acronyms, 
hyphenated tokens), syntactical (e.g., singular/plural proper/not proper nouns, 
base/conjugated verbs) and domain-specific knowledge (e.g., an entity belonging to a 
dictionary). More precisely, the descriptor class specifies the category of the described text 
(i.e., abstract, title, results, etc.) and expresses information on the localization of annotations 
in documents. The descriptor word_to_string maps an identifier to the corresponding 
stemmed token, while word_frequency expresses the relative frequency of a token in the 
given text, and type_of refers to morphological features and takes values in the set {allcaps, 
mixedcaps, upperinitial, numeric, percentage, alphanumeric, real number}. Parts-of-speech 
are encoded by the descriptor type_pos, and semantics is added by the descriptor 
word_category. 
Binary descriptors express structural properties such as the composition of sentences in 

passages of text and tokens in chunks or directly in sentences. Indeed, the following 

descriptors have been defined: part_of, which lists tokens composing a sentence, and follows, 

which relates a token to its direct successor. Complex tokens (e.g., A-*G) are described by 

some descriptors (e.g., middle_is_char, first_is_numeric) defining the morphological nature of 

an alphanumeric string. Another form of relational knowledge concerns domain dictionaries 

and expresses the distance between two categorized tokens in the context of a sentence 

(distance_word_category). 

For the training data, only sentences containing at least a positive example of concepts to be 

learned are considered. Henceforth, they are called target sentences. No relation between 

target sentences is currently considered: that is, the extraction of slot fillers remains local to 

sentences. 

An example of relational description generated for the target sentence reported in Section 
5.1 is the following: 
 

annotation(3)=no tag,  

...  

annotation(7)=pathology,  

annotation(8)=no_tag,  
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...  

annotation(13)=substitution, 

annotation(14)=type,  

annotation(15)=no_tag,  

..., 

annotation(17)=position,  

annotation(18)=locus,  

..., 

annotation(30)=no_tag  

ä 
class(2)=abstract, part_of(2,3)=true, ..., part_of(2,30)=true, 

word_to_string(3)=cytoplast, ..., word_to_string(14)=transition, 

..., word_to_string(30)=cell, 

type_of(3)=upperinitial, ..., type_of(29)=alphanumeric, 

type_pos(3)=nnp, ..., type_pos(30)=nns,  

word_frequency(3)=1, ..., word_frequency(30)=2,  

word_category(7)=disease, ..., word_category(28)=nucleic_acid, 
distance_word_category(7,9)=2, ..., distance_word_category(27,28)=1, 

follows(3,4)=true, follows(4,5)=true, ..., follows(29,30)=true 
 

It is in form of a multiple-head clause (Levi & Sirovich, 1976), where the body (left) part lists 
literals describing properties of the sentence and the head (right) part states annotations 
occurring in the sentence. Constant 2 denotes the described sentence, which belongs to an 
abstract of the collection. Constants 3, 4, ..., 30 denote identifiers of tokens in the described 
sentence.  
We observe that the particular form of literal used in this work, namely f(t1, … ,tn)=Value, 
where f is an n-ary descriptor, ti’s are constant terms, and Value is one of the possible values 
of f's domain, can be easily reported to the typical notation adopted in predicate calculus 

pf=Value(t1, … ,tn), where pf=Value is the n-ary predicate associated to the pair 〈f, Value〉.  
Background knowledge is also defined to support qualitative reasoning in the learning 
phase. This includes a number of Horn clauses such as the following, which express the 
synonymy between (stemmed) biological terms: 
 

word_to_string(X)=transit ä word_to_string(X)=transversion 
word_to_string(X)=substitut ä word_to_string(X)=replac 
 

A transitive definition of the relation of “indirect successor” was also defined to unburden 
the representation language, which includes only the direct successor relation: 
 

tfollows(X,Y)=true ä follows(X,Y)=true 
tfollows(X,Y)=true ä follows(X,Z)=true, tfollows(Z,Y)=true 
 

Lastly, a typified form of both direct and transitive successor relations is introduced to 
compact knowledge encapsulated in rules further. Some examples are reported in the 
following: 
 

follows_string_jj(Y)=Z ä word_to_string(X)=Z, follows(X,Y)=true, 
type_pos(Y)=jj 

follows_nn_string(X)=Z ä type_pos(X)=nn, follows(X,Y)=true,  
word_to_string(Y)=Z 

tfollows_vb_nn(X,Y)=true ä type_pos(X)=vb, tfollows(X,Y)=true, 
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type_pos(Y)=nn 

tfollows_jj_nn(X,Y)=true ä type_pos(X)=jj, tfollows(X,Y)=true,  
type_pos(Y)=nn 

The first two clauses express the direct successor relations between a generic string and an 
adjective or a noun, while the last two clauses specify the transitive successor relations for 
verb-noun and adjective-noun pairs, respectively. 

