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1. Introduction 

The demand for sophisticated tools for monitoring network utilization and performance has 

been growing rapidly as Internet Service Providers (ISPs) offer their customers more services 

that require quality of service (QoS) guarantees and as ISP networks become increasingly 

complex. Tools for monitoring link delays and faults in an IP network are critical for numerous 

important network management tasks, including providing QoS guarantees to end 

applications (e.g., voice over IP), traffic engineering, ensuring service level agreement (SLA) 

compliance, fault and congestion detection and performance debugging. Consequently, there 

has been a recent flurry of both research and industrial activity in the area of developing novel 

tools and infrastructures for measuring network parameters. 

Existing network monitoring tools can be divided into two categories. Node-oriented tools 
collect monitoring information from network devices (routers, switches and hosts) using 
SNMP/RMON probes [1] or the Cisco NetFlow tool [2]. These are useful for collecting 
statistical and billing information, and for measuring the performance of individual network 
devices (e.g., link bandwidth usage). However, in addition to the need for monitoring 
agents to be installed at every device, these tools cannot monitor network parameters that 
involve several components, like link or end-to-end path latency. The second category 
contains path-oriented tools for connectivity and latency measurement like ping, 
traceroute [3], skitter [4] and tools for bandwidth measurement such as pathchar 
[5], Bing [6], Cprobe [7], Nettimer [8] and pathrate [9]. As an example, skitter 
sends a sequence of probe messages to a set of destinations and measures the latency of a 
link as the difference in the round-trip times of the two probes to the endpoints of the link. 
A benefit of path-oriented tools is that they do not require special monitoring agents to be 
run at each node. However, a node with such a path-oriented monitoring tool, termed a 
monitoring station, is able to measure latencies and monitor faults for only a limited set of 
links in the node's routing tree, e.g., its shortest path tree (SPT). Thus, monitoring stations 
need to be deployed at a few strategic points in the ISP or Enterprise IP network so as to 
maximize network coverage, while minimizing hardware and software infrastructure cost, 
as well as maintenance cost for the stations. Consequently, any monitoring system needs to 
satisfy two basic requirements. O
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1. Coverage - The system should accurately monitor all the links and paths in the network. 
2. Efficiency - The systems should minimize the overhead imposed by monitoring on the 

underlying production network. 
The chapter proposes an efficient two-phased approach for fully and efficiently monitoring 

the latencies of links and paths using path-oriented tools. Our scheme ensures complete 

coverage of measurements by selecting monitoring stations such that each network link is in 

the routing trees of some monitoring station. It also reduces the monitoring overhead which 

consists of two costs: the infrastructure and maintenance cost associated with the 

monitoring stations, as well as the additional network traffic due to probe packets. 

Minimizing the latter is especially important when information is collected frequently in 

order to continuously monitor the state and evolution of the network. In the first phase, the 

scheme addresses the station selection problem. This phase seeks for the locations of a minimal 

set of monitoring stations that are capable to perform all the required monitoring tasks, such 

as monitoring the delay of all the network links. Subsequently, in the second phase, the 

scheme deals with the probe assignment problem, which computes a minimal set of probe 

messages transmitted by each station for satisfying the monitoring requirements. 

Although, the chapter focuses primarily on delay monitoring, the presented approach is 

more generally applicable and can also be used for other management tasks. We consider 

two variants of monitoring systems. A link monitoring (LM) system that guarantees that very 

link is monitored by a monitoring station. Such system is useful for delay monitoring, 

bottleneck links detection and fault isolation, as demonstrated in [10]. A path monitoring 

(PM) system that ensures the coverage of every routing path between any pair of nodes by a 

single station, which provides accurate delay monitoring. 

For link monitoring we show that the problem of computing the minimum set of stations 

whose routing trees (e.g, its shortest path trees), cover all network links is NP-hard. 

Consequently, we map the station selection problem to the set cover problem [11], and we 

use a polynomial-time greedy algorithm that yields a solution within a logarithmic factor of 

the optimal one. For the probe assignment problem, we show that computing the optimal 

probe set for monitoring the latency of all the network links is also NP-hard. To this 

problem, we devise a polynomial-time greedy algorithm that computes a set of probes 

whose cost is within an factor of 2 of the optimal solution. Then, we extend our scheme to 

path monitoring. Initially, we show that even when the number of monitoring stations is 

small (in our example only two monitoring stations) every pair of adjacent links along a 

given routing path may be monitored by two different monitoring stations. This raises the 

need for a path monitoring system in which every path is monitored by a single station. For 

station selection we devise a set-cover-based greedy heuristic that computes solutions with 

logarithmic approximation ratio. Then, we propose a greed algorithm for probe assignment 

and leave the problem of constructing an efficient algorithm with low approximation ratio 

for future work. 

