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System Request Utterance Detection Based on 
Acoustic and Linguistic Features 

T. Takiguchi, A. Sako, T. Yamagata and Y. Ariki 
Kobe University 

Japan 

1. Introduction    

Robots are now being designed to become a part of the lives of ordinary people in social and 

home environments, such as a service robot at the office, or a robot serving people at a party 

(H. G. Okuno, et al., 2002 ) (J. Miura, et al., 2003). One of the key issues for practical use is 

the development of technologies that allow for user-friendly interfaces. This is because 

many robots that will be designed to serve people in living rooms or party rooms will be 

operated by non-expert users, who might not even be capable of operating a computer 

keyboard. Much research has also been done on the issues of human-robot interaction. For 

example, in (S. Waldherr, et al., 2000), the gesture interface has been described for the 

control of a mobile robot, where a camera is used to track a person, and gestures involving 

arm motions are recognized and used in operating the mobile robot. 

Speech recognition is one of our most effective communication tools when it comes to a 

hands-free (human-robot) interface. Most current speech recognition systems are capable of 

achieving good performance in clean acoustic environments. However, these systems 

require the user to turn the microphone on/off to capture voices only. Also, in hands-free 

environments, degradation in speech recognition performance increases significantly 

because the speech signal may be corrupted by a wide variety of sources, including 

background noise and reverberation. In order to achieve highly effective speech recognition, 

in (H. Asoh, et al., 1999), a spoken dialog interface of a mobile robot was introduced, where 

a microphone array system is used. 

In actual noisy environments, a robust voice detection algorithm plays an especially 
important role in speech recognition, and so on because there is a wide variety of sound 
sources in our daily life, and because the mobile robot is requested to extract only the object 
signal from all kinds of sounds, including background noise. Most conventional systems use 
an energy- and zero-crossing-based voice detection system (R. Stiefelhagen, et al., 2004). 
However, the noise-power-based method causes degradation of the detection performance 
in actual noisy environments. In (T. Takiguchi, et al., 2007), a robust speech/non-speech 
detection algorithm using AdaBoost, which can achieve extremely high detection rates, has 
been described. 
Also, for a hands-free speech interface, it is important to detect commands in spontaneous 
utterances. Most current speech recognition systems are not capable of discriminating 
system requests - utterances that users talk to a system - from human-human conversations. O
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Therefore, a speech interface today requires a physical button which on and off the 
microphone input. If there is no button for a speech interface, all conversations are 
recognized as commands for the system. The button spoils the merit of speech interfaces 
that users do not need to operate by the hand. Concerning this issue, there are researches on 
discriminating system requests from human-human conversation by acoustic features 
calculated from each utterance (S. Yamada, et al., 2005). And also, there are discrimination 
techniques using linguistic features. Keyword or key-phrase spotting based methods (T. 
Kawahara, et al., 1998) (P. Jeanrenaud, et al., 1994) have been proposed. However, using 
keyword spotting based method, it is difficult to distinguish system requests from 
explanations of system usage. It becomes a problem when both utterances contain a same 
“keywords.” For example, the request speech is “come here” and the explanation speech is 
“if you say come here, the robot will come here.” In addition, it costs to construct a network 
grammar to accept flexible expressions. 
In this chapter, an advanced method of discrimination using acoustic features or linguistic 

features is described. The difference of system requests and spontaneous utterances usually 

appears on the head and the tail of the utterance (T. Yamagata, et al., 2007). By separating 

the utterance section and calculating acoustic features from each section, the accuracy of 

discrimination can be improved. The technique based on acoustic features is able to detect 

system requests reasonably because it will not be dependent on any task and it does not 

need to reconstruct the discriminator when the system requests are added or changed. 

Also, consideration of the alternation of speakers is described in this chapter. Considering 

turn-taking before and after the utterance, the performance can be improved. Finally, we 

take linguistic features into account, where Boosting is employed as a discriminant method. 

Its output score is not a probability, though, so the Boosting output score is converted into 

pseudo-probability using a sigmoid function. Though the technique based on linguistic 

features is dependent on tasks and it will need to reconstruct the discriminator when the 

system requests are modified, the accuracy of discrimination using linguistic features is 

better than that of the technique based on acoustic features. 

