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Topological Analysis of Cellular Networks 
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ICREA-Complex Systems Lab, Universitat Pompeu Fabra (GRIB-PRBB).  

Dr Aiguader 88, 08003, 
 Barcelona, Spain 

1. Introduction    

The description of the molecular world conforming living cells has been a long standing 
enterprise since Biochemistry foundation. The elucidation of  biochemical pathways in the 
early-middle twenty century gave way to a more complete picture of genes, proteins and 
metabolites by the beginning of Molecular Biology. Nowadays, the ultimate deciphering of 
such a molecular world is now becoming to be reality by the huge biotechnological advance 
on high throughput analysis. Genomic, proteomic and metabolomic tools have provided a 
revolution of the molecular biology and biomedicine expectations in very few years, as well 
as, the emergence of novel disciplines such as Systems and Synthetic Biology. 
One of the first conclusions of such large-scale analyses is that molecular species are 
networked in giant interconnected entities. The so-called cellular networks, -consisting of 
protein maps, metabolism, and gene regulatory networks- but also other systems such as 
food webs, internet, or social relations constitute a sort of complex networks. Contrasting 
with the initial thought, it was observed that their organisation strongly departs from simple 
random homogeneous metaphors. Interestingly, their internal organization reveals common 
traits that can be analysed from the perspective of modern graph theory. In this theoretical 
framework, a graph is a mathematical abstraction of reality that can be tackled from 
statistical physics and computation science perspectives. 
In this chapter we will present a repertoire of methods for a standard graph analysis, 
particularly oriented to the study of cellular networks. These tools allow us to measure and 
compare different networks in order to uncover their internal organization from a statistical 
point of view. We will show that the network approach provides a suitable framework to 
explore the organisation of the biomolecular world. 

2. Graph theory approach 

The aim of this chapter is not to present a collection of methods but an orientation about how is 
the network that we are studying by a description of the most relevant descriptors of a graph. 
We will start with describing those descriptors to define, in a topological way, an element 
within a network. In second place, we will provide global descriptors to define a network. 

2.1 Graph concept 
A graph (or network) G is defined by a set of N vertices (or nodes) V ={v1, v2,...,vN} and a set of 
L edges (or links), E ={e1, e2, ...,eL}, linking the nodes. Two nodes are linked when they satisfy O
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a given condition, such as two metabolites participating in the same reaction in a metabolic 
network. The graph definition does not imply that all nodes must be connected in a single 
component. A connected component in a graph is formed by a set of elements so that there is 
at least one path connecting any two of them. Graphs are undirected when the interaction 
between nodes is mutual and equal, as in the protein maps. On the contrary, the web is 
directed when the connection indicates that one element affect to the other but not the 
opposite. As we will see, this is the case of gene regulatory networks (Shen-Orr et al. 2002) 
and signal transduction pathways (Ma'ayan et al. 2005). Additionally, graphs can also be 
weighted when links have values according to a certain property. This is the case for gene 
regulatory networks, where weights indicate the strength and direction of regulatory 
interactions. Although graphs are usually represented as a plot of nodes and connecting 
edges, they can also be defined by means of the so-called adjacency matrix, i.e., an array A of 
NxN elements aij, where aij=1 if vi links to vj and zero otherwise. A is symmetric for 
undirected graphs, but not for the directed ones. For weighted nets a matrix W can be 
introduced, where wij indicates the strength and type of the link. The network can also be 
described using a list of pairs of connected nodes (edge-list), which has some computational 
advantages. Figure 1 summarizes the different ways of representing a graph. 
 

 

Fig. 1. Different ways of representation for a directed and unweighed graph. Left: Adjacency 
matrix (A). Centre: Drawn graph. Right: List of pairs (edge list). The triangle motif (in 
dashed box) is indicated for the three representations. The autoloop concept is represented 
in the vertex 5. Some examples of k, C and b values: for v3, k3=5, C3=0, b3=0.69; v8, k8=3, 
C8=0.33, b8=0.36; v10, k10=2, C10=1,b10=0. 