The chapter is organized as follows. It starts with a brief survey of related work in Section 2. 
Section 3 presents the network model and a description of the network monitoring 
framework is given in Section 4. Section 5 describes our link monitoring system and Section 
6 extends our scheme to path monitoring. Section 7 provides simulation results that 
demonstrate the efficiency of our scheme for link monitoring and Section 8 concludes the 
chapter. 
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2. Related work 

The need for low-overhead network monitoring techniques has gained significant attention 
in the recent years and below we provide the most relevant studies to this chapter. The 
network proximity service project, SONAR [12], suggests to add a new client/server service 
that enables hosts to obtain fast estimations of their distance from different locations in the 
Internet. However, the problem of acquiring the latency information is not addressed. The 
IDmaps [13] project produces “latency maps” of the internet using special measurement 
servers called tracers that continuously probe each other to determine their distance. These 
times are subsequently used to approximate the latency of arbitrary network paths. 
Different methods for distributing tracers in the internet are described in [14], one of which 
is to place them such that the distance of each network node to the closest tracer is 
minimized. A drawback of the IDMaps approach is that latency measurements may not be 
accurate. Essentially, due to the small number of paths actually monitored, it is possible for 
errors to be introduced when round-trip times between tracers are used to approximate 
arbitrary path latencies. In [15], Breitbart et al. propose a monitoring scheme where a single 
network operations center (NOC) performs all the required measurements. In order to monitor 
links not in its routing tree, the NOC uses the IP source routing option to explicitly route 
probe packets along these links. The technique of using source routing for determining the 
probe routes has been used by other proposals as well for both fault detection [16] and delay 
monitoring [17]. Unfortunately, due to security problems, many routers frequently disable 
the IP source routing option. Further, routers usually process IP options separately in their 
CPU, which in addition to adversely impacting their performance, also causes packets to 
suffer unknown delays. Consequently, approaches that rely on explicitly routed probe 
packets for delay and fault monitoring may not be feasible in today's ISP and Enterprise 
environments. Another delay monitoring approach was presented by Shavit et al. in [18]. 
They propose to solve a linear system of equations to compute delays for smaller path 
segments from a given a set of end-to-end delay measurements for paths in the network. 
The problem of station placement for delay monitoring has been addressed by several 
studies. In [19], Adler et al. focus on the problem of determining the minimum cost set of 
multicast trees that cover links of interest in a network, which is similar to the station 
selection problem tackled in this chapter. The two-phase scheme of station placement and 
probe assignment have been proposed in [10]. In this work, Bejerano and Rastogi show a 
combined approach for minimizing the cost of both the monitoring stations as well as the 
probe messages. Moreover, they extend their scheme for delay monitoring and fault 
isolation in the presence of multiple failures. In [20] Breitbart et al. consider two variants of 
the station placement problem assuming that the routing tree of the nodes are their shortest 
path trees (SPTs). In the first variant, termed A-Problem, the routing trees of a node may be 
any one of its SPT, while in the second variant, called E-Problem, the routing tree of a node 
can be selected among all the possible SPTs for minimizing the monitoring overhead. For 
both variant they have shown that the problems are NP-hard and they provided 
approximation algorithms. In [21] Nguyen and Thiran developed a technique for locating 
multiple failures in IP networks using active measurement. They also proposed a two-
phased approach, but unlike the work in [10], they optimize first the probe selection and 
only then they compute the location of a minimal set of monitoring stations that can 
generate these probes. Moreover, by using techniques from a max-plus algebra theory, they 
show that the optimal set of probes can be determined in polynomial time. In [22], Suh et al. 
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propose a scheme for cost-effective placement of monitoring stations for passive monitoring 
of IP flows and controlling their sampling rate. Recently, Cantieni et al. [23], reformulate the 
monitoring placement problem. They assume that every node may be a monitoring station 
at any given time and then they ask the question which monitors should be activated and 
what should be their sampling to achieve a given measurement task? To this problem they 
provide optimal solution. 