2. Utterance verification using acoustic features 

We describe the system request detection based on acoustic features first, where SVM 

(Support Vector Machine) is used. The overview of the system is shown in Figure 1. The 

proposed method based on acoustic features is able to detect system requests reasonably, 

because it does not need to reconstruct the discriminator when the system requests are 

added or changed.  
 

 

 
 

Fig. 1. System overview of utterance verification using acoustic features 
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2.1 Acoustic parameters 

Even if we speak unconsciously, there are acoustic differences between utterances to 
equipments and those to humans under the condition the subject equipment is machinelike. 
In our work, we focus on the different characteristics of commands and human-human 
conversations which usually appear on the head and the tail of the utterance. 
The start point and the end point of the utterance are indistinct in chatters while there are no 
sounds before and after the utterance in commands. There are mainly two reasons that 
make the start and the end point unclear. One reason is there are usually fillers and falters in 
chatters while there are short pauses on the head and the tail of utterances in commands. 
We usually put a short pause before a command to clarify and keep quiet until the system 
responds something. The other reason is the following person often begins to talk while the 
current person does not finish talking yet. In this Section, we deal with the former case. To 
put the former phenomenon to practical use, we calculate acoustic parameters not from the 
whole utterance section but from each three sections below. 
To extract the head and the tail of the utterance, the power and zero-crossing are used in this 
work. Figure 2 is the wave form of a command utterance, and Figure 3 is that of a 
spontaneous utterance (chat). The head and tail of the utterance are indistinct in chatters 
while there are no sounds before and after the utterance in commands as described above. 
Therefore, as the head and tail of the utterance contain useful information written above, we 
do not join these margins to the detected utterance section, but calculate acoustic parameters 
(Table 1) also from each margin separately. 
Calculated acoustic parameters are 8 dimensions shown in Table 1, but we calculate them 
from three sections described above. Thus, the acoustic features are 24 dimensions. The 
power is computed by Root Mean Square (RMS). The pitch is calculated by LPC residual 
correlation. 
 

 

Fig. 2. A sample of system request 

 

Fig. 3. A sample of spontaneous utterance (chat) 
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• Power Average Standard deviation Max. Max. – Min. 

• Pitch Average Standard deviation Max. Max. – Min. 

Table 1. Acoustic parameters (Power and Pitch are used.) 

2.2 Turn-taking parameters 

The sounds in the head and tail margins sometimes contain a speech of the next person, 
though it is not so loud. Therefore, we should separate voices of the next person from fillers 
and flatters. Considering which person speaks in each utterance section improves the 
accuracy of utterance verification. For example, the utterance seems to be a chat if speakers 

changes like BAB →→  in each section. In this work, we calculate these turn-taking 

parameters by crosspower-spectrum phase (CSP) (M. Omologo and P. Svaizer, 1996). Under 
the condition two microphones are set up for each person, we can tell the speaker from 
which microphone receives the utterance first. Considering the time lag CSP shows the 
maximum value, we can tell which microphone receives first. Moreover, CSP considers only 
the phase of the wave by normalizing the crosspower. This feature fits the condition that the 
distance of two microphones changes, where the power ratio of two microphones changes. 
The crosspower-spectrum is computed through the short-term Fourier transform applied to 

windowed segments of the signal ][tix  received by the i-th microphone at time t : 

 );(*);();( ωωω njXniXnCS =   (1)                          

where * denotes the complex conjugate, n  is the frame number, and ω  is the spectral 

frequency. Then the normalized crosspower-spectrum is computed by 
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that preserves only information about phase differences between ix  and jx . Finally, the 

inverse Fourier transform is computed to obtain the time lag (delay). 

 );();( 1 ωφ nFlnC −=   (3) 

If the sound source does not move (this means it does not move in an utterance), );( lnC  

should consist of a dominant straight line at the theoretical delay. Therefore, a lag is given as 
follows: 
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In the situation that the microphones are set up for each person, the reliability of the lag is 
the matters. Thus, we calculate D from each section and make them turn-taking parameters. 
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3. Utterance verification using linguistic information 

In this Section, we describe the proposed method that incorporates system request into a 
speech recognition system, where linguistic information in the system request task is used. 

3.1 System request detection integrated with speech recognition 

Speech recognition is formalized to find the most likely word sequence },...,{W 1 Nww=  as 

well as the system request intention }Chat,Request{=s . Given the sequence of observed 

feature vectors O, speech recognition is formalized as follows: 

 

)O(

)OW,,(
maxarg

)O|W,(maxarg)Ŵ,ˆ(

W,

W,

P

sP

sPs

s

s

=

=

 (6) 

The following Eq. (7) and (8) can be derived from the Bayesian theorem, where )O(P  is 

omitted due to independence from s  and W. 