2.2 Node attributes 
Here we summarize the measures required to describe individual nodes of a graph. They 
allow identifying elements by their topological properties. The degree -or connectivity- (ki) of 
a node vi is defined as the number of edges of this node. From the adjacency matrix, we 
easily obtain the degree of a given node as   

∑ =
=

N

j iji ak
1

 

See examples of k values in figure 1. For directed graphs, we distinguish between incoming 

and outgoing links. Thus, we specify the degree of a node in its indegree,
in

i
k , and 

outdegree, out

i
k . 
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The clustering coefficient Ci is a local measure quantifying the likelihood that neighbouring 
nodes of vi are connected with each other. It is calculated by dividing the number of 
neighbours of vi that are actually connected among them, n, with all possible combinations 
excluding autoloops, i.e., ki(ki-1). Formally, we have: 

2

( 1)
i

i i

n
C

k k
=

−
 

Notice that, auto-loops, i.e., links that starts and end in the same vertex (see figure 1), are not 
considered in this measure. Examples of C values are illustrated in figure 1. 
The betweenness centrality bm for a node vm is the fraction of shortest pathways Γ for each pair 
of nodes (vi, vj) also containing vm, that is  

( , , )

( , )
m

i j

i m j
b

i j≠

Γ
=

Γ
∑  

The ratio Γ(i,m,j)/Γ(i,j) indicates how crucial vm is relating vi and vj. We introduce the term 
pathway (or simply path) as the string of nodes relating vi and vj (see graph and values for b 
in Figure 2). This concept is similar to the metabolic pathway describing a set of coupled 
reactions from one metabolite to another. The shortest path connecting vi and vj is the one 
where the lowest number of nodes are involved to connect them. Such topological 
descriptors are useful to identify particular nodes in the network. Under this point of view, 
such particularities can be mapped into relevant topological properties. For instance, high ki 
for a node might relate to a relevant role, since many other nodes interact with it. 
Alternatively, high bi can also indicate a relevant role since it tells us that many nodes are 
efficiently connected through it. It is noteworthy that, bi usually scales with degree, although 
this is not always true (see figure 2). 

2.3 Graph attributes 
For a network of size N, global measures can be defined, each one providing very different, 

but complementary, sources of information. The average degree, defined as 〈k〉 =2L/N, 

indicates how sparse a graph is. Real networks are sparse, i.e. 〈k〉 << N. In the case of 

networks with auto-loops the average degree must be corrected as 〈k〉 = (2L-A)/N where A 
corresponds with the number of auto-loops in the network. 
 

 

Fig. 2. Relation between degree and betweenness. The two-star graph shows a case where 
the two hubs support a high level of shortest pathways whereas the central node vm shows 
the highest b of the graph keeping a low degree. The shortest path connecting vi and vj 
through vm is indicated by solid lines. 
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The average clustering, 1/
ii

C N C〈 〉 = ∑ , provides a measure of local organization. High 〈C〉 

indicates that neighbours of a node are likely to be linked between them. It actually gives 
the probability of finding triangles. 
The average path length (APL) indicates the average length of the shortest pathways 
separating each node pair. If dmin is the length of the shortest path connecting nodes vi and vj, 
then APL is defined as: 

min

2
( , )

( 1)
i j

i j

APL d v v
N N >

=
−

∑  

Another measure is the degree distribution  p(k). It indicates the probability of a node 
having k links. Usually, because network size is restricted, the statistics are poor. It is 
rather difficult to get a good fitting for distribution degree from real data. A common 
problem in real networks is the fluctuations in the vertex abundance for very large 
degrees. One common solution, and in particular when we observe a power-law 
behaviour, is the cumulative distribution of degree frequency (Dorogovtsev & Mendes 

2003), formally,  
'

( ) ( ')
cum k k
P k p k

∞

=
=∑ . 