5.4 Rule learning 

Logical theories used for the annotation of text are automatically induced from training data 
by means of the ILP system ATRE (Malerba, 2003). In this application, each concept plays 
the role of an annotation class (i.e., template slot) and each textual object can be associated 
with at most one concept, i.e., concepts are considered mutually exclusive. The learning 
problem solved by ATRE can be formulated as follows: 
Given 

• A set of target predicates p1, p2, …, pr to be learned 

• A set of positive (negative) examples Ei+ ( Ei- ) for each predicate pi,  1≤i≤r 

• A background theory BK  

• A language of hypotheses LH  that defines the space of hypotheses SH 
Find 

a (possibly recursive) logical theory T∈SH defining the predicates p1, p2, …, pr  (that is, 

δ(T)={p1, p2, …, pr})  such that the following two conditions hold: 

a. for each i, 1≤i≤r, BK∪ T |= Ei+ (completeness property) and 

b. BK∪T|≠ Ei- (consistency property). 
The logical theory T is a set of first-order definite clauses (Lloyd, 1987), like those reported 

above. The set of concepts to be learned is defined by means of a set of literals of the type 

annotation(X)=annotation class. No clause is generated for the concept annotation(X)=no tag. 

Each unit of analysis, which corresponds to a sentence, is represented by means of the set of 

positive/negative examples related to the sentence as well as the set of ground literals in the 

BK which describe properties and relations among tokens in the sentence. The set of literals 

associated to a unit of analysis is called object and is formally represented as a ground (i.e., 

without variables) multiple-head clause. Therefore, ATRE’s representation of training data 

is individual-centered (Blockeel & Sebag, 2003) and this has both theoretical (PAC-

learnability) and computational advantages (smaller hypothesis space and more efficient 

search).   

The background knowledge BK may also include a set of Horn clauses which define new 

predicates, not used for the description of training objects but deemed useful for the 

formulation of the logical theory used in the annotation process. Examples are the tfollows 

predicates defined in the previous section. An example of Horn clause which defines the 

predicate char_number_char is reported in the following: 
 

char_number_char(X) ä first_is_char(X), middle_is_numeric(X), 
last_is_char(X) 

 

The satisfaction of the completeness and consistency properties guarantees the correctness 

of the induced theory with respect to the sets of positive and negative examples, but not 

necessarily with respect to new instances of the target predicates. The selection of the clause 
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in T is made on the basis of an inductive bias. For example, clauses which cover a high 

number of positive examples and a low number of negative examples may be preferred to 

others. 

At high-level, the learning strategy implemented in ATRE is sequential covering (or separate-
and-conquer) algorithms (Mitchell, 1997), that is, one clause is learned (conquer stage), 
covered examples are removed (separate stage) and the process is iterated on the remaining 
examples. More precisely, a logical theory T is built step by step, starting from an empty 
theory T0, and adding a new clause at each step. In this way we get a sequence of theories 