 )W,|O()|W()()OW,,( sPsPsPsP =   (7) 

 )OW,|()W|O()W()OW,,( sPPPsP =   (8) 

Therefore, two scenarios (Eq. (7) and (8)) are considered in this work. First, Eq. (7) means 
that the acoustic model and the language model both depend on request intention s . In Eq. 

(7), we employ the request intention dependent language model and assume that the 
acoustic model is independent from request intention s.  The N-gram which is dependent on 
the request intention is given by 

 ∏ +−−=
i

Niii swwwPsP ),,...,|()|W( 11   (9) 

)Request|W( =sP  and )Chat|W( =sP  are learned from the system request corpus and 

conversation corpus, respectively. After the recognition process using two language models, 
we find the request intention label having the maximum likelihood. 
   Next, the formulation of Eq. (8) consists of normal acoustic and language models. These 
models are the same as speech recognition models without request intention. In addition, 

Eq. (8) includes the model )OW,|(sP  that discriminates system requests based on word 

hypothesis W and observation O directly. )OW,|(sP  is a discrimination model such as 

Boosting or Support Vector Machines (SVM). Here, we employ a Boosting model due to 
computational costs, flexibility of expression and ease of combining various features. 
However, Boosting is not a probabilistic model. It is necessary to convert Boosting output  
f(W,O) into pseudo-probability so that it can be incorporated into the probability-based 
speech recognition system. Consequently, Boosting output is converted into pseudo-
probability using sigmoid function as shown in Figure 4. Sigmoid function can model close 
to the discriminative boundary in detail, and the range of values is 0 to 1. The parameters, a 
and b, are weighting factors of the sigmoid function, and they are estimated by the gradient 
method. Converting Boosting output f (W) into pseudo-probability leads to the following 
derived equations: 
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))W(sigmoid(1O)W,|(

))W(sigmoid(O)W,|Request(

fChatsP

fsP

−≈=
≈=

  (10) 

Here, language information only is used. 
By integrating system request detection with speech recognition, system request detection 
can incorporate not only 1-best results but also hypotheses. In addition, it makes it possible 
to decide the hypothesis for request detection based on a probability framework. For 
example, there are two hypotheses, such as “Come here” and “You say come here.”  Here 
“Come here” is a system request and “You say come here” is a chat. In order to integrate 
these scores and speech recognition probabilities, these scores from AdaBoost are converted 
into pseudo-probabilities. After integration, the hypothesis with the best scores is selected as 
a result of system request detection. Even if the speech recognition probability, 

)W|O()W( PP , of “You say come here.” is larger than “Come here,” when the boosting 

score of “Come here” is high enough, “Come here” will be selected as a final result. 
 

 
Fig. 4. Sigmoid function. Boosting output is converted into pseudo-probability  using the 
sigmoid function. 

3.2 Boosting 

In this subsection, we describe a discrimination model based on Boosting in order to 

calculate )OW,|(sP  in Eq. (10). AdaBoost is one of the ensemble learning methods that 

construct a strong classifier from weak classifiers (R. Schapire, et al., 1998). The AdaBoost 

algorithm uses a set of training data, )},(),...,,{( 11 nn YWYW , where nW  is the n-th feature. In 

this work, the feature is a word (unigram) or a pair of words (N-gram). Y is a set of possible 

labels. For the system request detection, we consider just two possible labels, }1,1{−=Y , 

where the label, 1, means “system request,” and the label, -1, means “chat.” For weak 
classifiers, single-level decision trees (also known as decision stumps) are used as the base 

classifiers (R. Schapire, et al., 2000). The weak learner generates a hypothesis }1,1{: −→Wht  

that has a small error. In the weak learner proposed by Schapire at el., the weak learners 
search all possible terms (unigram word or a pair of words) in training data and check for 
the presence or absence of a term in the given utterance. Once all terms have been searched, 
the weak hypothesis with the lowest score is selected and returned by the weak learner. 
Next, AdaBoost sets a parameter tα  according to Eq. (13). Intuitively, tα  measures the 

importance that is assigned to th . Then the weight )(1 izt+  is updated. 