Real networks are usually associated with the term of scale-free. They exhibit a degree 
distribution following a power-law decay, p(k)~k-γ. Here, γ  is a positive parameter that for 
real networks is usually in the range 2<γ<3 (Albert et al. 2002). Notice that for cumulative 
distributions Pcum ~ k-(γ-1). 
Scale-free (SF) graphs have a p(k) with a maximum at k=1 (thus most elements have a single 
link) and rapidly decay at higher k values. Nevertheless, the tail of the distribution is very 
long and thus nodes with a very high degree are possible. Before the discovering of such an 
evidence, it was thought that real networks might follow a Gaussian distribution where the 
average degree represents a central position of a well confined distribution. The 
mathematical models describing this behaviour correspond with the Erdös-Renyi (ER) 
graph. ER graphs predict that very high k is exceedingly rare and unlikely to be observed at 
all. SF distributions have no humps and have extremely large standard deviations, which 
means that no confidence can be placed in a prediction of the number of links of any node 
sampled at random (Albert et al. 2002). Typically, real networks exhibit a mixed 
distribution, that is, a power-law with a sharp exponential cut-off determined by kc in the 

expression 
/

( ) ~ ck k
p k k e

γ −− indicating that arbitrarily high degrees are not allowed (Amaral 

et al. 2000). 
The clustering distribution C(k) represents Ci against k. ER and pure scale-free webs do not 
exhibit any dependency between Ci and k. By contrast, in so-called hierarchical networks, it 
has been associated with a decay of C(k) with inverse of the degree (C~k-1) (Barabasi et al. 
2004). This type of network exhibits modularity (nodes are preferentially linked inside 
clusters or modules). A module can be defined as a set of nodes in a connected component 
which tend to be more connected among them than with the rest of the network. 
The assortative mixing (r) is a measure of the correlation among degrees in a graph, giving 
information about the likelihood to find linked nodes of a certain degree. This measure 
compares the correlation among degrees in the studied network (noted as GR) with its 
uncorrelated counterpart. The expression for r can be obtained in (Newman 2002). Here we 
will only present an intuitive understanding of assortativenness concept. The value of r 
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ranges between -1 and 1. Here r=0 indicates no correlation among degrees, as it occurs for 
example in ER graphs. Otherwise, most complex networks have been found to be 
disassortative, i.e., r<0, where higher degree nodes tend to be connected with lower degree 
ones rather than nodes with the same k (see Figure 3A). These networks display hubs that 
are not directly connected among them. It has been suggested that this situation confers 
network robustness (Maslov et al. 2002). When r>0, nodes with the same degree tend to be 
linked among them (see figure 3B) and the graph is called assortative. 
 

 

Fig. 3. Illustration of assortativenness. Panel A, a star graph, showing a correlation among 
highly connected nodes with poorly connected ones (r<0). Panel B, a lattice where all nodes 
have k=4. It is the extreme case where nodes with the same degree tend to be linked among 
them (r>0). 

Small world pattern is a qualitatively property that exhibit most real networks. A small world 
criterion compares the clustering coefficient and APL of a real network with the respective 
ER model with the same average degree and size. ER graph constitutes a null model for 
comparison with real data. It captures the properties of a network derived from a purely 
random process of connection. The probability P, defines the likelihood that two vertices are 

linked among them. For ER graphs, 〈kER〉 =PN, where N is the size of the network and 

〈CER〉=k/N. APL follows the expression APLER= log N/log 〈k〉. When a graph GR fulfils the 

conditions APLR ≅ APLER but 〈CR〉 << 〈CER〉 then it is said that GR exhibits a small world (SW) 
pattern. These networks keep their local order (high C) but also allow a very efficient 
communication (low APL) (Watts & Strogatz 1998). 