3. Network model 

We model the Service Provider or Enterprise IP network by an undirected graph G(V,E), 
where the graph nodes, V, denote the network routers and the edges, E, represent the 
communication links connecting them. The number of nodes and edges is denoted by │V│ 
and │E│, respectively. Further, we use Ps,t to denote the path traversed by an IP packet from 
a source node s to a destination node t. In our model, we assume that packets are forwarded 
using standard IP forwarding, that is, each node relies exclusively on the destination 

address in the packet to determine the next hop. Thus, for every node x ∈ Ps,t, Px,t is included 
in Ps,t. In addition, we also assume that Ps,t  is the routing path in the opposite direction from 

node t to node s. This, in turn, implies that for every node x ∈ Ps,t, Ps,x is a prefix of Ps,t. As a 

consequence, it follows that for every node s ∈ V , the subgraph obtained by merging all the 

paths Ps,t, for every t ∈ V , must have a tree topology. We refer to this tree for node s as the 
routing tree (RT) of node s and denote it by Ts. Note that tree Ts defines the routing paths 
from node s to all the other nodes in V and vice versa. 
Observe that for a Service Provider network consisting of a single OSPF area, the RT Ts of 
node s is its shortest path tree (SPT). However, for networks consisting of multiple OSPF 
areas or autonomous systems (that exchange routing information using BGP), packets 
between nodes may not necessarily follow shortest paths. In practice, the topology of RTs 
can be calculated by querying the routing tables of nodes. In our solution, the routing tree of 
node s may be its SPT but this is not an essential requirement. 

We associate a positive cost cu,v with sending a message between any pair of nodes u, v ∈ V . 

For every intermediate node w ∈ Pu,v both cu,w and cv,w are at most cu,v and cu,w + cv,w ≥ cu,v. 
Typical examples of this cost model are the fixed cost, where all messages have the same 
cost, and hop count, where the message cost is the number of hops in its route. 

4. Network monitoring framework 

In this section, we describe our methodology for complete IP network monitoring using 

path-oriented tools. Our primary focus is the measurement of round-trip latency of network 

links and paths. However, our methodology is also applicable for a wide range of 

monitoring tasks, like fault and bottleneck link detection, as presented in [10]. For 

monitoring the round-trip delay of a link e ∈ E, a node s ∈ V such that e belongs to s's RT 

(that is, e ∈ Ts), must be selected as a monitoring station. Node s sends two probe messages1 

to the end-points of e, which travel almost identical routes except for the link e. On receiving 

a probe message, the receiver replies immediately by sending a probe reply message to the 

                                                 
1 The probe messages are implemented by using "ICMP ECHO REQUEST/REPLY" 
messages similar to ping. 
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monitoring station. Thus, the monitoring station s can estimate the round-trip delay of the 

link by measuring the difference in the round-trip times of the two probe messages. 

From the above description, it follows that a monitoring station can only measure the delays 

of links in its RT. Consequently, a monitoring system designated for measuring the delays of 

all network links has to find a set of monitoring stations S ⊆ V and a probe assignment  

A ⊂ S × V. A probe assignment is basically a set of pairs {(s, u)│s ∈ S, u ∈ V} such that each 

pair (s, u) represents a probe message that is sent from the monitoring station s to node u. 

The set S and the probe assignment A are required to satisfy two constraints: 

1. The covering monitoring station set constraint guarantees that all links are covered by the 

RTs of the nodes in S, i.e., s∈S Ts = E. 

2. The covering probe assignment constraint ensures that for every edge e = (u, v) ∈ E, there 

is a node s ∈ S such that e ∈ Ts and A contains the pairs2 (s, u) and (s, v). In other words, 

every link is monitored by at least one monitoring station. 

A pair (S,A) that satisfies the above constraints is referred to as a feasible solution. In instances 

where the monitoring stations are selected from a subset Y ⊂ V , we assume that s∈Y Ts = E 
which guarantees the existence of a feasible solution. 

The overhead of a monitoring system is composed of two components, the overhead of 

installing and maintaining the monitoring stations and the communication cost of sending 

probe messages. In practice, it is preferable to have as few stations as possible since this 

reduces operational costs, and so we adopt a two-phased approach to optimizing 

monitoring overheads. In the first phase, we select an optimal set of monitoring stations, 

while in the second, we compute the optimal probes for the selected stations. Let wv be the 

cost of selecting node v ∈ V as a monitoring station. The optimal station selection S is the one 

that satisfies the covering monitoring station set requirement and minimizes the total cost of 

all the monitoring stations given be the sum Σs∈S ws. After selecting the monitoring stations 

S, the optimal probe assignment A is one that satisfies the covering probe assignment 

constraint and minimizes the total probing cost defined by the sum Σ(s,v)∈  cs,v. Note that 

choosing csv = 1 essentially results in an assignment A with the minimum number of probes, 

while choosing cs,v to be the minimum number of hops between s and v yields a set of probes 

that traverse the fewest possible network links.  
A final component of our monitoring infrastructure is the network operations center (NOC) 

which is responsible for coordinating the actions of the set of monitoring stations S. The 

NOC queries the network nodes to determine their RTs, and subsequently uses these to 

compute a near-optimal set of monitoring stations and a probe assignment for them. In the 

following two sections, we develop approximation algorithms for the station selection and 

probe assignment problems. Section 5 considers the problem of monitoring links, while path 

monitoring is addressed in Section 6. Note that our proposed framework deals only with the 

aspect of efficient collection of monitoring information. It does not deal with the aspects of 

analyzing and distributing this information, which are application-dependent. 