T0 =∅, T1, …, Ti, Ti+1, …, Tn = T, 

such that Ti+1 = Ti  ∪ {C} for some clause C. 
The conquer stage aims at finding the best clause C to add. The search for this clause is 
made among those that cover specific positive examples, called seeds, which have not been 
covered by Ti yet.  
The most important novelty of the learning strategy implemented in ATRE is embedded in 
the design of the conquer stage. Indeed, the separate-and-conquer strategy is traditionally 
adopted by single predicate learning systems which generate predicate definitions, that is, 
sets of clauses with the same predicate in the head. In ATRE, clauses generated at each step 
may have different predicates in their heads. In addition, the body of the clause generated at the 
i-th step may include all target predicates p1, p2, …, pr for which at least a clause has been added to 
the theory Ti. In this way, dependencies between target predicates can be expressed by 
learned theories.   
The order in which clauses of distinct target predicates have to be generated is not known in 
advance. This means that the actual dependencies between target concepts which a learned 
theory can express have to be discovered by the system and is not specified by the user. For 
this reason, it is necessary to generate clauses with different predicates in the head and then 
to pick one of them at the end of each step of the separate-and-conquer strategy. Since the 
generation of a clause depends on the chosen seed, several seeds (at least one, if any, per 
target predicate) have to be chosen among those still uncovered. Therefore, the search space 
is actually a forest of as many search-trees (called specialization hierarchies) as the number of 
chosen seeds. In each search tree a directed arc from a node (clause) C to a node C0 exists if 
C0 is obtained from C by a adding a literal (C is specialized into C0). 
The forest can be processed in parallel by as many concurrent tasks as the number of search-
trees (hence the name of separate-and-parallel-conquer for this search strategy). Each task 
traverses the specialization hierarchy top-down (or general-to-specific), but synchronizes 
traversal with the other tasks at each level. Initially, some clauses at depth one in the forest 
are examined concurrently. Each task is actually free to adopt its own search strategy, and to 
decide which clauses are worth to be tested. If none of the tested clauses is consistent, 
clauses at depth two are considered. Search proceeds towards deeper and deeper levels of 
the specialization hierarchies until at least a user-defined number of consistent clauses is 
found. Task synchronization is performed after that all “relevant” clauses at the same depth 
have been examined. A supervisor task decides whether the search should be continued or 
not, according to the results returned by the concurrent tasks. When the search is stopped, 
the supervisor selects the “best” consistent clause according to the inductive bias specified 
by the user (e.g., the clause which covers a high number of positive examples and a low 
number of negative examples). This search strategy provides us with a solution to the 
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problem of interleaving the induction of distinct target predicate definitions. It also has the 
advantage that simpler consistent clauses are found first, independently of the predicates to 
be learned. Finally, the synchronization allows tasks to save much computational effort 
when the distribution of consistent clauses in the levels of the different search-trees is 
uneven.  
A more detailed description of the search strategy implemented in ATRE and its 

optimization through caching techniques is reported in (Malerba, 2003; Berardi et al., 2004). 

5.5 The architecture of BEE 

The BEE4 (Biomedical Entity Extractor) system was developed to implement the approach 
described in the previous sections. BEE supports users in:   

• defining annotation schema; 

• manually annotating texts to provide mining examples for user classes; 

• customizing linguistic analysis through dictionary (gazetteers) management; 

• automatically generating data for mining; 

• using learned theories to perform automatic annotation of new texts; 

• visualizing and revising annotation results.  
 

 

Fig. 1. BEE GUI 

The BEE system includes a Graphical User Interface (GUI) which provides the user with 

facilities to customize the system for the specific information extraction problem. In 

                                                 

 

4 http://www.di.uniba.it/~malerba/software/BEE  
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particular, domain dictionaries are submitted by selecting flat files and assigning a lookup 

name to each dictionary. Annotation schema are manually defined by grouping user-

defined categories of named entities into templates. The GUI includes a wizard which 

supports the user in managing training sessions, i.e., data selection, choice of concepts to be 

learned, definition of learning parameters, specification of background knowledge, and 

running and monitoring learning tasks. Finally, the GUI allows users to manually associate 

tokens with categories on the basis of text pre-processing results, as shown in Figure 1. 

The general architecture of the system is shown in Figure 2. The System Manager works by 

allowing user interaction and by coordinating the activity of all other components. It 

interfaces the system with the data persistence layer to store (1) information on texts 

concerning pre-processing results, feature extraction, associated annotations; (2) linguistic 

resources (i.e., gazetteers, acronym dictionaries, grammars); (3) annotation schemas of the 

biomedical problem at hand; (4) learned theories. The User Manager supports operations 

aiming to customize the system on the specific user-defined biomedical problem. The Text 

Processor is in charge of data elaboration and mapping into the learning descriptions 

operations described in Section 5.2 and 5.3. The output of this module allows users to invoke 

both the Recognition Module and the Learning Module through the GUI. The former is 

responsible for clause application and automatic association of annotation slots on text, the 

latter performs all the activities necessary to support learning sessions. Actually, the 

Recognition Module is able to match body parts of clauses available in the learned 

knowledge base with descriptions of new texts. 