2.4 Graph analysis and visualization software 
For general purposes, the most popular visualization software is Pajek 
(http://vlado.fmf.uni-lj.si/pub/networks/pajek/), which is free for Windows operating 
systems. Pajek provides a graphic interface and a set of algorithms for graph analysis. 
Graphviz package (http://www.graphviz.org/) is another generic free package but it only 
provides visualization tools. Interestingly, a number of command line tools for complex 
network analysis for Linux/Unix platform can be found at http://www.lsi.upc.edu 
/~pfernandez/ software-networks.html.  
Within the biological context, many databases offer a graph visualization of their content, 
for example KEGG database, or Transfac (http://www.biobase.de/) and Ingenuity 
(http://www.ingenuity.com) commercial databases. 
The most interesting software for cellular network visualization and analysis is Cytoscape 
(http://www.cytoscape.org/). This software is supported by an open community where 
computer scientists can develop plugins for specific purposes: visualization methods, 
algorithms and the integration of the information from biological databases. 
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3. Cellular networks 

Cellular network is the term commonly used for the current interacting molecular sets within 

cells (Albert, 2005; Barabasi & Oltvai, 2004). It includes mainly protein-protein interactions, 

metabolism, gene transcriptional regulatory networks and signal transduction pathways. 

All of them are different subsets of a single large-scale cellular network, since they are 

eventually cross-linked. 

3.1 Protein-protein interaction networks 
Protein-protein interaction (PPI) networks, interactomes and protein maps make reference 
to the collection of proteins interacting by physical contact. Proteins are the nodes and 
physical interactions among them are the links in the graph. 
PPI networks are undirected graphs where two connected proteins are mutually affected. 

They exhibit a power-law decay with an exponential cut-off and small world behaviour. 

Interestingly, as it occurs in most cellular networks, vertices do not represent an individual 

but a molecular species. For this reason the appearance of auto-loops is justified since they 

represent the ability to make homo-multimers.  
 

 

Fig. 4. Fraction of human PPI network filtered by nuclear localization criteria using Gene 
Ontology annotation (http://www.geneontology.org/). All proteins and interactions are 
expected to be in the nucleus. In red are represented those proteins marked as 
transcriptional co-suppressors. In green, transcriptional co-activators. As an example of 
interaction, the relation between mad/max and myc/max transcriptional cancer related 
protein complexes are depicted. Notice that databases may contain artefacts not observed in 
nature (e.g. myc/mad interaction). Below zoom box, protein complex representation from 
crystal structure. Data obtained from HPRD database. Graph generated with Cytoscape. 

Measures such as clustering coefficient or average degree do not consider such a 

circumstance. This can be a source of errors in our analysis depending on how the measures 

have been implemented. To be consistent with the theory we must avoid auto-loops for such 

measures. 
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At low scale, cliques, i.e. full connected subgraphs within the network, constitute a way to 

complex protein detection (Yu, et al. 2006). The smallest clique that can be observed is the 

triangle, suggesting a possible hetero-trimer complex. However, the biological conclusions 

derived from a specific network configuration at the scale of a very few number of elements 

must be contrasted with different information sources. In general, this approximation must 

be considered as a methodology for the inference of potential biological relations among 

proteins to be tested experimentally. We must remain that, in spite of the analysis of 

different PPI networks reveals robust results in their global parameters, database 

information can contain artefacts. This is relevant when our aim is to focuss on 

functional/biological relations of a particular part of the network. After a first identification 

by automatic filters, a manual curation of the database for our study system is 

recommended (see figure 4). 

To this day, large-scale studies have explored the proteome structure in viruses (McCraith et 

al., 2000), yeast (Uetz et al., 2000; Ito et al., 2001; Ptacek et al., 2005), the worm Caenorhabditis 

elegans (Walhout et al., 2000; Li et al., 2004), Helicobacter pylori (Rain et al., 2001), Drosophila 

melanogaster (Giot et al., 2003) and more recently in humans (Rual et al., 2005; Stelzl et al., 

2005). Protein map elucidation is obtained mainly by two large-scale experimental 

approaches, namely, the yeast two-hybrid (Y2H) (Uetz & Hughes, 2000) and the tandem 

affinity purification (TAP) followed by mass spectroscopy (Gavin et al., 2002). Such 

information is collected in annotated databases. Different databases such as MIPS 

(http://mips.gsf.de/), DIP (http://dip.doe-mbi.ucla.edu/), Intact (http://www.ebi.ac.uk/ 

intact/site/index.jsf) and in particular for humans HPRD (www.hprd.org/) are the main 

repositories commonly used for the acquisition of current protein maps. 