                                                 
2 If one of the end points of e is in S, let say u ∈ S, then A is only required to include the 

probe (u, v). 
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5. Link monitoring 

We show in this section that for link monitoring both the station selection and probe 
assignment problems are NP-hard. Then, we present polynomialtime approximation 
algorithms for solving them. For station selection, we develop a ln(│V│)-approximation 
algorithm where the lower bound is 1/2· ln(│V│) and for probe assignment, we present a 2 
approximation algorithm. 

5.1 An efficient station selection algorithm 
The problem addressed here is covering all the graph edges with a small number of RTs, 
and we consider both the un-weighted and the weighted versions of this problem. 
Definition 1 (The Link Monitoring Problem - LM): 

Given a graph G(V,E) and a RT, Tv, for every node v ∈ V, find the smallest set S ⊆ V such 

that v∈S Tv = E.                                                                                                                                     □ 
Definition 2 (The Weighted LM Problem - WLM) : 

Given a graph G(V,E) with a non-negative weight wv and a RT Tv for every node v ∈ V , find 

the set S ⊆ V such that v∈S Tv = E and the sum Σ v∈S wv is minimum.                                        □ 

We show a similarity between the link monitoring problem and the set cover (SC) problem, 

which is a well-known NP-hard problem [24]. An efficient algorithm for solving one of them 

can be also used to efficiently solve the other. Let us recall the SC problem. Consider an 

instance I(Z,Q) of the SC problem, where Z = {z1, z2, … , zm} is a universe of m elements and 

Q = {Q1,Q2, … ,Qn} is a collection of n subsets of Z, (assume that Q∈  Q = Z). The SC 

problem seeks to find the smallest collection of subsets S ⊆ Q such that their union contains 

all the elements in Z, i.e., Q∈  Q = Z. At the weighted version of the CS problem, each one 

of the subsets Q ∈ Q has a cost wQ and the optimal solution is the lowest-cost collection of 

subsets S ⊆ Q, such that their union contains all the elements in Z. For SC problem the 

greedy heuristic [11] is a commonly used approximation algorithm and it achieves a tight 

approximation ratio of ln(k), where k is the size of the biggest set Q ∈ Q. Note that in the 

worst case k = m. 
 

 

Fig. 1. The graph G (I)(V,E) for the given instance of the SC problem. 

5.1.1 Hardness of the LM and WLM problems 
Theorem 1 The LM and WLM problems are NP-hard, even when the routing tree (RT) of each node 
is restricted to be its shortest path tree (SPT). 
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Fig. 2. The RTs of nodes r(2), and s1. 

Proof: We show that the LM problem is NP-hard by presenting a polynomial reduction from 
the set cover problem to the LM problem. From this follows that also the WLM problem is 

NP-hard. Consider an instance I(Z,Q) of the SC problem. Our reduction R(I) constructs the 

graph G (I)(V,E) where the RT of each node v ∈ V is also its shortest path tree. For 
determining these RTs, each edge is associated with a weight3, and the graph contains the 

following nodes and edges. For each element zi ∈ Z, it contains two connected nodes ui and 

wi. For each set Qj ∈ Q, we add a node, labeled by sj , and the edges (sj , ui) for each element zi 

∈ Qj . In addition, we use an auxiliary structure, termed an anchor clique x, which is a clique 
with three nodes, labeled by x(1), x(2) and x(3), and only node x(1) has additional incident 

edges. For each element zi ∈ Z, the graph G (I) contains one anchor clique xi whose 

attachment point, , is connected to the nodes ui and wi. The weights of all the edges 

described above is 1. Finally, the graph G (I) contains an additional anchor clique r that is 
connected to the remaining nodes and anchor cliques of the graph, and the weights of these 

edges is 1 + ε. An example of such a graph is depicted in Figure 1 for an instance of the SC 

problem with 3 elements {z1, z2, z3} and two sets Q1 = {z1, z2} and Q2 = {z2, z3}. 
We claim that there is a solution of size k to the given SC problem if and only if there is a 
solution of size k+m+1 to the LM instance defined by the graph G (I)(V,E). We begin by 
showing that if there is a solution to the SC problem of size k then there exists a set S of at 
most k+m+1 stations that covers all the edges in G (I). Let the solution of the SC problem 

consist of the sets . The set S of monitoring stations contains the nodes r(2),  

(for each element zi ∈ Z) and . We show that the set S contains k + m + 1 nodes 

that cover all the graph edges. The tree  covers edges (r(1), r(2)), (r(2), r(3)), all edges (ui, 

r(1)), (wi, r(1)), ( , r(1)), ( , ), ( , ), for each element zi, and the edges (sj , r(1)) for 

every set Qj ∈ Q. An example of such a  is depicted in Figure 2-(a). Similarly, for every zi 