))(exp(1

1
))((

bWaf
Wfsigmoid

−−+
=

0 

0.5 

1 
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The Eq. (11) leads to the increase of the weight for the data misclassified by th . Therefore, 

the weight tends to concentrate on “hard” data. After T-th iteration, the final hypothesis, 

)(Wf , combines the outputs of the T weak hypotheses using a weighted mojority vote. The 

following shows the overview of the Adaboost. 

Input: n  examples )},(),...,,(),...,,{( 11 nnii YWYWYW  

Initialize: niniz ,...,1,/1)(1 ==  

Do for Tt ,...,1=  

1. Train a weak learner with respect to the weight tz  and obtain hypothesis 

}1,1{: −→Wht  

2. Calculate the training error te  of th . 

 ∑
=

+≠
=

n

i

iit
tt

YWhI
ize

1
2

1))((
)(   (12) 

3. Set 

 
t

t
t

e

e−
=

1
logα   (13) 

4. Update the weight 
Output: final hypothesis 

 ∑
=

=
T

t

tt WhWf

1

)(
||

1
)( α

α
  (14) 

 
Fig. 5. Two person + one system dialog 

4. Experiments 

4.1 Recording conditions and details of corpus 

The overview of the recording condition is shown in Figure 5. The task has the following 
features. 

Chat

System Request

System 

System Request
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• Two people are in proximity to the system concurrently. 

• People talk with each other freely and make requests to the system at will. 

• The system has several kinds of functions (Table 2). 

• Commands and utterances are recorded through microphones clipped to the chest of 
each speaker. 

 

Sound source direction estimation based on CSP 

Move toward/away from sound source 

Obstacle avoidance 

Place a bottle using the gripper 

Functions 

Take a face photo 

Kotchi ni kite. (Come here.) 

Shashin wo totte. (Take my photo.) 

Mukoh he itte. (Go to the other side.) 

Watashi ni tsuite kite. (Come with me.) 

Command 
examples 

Bottle wo oite. (Place the bottle.) 

Table 2. Functions of the robot 

It is ordinary for two or more people to be in close proximity to the system at the same time. 

For example, a driver uses a car navigation system while talking with passengers, or 

someone controls a robot in the presence of an audience. In our experiment, we used the 

robot for the system as shown in Figure 6. The typical usages are to call the robot by saying, 

“Come here” and to have the robot take a picture by speaking “Take my picture.” The robot  
 

 

Fig. 6. Picture of mobile robot built in this work 

can recognize the fixed commands shown in Table 1 at present. However, recorded speeches 

include many other command expressions such as “Come on,” “Come rapidly,” “Come, 

uhh ... here,” etc. These utterances are spoken to control the robot. However the robot 

cannot recognize these at present. We labeled these utterances as a system request since one 

of our purposes is to accept flexible expressions (we collected these utterances on purpose). 

Non-request utterances consist of ordinary conversation statements. These utterances are 
spoken in spontaneous speaking style, and so it is too difficult to recognize accurately. In 
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addition, explanation utterances of the robot usage were included. For example, “You say, 
‘Come here,’ and the robot will come,” “Come here, go away and so on,” etc. Note that these 
utterances include the same phrases that are found in the system requests. 
The length of the recording time is 30 minutes.  We labeled those utterances manually. Table 
3 shows the result of cutting out utterances from the recorded speech data. 
 

Total utterance System request Total vocabulary size 

330 49 700 

Table 3. Total number of utterances and system requests 

4.2 Evaluation of utterance verification using acoustic features 

First, experiments were performed to test the utterance verification (system request 

detection) using the acoustic features. In this work, we used SVM with RBF (Gaussian) 

kernel. When more than two kinds of parameters are used at the same time, we combined 

parameters as follows: 

 ][ 21 PPU βα=  (15) 

Here U  is combined vector and the original feature vectors are 1P , 2P , α  and β  were 

given experimentally. 
Table 4 shows the results of utterance verification evaluated by leave-one-out cross-
validation. In this experiment, we set 0.7 seconds for both margins before and after the clear 
utterance sections. The results are the cases F-measure became the maximum values. The F-
measure became 0.86 where acoustic parameters (24 dim.) are calculated from proposed 
three utterance sections, while that was 0.66 where the feature values (8 dim.) are calculated 
from a whole utterance. Then, adding turn-taking features, it turned out to be 0.89. 
 