3.2 Gene transcriptional regulatory networks 
The assembly of regulatory interactions linking transcriptions factors (TFs) to their target 

genes constitutes the first level of a multilayered network of gene regulation; the so called 

gene transcriptional regulatory networks (GTRN) (Babu et al. 2004). Genome scale 

approaches have provided a reliable picture of the regulatory maps for the prokaryote 

Escherichia coli (Thieffry et al. 1998; Shen-Orr et al. 2002) and the eukaryote Saccharomyces 

cerevisiae (Lee et 2002; Balaji et al. 2006). Directed graphs are the mathematical abstraction of 

GTRNs (Babu et al. 2004, Albert et al. 2005). The regulatory effect of a TF gene (let's say A) 

on a specific target gene (B) is depicted by (A→B). In graph theory, A y B are vertices linked 

by an arrow. TFs are easily identified in the graph since they exhibit outgoing arrows. In 

turn, non TF genes -the target ones- only receive arrows from the TF set. The number of 

outgoing links of a vertex is known as outdegree (denoted by kout) whereas the number of 

incoming edges corresponds with indegree (kin). Interestingly, as a TF can be a regulatory 

target of other TFs, they can exhibit both incoming and outgoing arrows. 

As it is occurs with PPI networks, we can find auto-loops. In this case, it means that a gene 

product causes a regulatory effect in its own promoter. Interestingly, the identification of 

network motifs in GTRN remarks the view of minimal genetic circuits as the building blocks 

of the networks (Shen-Orr et al. 2002; Milo et al. 2002). However, the Achilles heel of this 

approach is that motif analysis is restricted to previous selection criteria by the investigator 

which specifically must define the subgraph to be detected. 
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3.3 Metabolic networks 
Metabolism is the best described cellular network so far. However, a global topological view 
of metabolism was not available until recently (Jeong et al., 2000; Ouzounis & Karp, 2000). 
Metabolic pathways are composed by two types of molecular species: enzymes and 
metabolites. In this case, one or more than one metabolites (substrates) are transformed (in 
products) by enzyme mediation. The resulting graph is known as bipartite graph, since one 
type of vertices (metabolites) is always related through the other type of elements 
(enzymes). Therefore, no enzyme-enzyme and metabolite-metabolite interactions are found. 
This network definition allows defining an arrow from substrates to enzymes and from 
enzymes to products for irreversible reactions. However, arrow definition is not possible for 
reversible reactions. In spite of this graph definition is the most informative, its topological 
treatment results more complicated, and the graph is usually projected over a single type of 
vertex. As figure 5 shows, two types of projections can be done (Wagner & Fell, 2001). One 
way is considering the substrate graph, where each metabolite is a vertex that will be linked 
with those metabolites participating in the same reaction. Alternatively, a reaction graph is 
made by considering reactions as nodes and metabolites as links. This mathematical 
treatment has permitted to uncover the scale free (Jeong et al. 2000), small world behaviour 
and the hierarchical and modular organization of metabolic networks (Wagner & Fell 2001, 
Ravasz et al. 2002). Metabolic pathways can be found in KEGG 
(http://www.genome.jp/kegg/) and Reactome database (http://www.reactome.org/). 