∈ Z, the RT 
 

covers edges ( , ), ( , ), ( , ui) and ( , wi).   also covers 

all edges (sj, ui) for every set Qj that contains element zi, and edges (r(1), r(2)) and (r(1), r(3)). An 
example of the RT  is depicted in Figure 2-(b). Thus, the only remaining uncovered 

edges are (ui, wi), for each element zi. Since , j = 1, … , k, is a solution to the SC problem, 

these edges are covered by the RTs , as depicted in Figure 2- (c). Thus, S is a set of at 

most k +m+ 1 stations that covers all the edges in the graph G (I). 

                                                 
3 These weights do not represent communication costs. 
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Next, we show that if there is a set of at most k+m+1 stations that covers all the graph edges 

then there is a solution for the SC problem of size at most k. Note that there needs to be a 

monitoring station in each anchor clique and suppose w.l.o.g that the selected stations are 

r(2) and  for each element zi. None of these m + 1 stations covers edges (ui,wi) for elements 

zi ∈ Z. The other k monitoring stations are placed in the nodes ui,wi and sj. In order to cover 

edge (ui,wi), there needs to have a station at one of the nodes ui, wi or sj for some set Qj 

containing element zi. Also, observe that the RTs of ui and wi cover only edge (ui,wi) for 

element zi and no other element edges. Similarly, the RT of sj covers only edges (ui,wi) for 

elements zi contained in set Qj . Let S be a collection of sets defined as follows. For every 

monitoring station at any node sj add the set Qj ∈ Q to S, and for every monitoring station at 

any node ui or wi we add to S an arbitrary set Qj ∈ Q such that zi ∈ Qj . Since the set of 

monitoring stations cover all the element edges, the collection S covers all the elements of Z, 

and is a solution to the SC problem of size at most k.                                                                     □ 

The above reduction R(I) can be extended to derive a lower bound for the best 

approximation ratio achievable by any algorithm. This reduction and the proof of Theorem 

2 are given in [25]. 

Theorem 2 The lower bound of any approximation algorithm for the LM problem is · ln(│V│). 

5.1.2 A greedy algorithm for the LM and WLM problems 
We turn to present an efficient algorithm for solving the LM and the WLM problems. The 

algorithm maps the given instance of LM or WLM problem to an instance of the SC problem 

and uses a greedy heuristic for solving the SC instance, which achieves a near tight upper 

bound for the LM and WLM problems. 

 

 

Fig. 3. A formal description of the Greedy Heuristic for Set-Cover. 

For a given WLM problem involving the graph G(V,E) we define an instance of the SC 
problem as follows. The set of edges, E, defines the universe of elements, Z. The collection of 

sets Q includes the subsets Qv = {e│e ∈ Tv} for every node v ∈ V, where the weight of each 

subset Qv is equal to wv, the weight of the corresponding node v. The greedy heuristic is an 

iterative algorithm that selects in each iteration the most cost-effective set. Let C ⊆ Z be the 

set of uncovered elements. In addition, let nv = {Qv ∩ C} be the number of uncovered 

elements in the set Qv, for every v ∈ V , at the beginning of each iteration. The algorithm 
works as follows. It initializes C ← Z. Then, in each iteration, it selects the set Qv with the 
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minimum  ratio and removes all its elements from the set C. This step is done until C 

becomes empty. A formal description of the algorithm is presented in Figure 3. 
Theorem 3 The greedy algorithm computes a ln(│V│)-approximation for the LM and WLM 
problems. 
Proof: According to [11], the greedy algorithm is a H(d)-approximation algorithm for the SC 

problem, where d is the size of the biggest subset and  is the harmonic 

sequence. For the LM and WLM problems, every subset includes all the edges of the 
corresponding RT and its size is exactly│V│- 1. Hence, the approximation ratio of the 
greedy algorithm is H(│V│- 1) ≤ ln(│V│). 
Note that the worst-case time complexity of the greedy algorithm can be shown to be 

O(│V│3). 