 
 

 
 

 

Fig. 2. BEE architecture 
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BEE is a java standalone application since it is conceived as an integrated environment for 

information extraction from texts, where curators define the annotation problem, prepare 

data, revise results, and learning experts manage learning operations. A web service version 

including the text processor and the recognition module is also available for collaborative 

environments. This web service is separately trained on application domains and made 

available together with knowledge bases.  

6. Experiments 

Fine tuning of the system on the HmtDB case study has been carried out within activities 
concerning the LIBI5 (International Laboratory for BioInformatics) project. This projects aims 
at designing and setting up an advanced IT platform to support a newly-conceived 
Bioinformatics and Computational Biology laboratory “without walls”. This includes tools 
enabling the deployment and maintenance of genomic, proteomic and transcriptomic 
databases, as well as the design and execution of new algorithms, and software for the 
analysis of genomes and their expression products. A collaborative environment has also 
been developed to boost both knowledge and resource sharing: researchers can share both 
data analysis tools, in the form of simple or composed (workflow) services and data, which 
are accessed through data federation mechanisms that allow their dislocation and 
heterogeneity to be bypassed. Available analysis tools cover not only typical bioinformatics 
algorithms supporting in silico molecular data handling and analyses, but also a suite of 
general-purpose text and data mining algorithms that enhance analysis capabilities of 
biological data managed by means of the federated database. Such an environment, where 
mining tools can benefit from the aggregated view of a plethora of different information 
sources provided by the federated database, is an ideal candidate where prototyping and 
testing systems devoted to semi-automated database annotation. To accomplish such a 
challenging task, data curation is one of the preliminary key steps. To this end, HmtDB has 
been federated together with other specialized data sources (including PubMed) and 
interfaced by the BEE miner to support mitochondrial genome curation activities. 
We conducted an experiment on 130 full papers concerning mitochondrial mutations 
carefully selected for the annotation of HmtDB. In this phase, experiments were conducted 
on the mutation template, where benefits of the proposed learning method can be observed. 
Conversely, most of the issues of annotating subjects information can be almost fully 
satisfied by using regular expressions. Entities with a very low distribution of examples (i.e., 
risk, penetrance, novelty, heteroplasmy) were not considered in the experiment reported in 
this chapter. From the set of relevant papers, we obtained 368 target sentences out of 1040 
sentences. Considering the total number of tokens used to describe sentences, the number of 
annotated tokens was 890, that is, 2.42 tokens per target sentence and 6.86 per paper, namely 
about 20.5% of the total number of tokens considered in the experiment. The remaining 
tokens, i.e., 3461, were considered as non-tagged (i.e., as negative examples for all concepts 
to be learned). Trainers have tagged a single occurrence of target concepts in the papers by 
preferring occurrences reported in the neighbourhood of other target concepts to be learned 
in order to discover intra-sentence dependence.  

                                                 

 

5 http://www.libi.it  
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Performances are evaluated by means of a 5-fold cross-validation, that is, the set of 130 

papers is firstly divided into five folds (see Table 3), and then, for every fold, ATRE is 

trained on the remaining folds and tested on the hold-out fold.  

Results were evaluated according to several criteria. For each concept, we computed both 

the number of omission and commission errors and the value of precision and recall. 

Omission errors occur when annotations of tokens are missed, while commission errors 

occur when wrong annotations are “recommended” by some rule. The omission measure is 

reported as the ratio of the number of omission errors and the number of positive examples, 

and the commission measure as the ratio of the number of commission errors and the total 

number of examples. The recall measure is computed as the ratio of positive examples 

correctly annotated (i.e., true positives) and the sum of true positives and false negatives 

(i.e., omission errors). The precision measure is computed as the ratio of true positives and 

the sum of true positives and false positives (i.e., commission errors). The F-measure is the 

weighted harmonic mean of precision and recall, that is: 

recallprecision

recallprecision
measureF

+
⋅

=−  

Experimental results are reported in Table 4 for each fold, while Table 5 reports accuracy 
values for each class. 
 