3.4 Cell signalling networks 
These networks depict those processes allowing cells integrating responses to external 
stimuli. They are a combination of metabolic reactions and protein interactions that trigger 
specific changes in gene expression. Protein modifications such as phosphorylation, 
acetylation and ubiquitination, among others, lead to conformational changes allowing 
ligand-protein recognition and functional protein complexes assembling. At the present, 
kinases and phosphatases relations constitute the best described signalling pathways. 
Bibliographic sources provide the current information to reconstruct this kind of networks 
(Ma'ayan et al. 2005). Additionally, several databases compile this information such as the 
Kinbase (http://kinase.com/) and Reactome databases. Interestingly, this kind of networks 
presents a diverse type of vertices and type of connections. By this reason, its biological 
interpretation of topological analysis is not trivial. 

3.5 Filtered networks 
Network analysis can be focussed on a sub-part of the system. Figure 4 illustrates an example 
of this. Gene ontology annotation provides biological information about function and 
localization of genes. However, depending on the particular process to be considered, the 
heterogeneity in the quality of the gene annotation constitutes a bias. In agreement with this 
philosophy, several works have provided relevant biological insights about the biological 
meaning of the network organization (Rodríguez-Caso et al. 2005, Ravazs et al. 2002). 

3.6 Feature based networks. 
As we have seen, several cellular networks offer a picture that captures the biological 
machineries within a living cell. We observe that all of them are constructed by a well 
defined type of interaction. The link features that two elements are involved by physic 
contact (PPI and GTR networks) or transformation process (metabolism). 

www.intechopen.com



Topological Analysis of Cellular Networks 

 

261 

 

Fig. 5. Metabolic network representations (picture modified from Wagner & Fell 2001). Panel 
A, description of the reactions. Panel B, bipartite graph representation. Panel C, substrate 
projection. Panel D respective reaction projection. White vertices represent metabolites 
whereas black vertices represent enzymes. 

Recently, network approach has been applied to define a sort of networks that captures 
relations in a broader sense. The purpose of these networks is not to describe truly 
molecular machinery but to offer a global view of some type of biological property, function 
or consequence. This is the case of the human disease network (Goh et al. 2007) that relates 
the diseases contained in OMIM database with their responsible genes. As it occurs with 
metabolic networks, this constitutes a bipartite graph with two kinds of entities, genes and 
diseases. This network, more than recovering a biological process, give us a conceptual 
picture of the relation between genes and diseases. 
 

 

Fig. 6. Example of a feature based network. Yeast synthetic lethal network obtained from 
BioGRID database (http://www.thebiogrid.org/). Graph generated with Cytoscape.  
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In this direction, the same group goes beyond, constructing a bipartite graph composed of 
US Food and Drug Administration–approved drugs and proteins linked by drug–target 
binary associations. This drug-target protein network does not capture any biological 
machinery but offer a global picture of the relation between drugs and targets by the 
conceptualization of the problem in a graph. As another example, figure 6 illustrates the 
case of Synthetic Lethal network in yeast (Tong et al. 2001), that recovers the information 
of those pair of gene that simultaneously mutated lead to lethality but not when they are 
individually mutated. 

4. Topological analysis of cellular networks 

Since cellular networks are in constant change, here we present the state of the art of different 

cellular networks. The topological analysis is based on the previously described estimators. 

Table 1 summarizes the topological analysis of PPI, metabolic and gene regulatory 
networks. In addition, we have included the yeast synthetic lethal network as an example of 
featured base networks. All these networks present a single giant component and a number 
of very small subgraphs. The statistics are provided for the giant components. In general, 
these networks are sparse graphs. Remarkably, all the networks are dissasortative (r<0), i.e, 
high degree tends to be connected with lower degree. Small world behaviour is clearly 
evidenced in yeast and human PPI networks. Interestingly, these two networks differ in 
their size but present a high similarity in their organization. The two available GTRN 
present a very small APL. The explanation if found in the biology, since only a small fraction 
of genes are TFs. The major fraction of vertices corresponds with terminal genes linked to 
one of these factors. These gene regulatory networks differ in their <C>, in other words, in 
their local organization.  
 