5.2 An efficient probe assignment algorithm 

Once we have selected a set S of monitoring stations, we need to compute a probe 

assignment A for measuring the latency of the network links. Recall from Section 4 that a 

feasible probe assignment is a set of pairs {(s, u)│s ∈ S, u ∈V}. Each pair (s, u) represents a 

probe message that is sent from station s to node u and for every edge e = (u, v) ∈ E, there is 

a station s ∈ S such that e ∈ Ts and A contains the pairs (s, u) and (s, v). The cost of a probe 

assignment A is COST  = Σ(s,u)∈  cs,u and the optimal probe assignment is the one with the 

minimum cost. 

5.2.1 Hardness of the probe assignment problem 
In the following, we show that computing the optimal probe assignment is NP-hard even if 

we choose all cs,u = 1 that minimizes the number of probes in A. A similar proof can be used 

to show that the problem is NP-hard for the case when cs,u equals the minimum number of 

hops between s and u (this results in a set of probes traversing the fewest possible network 

links).  
 

 

Fig. 4. The RTs of nodes r and u13. 

Theorem 4 Given a set of stations S, the problem of computing the optimal probe assignment is NP-
hard. 
Proof: We show a reduction from the vertex cover (VC) problem [24], which is as follows: 

Given k and a graph  = ( , ), does there exist a subset V’⊆  containing at most k 

vertices such that each edge in  is incident on some node in V’. For a graph , we define 
an instance of the probe assignment problem, and show that there is a vertex cover of size at 

most k for  if and only if there is a feasible probe assignment A with cost no more than 
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COST  = 5·│ │+│ │ + k. We assume that all cs,u = 1 (thus, COST  is the number of 

probes in A). 

For a graph , we construct the network graph G(V,E) and a set of stations S for the probe 

assignment problem as follows. In addition to a root node r, the graph G contains, for each 

node  in , four nodes denoted by wi, ui1, ui2 and ui3. These nodes are connected with the 

following edges (wi, r), (wi,ui1), (ui1, ui2), (ui1, ui3) and (ui2, ui3). Also, for edge ( , ) in , we 

add the edge (wi,wj) to G. For instance, the graph G for  containing nodes ,  and , 

and edges ( , ) and ( , ) is shown in Figure 4. The weight of each edge (wi,wj) in G is 

set to 1 + ε, while the remaining edges have a weight of 1. Finally, we assume that there are 

monitoring stations at node r and nodes ui3 for each vertex  ∈ . Figure 4 illustrates the 

RTs of nodes r and u13. Note that edge (wi,wj) is only contained in the RTs of ui3 and uj3, and 

(ui1, ui2) is not contained in the RT of ui3. 

We first show that if there exists a vertex cover V’of size at most k for , then there exists a 

feasible assignment A containing no more than 5·│ │+│ │+ k probes. For measuring the 

latency of the five edges corresponding to  ∈ , A contains five probe messages: (r,wi), (r, 

ui1), (r, ui2), (ui3, ui1) and (ui3, ui2). So (wi,wj) (corresponding to edges ( , ) in ) are the only 

edges in G whose latency still remains to be measured. Since V’ is a vertex cover of , it 

must contain one of  or . Suppose  ∈ V’. Then, A contains the following two probes 

(ui3,wi) and (ui3,wj) for each edge (wi,wj ). Since the probe message (ui3,wi) is common to the 

measurement of all edges (wi,wj) corresponding to edges covered by  ∈ V’ in , and size 

of V’ is at most k, A contains at most 5· │ │+│ │ + k probes. 

We next show that if there exists a feasible probe assignment A containing at most  

5·│  │+│ │+k probes, then there exists a vertex cover of size at most k for . Let V’ 

consist of all nodes  such that A contains the probe (ui3,wi). Since each edge (wi,wj) is in the 

RT of only ui3 or uj3, A must contain one of (ui3,wi) or (uj3,wj ), and thus V’ must be a vertex 

cover of . Further, we can show that V’ contains at most k nodes. Suppose that this is not 

the case and V’ contains more than k nodes. Then, A must contain greater than k probes 

(ui3,wi) for ∈ . Further, in order to measure the latencies of all edges in E, A must contain 

5·│  │+│ │ additional probes. Of these, │ │ are needed for edges (wi,wj ), 3·│ │ for 

edges (ui3, ui1), (ui3, ui2) and (r,wi), and 2·│ │ for edges (ui1, ui2). A contains 2 probe 

messages for each edge (ui1, ui2) because the edge does not belong to the RT of ui3 and thus 2 

probe messages (v, ui2) and (v, ui1), v ≠ ui3 are needed to measure the latency of edge (ui1, ui2). 