 Precision Recall F-measure 

Acoustic (8 dim.) 0.71 0.61 0.66 

Acoustic (24 dim.) 0.80 0.92 0.86 

Acoustic (24 dim.) + 
Turn-taking 

0.87 0.92 0.89 

Table 4. Result of utterance verificat 

4.3 Evaluation of utterance verification using linguistic information 
4.3.1 Conditions of speech recognition 

In the acoustic model, the baseline training data consisted of about 200,000 Japanese 

sentences (200 hours) spoken by 200 males in the Corpus of Spontaneous Japanese (S. Furui 

et al., 2002). Table 5 shows the conditions of acoustic analysis and the specification of HMM 

(left to right). To improve speech recognition accuracy, acoustic model adaptation was 

performed. Utterances for adaptation are different from those in the test set, but that speaker 

who recorded the utterances for adaptation was the same one used in the test set. 

Language models were constructed using manual transcriptions of various utterances. Here, 
to meet open conditions, the language model for recognizing speaker A was constructed by 
transcriptions of speaker B. Note that the dictionary for speech recognition includes all 
words spoken by A and B. Thus, the out-of-vocabulary (OOV) rate was zero. For the multi 
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N-gram method (corresponding to Eq. (7)), language models were constructed for each 
speaker and each request intention (request and conversation). As a result of speech 
recognition, though word accuracy was 42.1%, F-measure of keywords was 0.67. 
 

Sampling rate / Quantization 16 kHz / 16 bit 

Feature vector 39-order MFCC 

Window Hamming 

Frame size / shift 20 / 10 ms 

# of phoneme categories 244 syllable 

# of mixtures 32 

# of states (vowel) 5 states and 3 loops 

# of states (consonant + vowel) 7 states and 5 loops 

Table 5. Experimental conditions of acoustic analysis and HMM 

4.3.2 Results of system request detection 

Experiments of request detection using speech recognition results were also performed 
using the 10-fold cross-validation method. Four experiments (Multi N-gram, sig-Boosting, 
Boosting, Confidence) were performed. Multi N-gram is based on Eq. (7). Sig-Boosting is 
based on Eq. (8). This method is system request detection integrated with speech 
recognition. Sig-Boosting incorporates not only 1-best results of speech recognition but also 
hypotheses. Boosting incorporates only 1-best results. In order to compare a conventional 
method, the experiment using the “confidence” method was performed. This method 
discriminates system requests based on confidence measures of speech recognition. If the 
average confidence measure of each word is larger than a threshold, an utterance is 
discriminated as a system request.  
The experimental results are shown in Figure 7. We can see that sig-Boosting method 
achieved the best performance. Intrinsically, the Boosting method showed high 
 

 

Fig. 7. Results of system request detection using linguistic information 

performance. In addition, sig-Boosting recovered false-negative errors by incorporating 
speech recognition hypotheses. In the case where the 1-best results miss important 
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keywords, considering the hypotheses, the proposed method can recover the keywords 
from the hypotheses and improved the performance. On the other hand, the multi N-gram 
method and confidence method could not achieve performance as high as Boosting 
methods. Especially, these methods tend to mis-classify the utterances whose intention 
depends predominantly on one word: e.g., “toka” (meaning “etc.”). 

5. Conclusion 

To facilitate natural interaction for a system such as mobile robot, a new system request 
utterance detection based on acoustic and linguistic features was employed in this chapter. 
To discriminate commands from human-human conversations by acoustic features, it is 
efficient to consider the head and tail of an utterance. The different characteristics of system 
requests and spontaneous utterances appear on these parts of an utterance. Separating the 
head and the tail of an utterance, the accuracy of discrimination was improved. Considering 
the alternation of speakers using two channel microphones also improved the performance. 
Also we described the system request detection method integrated with a speech 
recognition system. Boosting was employed as a discriminant method. Its output score is 
not a probability, though, so the Boosting output score was converted into pseudo-
probability using a sigmoid function. The experimental results showed that integration of 
system request detection and speech recognition improved the performance of request 
detection. Especially, in the case where 1-best results miss important keywords, the 
proposed method can recover the keywords from the hypotheses and improve the 
performance.  
In the future, we plan to perform experiments using larger corpus and more difficult tasks. 
In addition, we will investigate a context-dependent approach for request detection.  The 
consideration of new kinds of features is also the assignments.  
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