 N L <k> <C>      (<CER>) APL  (APLER) r Source Data 

Human PPI * 9048 34876 7.71 0.16    (8.52 10 -3) 4.26 (4.46) -0.04 HPRD 

Yeast PPI * 4842 17119 7.07 0.10    (1.46 10-2 ) 4.14 (4.34) -0.13 DIP 

E.coli GTRN ** 1589 4030 5.07 0.43    (3.19 10-2) 2.68 (4.54) -0.26 RegulomDB6.0 

Yeast GTRN ** 4441 12864 4.79 0.08    (1.08 10-2) 3.49 (5.36) -0.59
Balaji et al. 

2006 

Human 
metabolism 

2827 5988 4.23 0.00    (1.5  10 -3) 4.55 (5.50) -0.12 KEGG 

Yeast SL * 2287 9616 8.34 0.30    (3.67 10-2) 3.75 (3.65) -0.19 BioGRID 

Table 1.  Global descriptors for the giant component of cellular networks. Notice that, for all 
the cases, giant component represents almost the total number of interactions. Parenthesis 
shows the <C> and APL values are showed for respective ER counterparts (calculated 
according definition described in the text). (*) It indicates a small world pattern. (**) Notice 
that APL is revealed shorter than the expected in ER model. Human metabolism presents 
<C>=0 due to the bipartite nature of the graph.  Graph descriptors were calculated by Gstats 
command line software available at http://www.lsi.upc.edu/~pfernandez/software-
networks.html. Autoloops were eliminated for the topological analysis. 
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Metabolic network corresponds with the bipartite representation. This imposes a restriction 
on the clustering coefficient. Since two vertices of the same nature cannot be connected,  

〈C〉 = 0 by definition. 
In spite of SL network has not a biomolecular machinery correlate, it reveals a small world 
pattern indicating that SL are not trivially organised. In this case, high clustering is 
interpreted as two synthetically lethal genes tend to make a synthetic interaction with a 
common third gene. 
It is remarkable that some relevant properties of these examples can be explained by the 
consideration of the network definition. This suggests that a suitable knowledge of the 
study of the system besides graph theory approach provides the best system study 
comprehension. 

5. Goals and pitfalls of network approach 

Uncovering the molecular world constitutes the new frontier of biology. Large zoological 
and botanical expeditions at the end of nineteen century pursued the characterization of 
organism diversity and their relations. Nowadays, in a similar way, the molecular biologist 
explores the diversity inside the cell. Unfortunately, the current picture of the study system 
is only a sketch of the actual relations between elements and most of the biological details 
are still unknown. Precisely, the relations among elements are the target for graph theory 
approach that has been profusely applied in many real systems. During the last decade, 
graph view has been incorporated to a diverse number of disciplines. This approach opens 
the possibility of a global comprehension of the system, against the predominant 
reductionism of the current scientific thought. We can access to the study of very large 
systems even when we do not know the details. Pioneer works about scale-freeness in 
metabolism, proteome (see the review, Albert 2005), the diameter of the world wide web 
(Albert et al. 1999), well as the widely observed small world behaviour in real networks 
have demonstrated that the pattern of interactions encloses relevant constraints defining the 
internal organisation of networks.  
Graph theory enables a systemic study through the statistical approximation from the 
collection of local interactions; nevertheless, a limitation of such a global understanding is 
precisely its own size. In general for any statistical approach, the larger size of our data the 
more reliable is the statistics. This is not an exception for the global estimators of graph theory 
such as degree distribution, or assortativeness. From a theoretical point of view, the graph 
properties derived from analytical models are established when graph size tends to infinite. 
Therefore, if our study system is not large enough, deviations from the theory are expected. 
In any case, we must remain that the true understanding of our study system will be only 
successful if we exactly know what is the captured from the reality in our graph abstraction 
and what is not. A graph is constructed by considering some particular property that is used 
to link a set of elements. Both of them -elements and their relation type- must be clearly 
defined. Most probably, graph definition does not affect to the topological analysis but it is 
essential for its biological interpretation that is, in the last instance, the aim of the biologist. 
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