This, however, leads to a contradiction since A would contain more than 5·│ │+│ │ + k 

probes. Thus V’ must be a vertex cover of size no greater than k.                                                □ 

5.2.2 Probe assignment algorithms 

We first describe a simple probe assignment algorithm that computes an assignment A whose 

cost is within a factor of 2 of the optimal. Consider a set of monitoring stations S and for 

every edge e ∈ E, let Se = {s│s ∈ S ∧ e ∈ Ts} be the set of stations that can monitor e. For each e 

= (u, v) ∈ E, select the station se ∈ Se for which the cost  is minimum. Then add 

the pairs (se, u) and (se, v) to A. As a result, the returned assignment is, 
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Theorem 5 The approximation ratio of the simple probe assignment algorithm is 2. 

Proof: For monitoring the delay of any edge e ∈ E, at least one station s ∈ S must send two 
probe messages, one to each endpoint of e. As a result, in any feasible probe assignment at 
least one probe message can be associated with each edge e. Let it be the message that is sent 

to the farthest endpoint of e from the monitoring station. Let A* be the optimal probe 

assignment and let  be the station that monitors edge e in A*. So, in A*, the cost of 

monitoring edge e = (u, v) is at least max{ ,u, ,v}. Let se be the selected station for 

monitoring edge e in the assignment A returned by the simple probe assignment algorithm. 

se minimizes the cost cs,u + cs,v, for every s ∈ Se. Thus, ,u + ,v ≤ ,u +  ,v ≤ 2· max{ ,u, 

,v}. Thus, COST  ≤ 2· COST *.                                                                                                □ 

Note that the time complexity of the simple probe assignment algorithm can be shown to be 
O(│S│·│V│2). 
Example 1 This example shows that the simple probe assignment algorithm has a tight 
approximation ratio of 2. Suppose that the cost of sending any message is 1 and consider the 
graph depicted in Figure 5. Let the monitoring stations be S = {s1, s2} and consider the 

following message assignment, A, that may be calculated by the simple algorithm. The 

edges (s1, s2), (s1, v1) and (vi, vi+1) of every odd i are assigned to station s1. The edges (s2, v1) 
and (vi, vi+1) of every even i are assigned to station s2. In this message assignment both s1 and 
s2 send probe messages to every node vi and in additional s1 send probe message to s2. 

Hence, COST  = 1 + 2·n. At the optimal assignment, A*, all the edges (vi, vi+1) are assigned 

to a single station either s1 or s2. Here, s1 sends messages to s2 and v1, station s2 also sends 
message to v1, and one message is sent to every node vi, i > 1 either from s1 or s2. Hence, 

COST *= 2 + n, and the limit 
  

 

 

Fig. 5. An example of a probe assignment that cost twice than the optimal. 

We turn now to describe a greedy probe assignment algorithm that also guarantees a cost 
within a factor of 2 of the optimal, but yields better results than the simple algorithm in the 
average case. It is based on the observation that a pair of probe messages is needed for 
monitoring a link, however, a single message may appear in several such pairs. It attempts 
to maximize the usage of each message for monitoring the delay of several adjacent links. 

This is an iterative algorithm that keeps for each station-edge pair (s, e), e ∈ Ts, the current 
cost, ws,e, of monitoring edge e by station s. At each iteration the algorithm select the pair (s’, 

e’) with the minimal cost and add the required messages to the message assignment A. If 

several pairs have the same cost the one with minimal number of hopes between the station 

and the edge is selected. Probe messages in A are considered as already been paid and the 

algorithm update the cost of monitoring the adjacent edges of e’ by station s’. This operation 
is done until all the edges are monitored. A formal description of the algorithm is given in 
Figure 6, where L is the set of unassigned edges and the initial value of ws,e←cs,u + cs,v, for 

every e = (u, v) ∈ E and s ∈ Se. 
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Fig. 6. The Greedy Probe Assignment Algorithm. 

Recall that the algorithm assigns links to the monitoring stations from near to far. First it 
assigns to each station its adjacent links. Then it continues by assigning links, which are 
adjacent to the already assigned links. In this way it attempts to avoid the situation where 
two adjacent links, that should be assigned to the same station, eventually are assigned to 
two different monitoring stations. The greedy algorithm yields the optimal probe 
assignment for the graph in Example 1. 
Theorem 6 The approximation ratio of the greedy probe assignment algorithm is 2. 

Proof: Each link e = (u, v) ∈E is monitored by the station that minimize the cost ws,e. This cost 
is at most . As we have shown in Theorem 5 this guarantees a solution 

with in a factor of 2 from the optimal.                                                                                               □ 

6. Path monitoring algorithms 

In this section, we address the problem of designing an accurate path monitoring system that 
guarantees that every routing path is monitored by a single monitoring station. First, we 
present the need for path monitoring and then we provide greedy algorithms for station 
selection and probe assignment. 