Fold #sentence #locus #position #substitution #type #type_position #pathology #no_tag 

1 71 37 12 5 8 31 69 650 

2 76 39 8 6 5 56 73 735 

3 75 49 6 6 7 57 83 712 

4 70 35 7 6 10 39 52 633 

5 76 42 15 8 13 39 67 731 

Total 368 202 48 31 43 222 344 3461 

Table 3. Distribution of examples per folds 

 

Fold #locus #position #substitution #type #type_position #pathology 

 om com om com om com om com om com om com 

1 10.81 0.26 41.66 0 60 0.25 0 0.25 19.35 0.13 43.48 3.63 

2 23.08 0.23 62.5 0.11 66.67 0 0 0 8.93 0.46 43.83 3.06 

3 16.33 0.11 66.67 0 50 0 0 0 10.53 1.16 50.6 2.15 

4 11.43 0.13 28.57 0 16.57 0 0 0 41.03 0.27 55.77 3.7 

5 9.52 0.11 66.67 0.11 50 0 7.69 0 30.77 0.46 44.78 2.12 

Avg. 14.23 0.17 53.21 0.04 48.67 0.05 1.54 0.05 22.12 0.5 47.69 2.93 

St.D. 5.58 0.07 17.24 0.06 19.24 0.11 3.44 011 13.68 0.4 5.36 0.77 

Table 4. Experimental results (percentage values): Average number and standard deviation 
of omission errors over positive examples and commission errors over negative examples 
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Category Precision Recall F-measure 

 Avg St. Dev. Avg St. Dev. Avg St. Dev. 
locus 95.9 1.84 85.43 5.7 90.30 3.72 
position 91.67 11.79 46.79 17.24 60.93 16.44 
substitution 90 22.36 51.33 19.24 63.74 18.14 
type 96 8.94 98.46 3.44 96.98 4.84 
type_position 90.13 4.88 77.3 13.73 82.59 8.17 
pathology 60.37 9.23 52.06 5.13 55.72 6.09 

Table 5. Experimental results (percentage values): Mean and standard deviation of 
Precision, Recall and F-measure (β=1) 

 

Fold #locus #position #substitution #type #type_position #pathology 

1 165/35 36/15 26/11 34/5 191/52 275/116 

2 163/30 40/14 25/10 37/5 166/54 271/119 

3 153/36 42/13 25/10 36/5 165/33 261/110 

4 167/38 41/16 25/11 32/5 183/47 292/120 

5 160/37 33/15 23/11 29/4 183/39 277/116 

Avg. 4.62 2.65 2.35 7.01 4.07 2.37 

Table 6. Complexity of learned theories: number of positive examples over number of 
covered clauses per concept and average values 

Performance variability for some concepts (e.g., position, substitution, pathology) among folds 
is due to different degrees of data sparseness, such as heterogeneity of examples and low 
percentage of positive observations available. However, the percentage of commission 
errors is very low with respect to that of omission errors (the system misses annotations 
rather than suggesting wrong ones) independently of the fold. This means that learned 
clauses are quite specific. By considering the complexity of learned theories (see Table 6), 
coverage rate can explain recall values. The best performances are obtained on the type class 
whose examples are the most homogeneous. Conversely, the worst performances are related 
to the annotation of a pathology. Actually, learning tasks for the pathology class appear to be 
intrinsically more complex, since we observe the highest percentage of commission errors 
despite the highest percentage of positive examples available. As regards the percentage of 
omission errors, we note that, while this is positively correlated to the number of discovered 
clauses, it is not correlated to the number of positive examples. This confirms the complexity 
of this annotation task. Low recall values and overfitted theories reflect difficulties 
mentioned in Section 4.4 concerning the variety of morpho-syntactic variations on the same 
pathology name, which leads to heterogeneous representations of examples. By scanning 
the learned theories, we observe that, for some classes, namely substitution and position, 
many clauses do take into account only lexical information specified by the predicate 
word_to_string. Indeed, on these entities the system performs the highest number of 
omissions and very few commissions. Concerning the locus and type_position entities, some 
omission errors were performed, in fact, good values of coverage rate are reported for 
theories learned for these concepts. By observing learned clauses, we found several clauses 
depending on lexical information but also some more general clauses as the followings: 
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annotation(X1)=locus äfollows_string_nn(X2)=mutation, 
word_category(X1)=gene, tfollows(X2,X1)=true 

 

annotation(X1)=type_position ä char_number_char(X1)=true 
 

annotation(X1)=type_position ä tfollows_string_nn(X2)=trnaser, 
type_of(X1)=alphanumeric 

 

The first clause states that X1 is labelled as locus if it belongs to the gene category and it 
occurs in the sentence after the word “mutation”. The second clause states that X1 is labelled 
as type_position if it is an alphanumeric token composed by a char, a number and another 
char. This is one of the first clauses that ATRE adds to the learned theory and covers many 
examples. Actually, information on type and position of a mutation is tokens such as 
A1262G, which means that A is substituted by G at position 1262 of the DNA. The third 
clause concerns the same concept and states that X1 is labelled as type_position if it is an 
alphanumeric token which is followed by the string “trnaser”. This matches patterns where 
type and position information occurs in the neighbourhood of gene names (e.g., trnaser).  
Clauses stating dependencies between these two concepts have been also discovered: 
  

annotation(X1)=type_position ä annotation(X2)=locus, 
type_of(X1)=alphanumeric, 

distance_word_category(X2,X1)in[1.0..1.0] 
 

It states that X1 is labelled as type_position if it is an alphanumeric string at distance one from 
a token labelled as locus.  
Results show that annotation of concepts suffering from name mention ambiguity depends 
on the efficacy of the text pre-processing module in conjunction with the ability to exploit 
specialized lexical resources. Previous experiments, which are described in (Berardi & 
Malerba, 2007) where the usefulness of recursive theories is investigated, lead to different 
results. In particular, for concepts such as type, locus and type_position we got opposite 
findings since learned theories were very specific and constrained to lexical information. 
The new gene name dictionaries and the revised method for text tokenization and lexical 
patterns identification adopted to run experiments described in this chapter are able to keep 
under control morpho-syntactic variability of terms belonging to these classes.  
Other meaningful clauses discovered in this experiment follow: 
 

annotation(X1)=position ä annotation(X2)=substitution, 
tfollows_cd_nn(X1,X2)=true 

 

This clause states that X1 is annotated as position if it is a numeric token that precedes a noun 
which has been annotated as substitution. 
 

annotation(X1)=pathology ä follows_string_vb(X2)='trna(asn)', 
tfollows(X2,X1)=true 

 

This clause states that X1 is annotated as pathology if it follows a verb preceded by the token 
‘trna(asn)’, which is the name of a mitochondrial gene.  
 

annotation(X1)=substitution ä first(X1)=a, last(X1)=g 
 

This clause states that X1 is annotated as substitution if it is a token starting with the ‘a’ and 
ending with the ‘g’ characters, that are two nucleotide symbols. This is a peculiar clause 
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which allows to recognize all the mutations where the A base is substituted by the G base in 
a genome. 

7. Conclusion 

The maintenance of biological databases is currently a problem of great interest because the 

progress made in many experimental procedures has led to an ever increasing amount of 

data, mostly buried in textual form. In this chapter, we present a framework for biomedical 

information extraction from text that integrates a data mining module for extraction rule 

discovery. Patterns for biomedical entity extraction are induced from a set of manually 

labelled texts that are relevant for the application at hand. The mining process can exploit 

domain knowledge and search for dependencies among entities of interest. Application of 

the approach to the HmtDB annotation case study is described. Results show complexity of 

some learning tasks and usefulness of automatic text mining strategies. The mining system 

allows us to discover meaningful patterns among biomedical entities which can subsume 

some semantic relations, such as the association of a DNA mutation with the responsible 

gene. We are currently working to extend the framework by integrating a text classification 

system to automatically perform selection of literature that is relevant for the annotation 

task, which is an additional time-consuming and tiring task for curators. Since the work 

confirms that mining annotation rules offers a promising alternative to hand-coding, we 

plan to investigate approaches which are able to learn accurate models in the case of weakly 

labelled training data. This can alleviate the cost of producing complete training data which 

is a main drawback of supervised approaches. Moreover, weakly labelled data can be easily 

produced by exploiting the huge amount of knowledge already available in biological 

databases and by coupling it accurately with references that are provided as evidence of 

stored entries (Craven & Kumlien, 1999).  
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