6.1 The need for path monitoring 
A delay-monitoring system should be able to provide accurate estimates of the end-to-end 
delay of the routing paths between arbitrary nodes in the network. In the monitoring 
framework described in the previous section, each link is associated with a single 
monitoring station that monitors its delay. Thus, the end-to-end delay of any path can be 
estimated by accumulating the delays of all the links along the path. A drawback of this 
approach is that the accuracy of a path delay estimation decreases as the number of links 
that compose the path increases. A better estimate can be achieved by partitioning each path 
into a few contiguous segments. Each segment is then required to be in the RT of a single 
monitoring station, which estimates its delay by sending two probe messages to the 
segment's end-points. Of course, the best estimate of delay is obtained when every path 
consists of a single segment. Unfortunately, the link monitoring scheme presented in Section 
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5.1 cannot guarantee an upper bound on the number of segments in a path. In fact, this 
number may be as high as the number of links in the path, even when the number of 
monitoring stations is small, as illustrated by the following example. 

Example 2 Consider a graph that consists of a grid of size k × k and two additional nodes, a 

and b, as depicted in Figure 7-(a). The weight of each grid edge is 1 except for edges along 

the main diagonal from node c to d whose weights are 1-ε. Also, the weights of edges 

incident on nodes a and b vary between 1* and k* as shown in Figure 7-(a), where n* = n· (1 - 

ε). Monitoring stations are located at nodes a and b, and their RTs are along their SPTs, as 

shown in Figures 7-(b) and 7-(c), respectively. In this graph, the shortest path from node c to 

d is composed of the edges along the main diagonal of the grid, as shown in Figure 7-(d). 

Note that any pair of adjacent edges along this path are monitored by two different stations. 

Thus, each edge in this path represents a separate segment and the number of segments that 

cover this path is 2 · (k-1), even though the number of stations is only two.                              □ 
In this section, we address the problem of designing an accurate path monitoring system that 
guarantees that every routing path is monitored by a single station. Thus, for every path Pu,v 

there is a monitoring station s ∈ S such that Pu,v ∈ Ts. In such case, the end-to-end delay of 
the path can be estimated by sending at most three probe messages, as described later in 
Sub-Section 6.3. 
 

 

Fig. 7. An example where each edge along a given path is included in a separate segment. 

6.2 An efficient station selection algorithm 
The station selection problem for path monitoring is defined as follows. 
Definition 3 (The Weighted Path Monitoring Problem - WPM): Given a graph G(V,E), with 

a weight wv and a RT Tv for every node v ∈ V , and a routing path Pu,v between any pair of 
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nodes u, v ∈ V , find the set S ⊆ V that minimizes the sum Σv∈S wv such that for every pair u, 

v ∈ V there is a station s ∈ S such that Pu,v ⊆ Ts.                                                                               □ 
In the un-weighted version of the WPM problem, termed the path monitoring (PM) problem, 
the weight of every node is 1. 
 

 

Fig. 8. An example of a graph G(V,E) and the corresponding graph G#  ( V#  , E# ). 

Theorem 7 The PM and WPM problems are both NP-Hard. 
Proof: We show that the PM and WPM problems are NP-hard by presenting a polynomial 
reduction from the vertex cover (VC) problem4 to the PM problem. Since the VC problem is a 
well-known NP-complete problem this proves that the PM and the WPM problems are also 
NP-hard. 
Consider the following reduction from the VC problem to the PM problem. For a given 

graph G(V,E) we construct a graph G# ( V#  , E# ) that contains the following nodes and edges. 

V# = V  {r1, r2, r3, r4, r5} and the edges E# = E {(v, r1)│v ∈ V}  {(r1, r2), (r1, r3), (r1, r4), (r1, r5), 

(r2, r3), (r4, r5)}. The weight of every edge e ∈ E is 3 and the weight of any edge e ∉ E is 2. In 
the following R = {r1, r2, r3, r4, r5}. An example of such graph is given in Figure 8. 
Now we will show that the given VC instance, graph G(V,E), has a solution, S of size k if and 

only if the PM instance, graph G# (V# , E# ) has a solution, S#  of size k + 2. In this proof we 

assume without lose of generality that the routing tree (RT) of every node is its shortest path 
tree (SPT). First, let considered the auxiliary structure defined by the nodes in R. The edge 
(r2, r3) is covered only by the SPTs  and . Therefore, one of these nodes must be 

included in S# . Similarly, one of the nodes r4 or r5 must be included in S#  for covering the 

edge (r4, r5). Suppose without lose of generality that the selected nodes are r2 and r4. 

Let us turn to describe the different SPTs of the nodes in G# (V# , E# ). The SPTs  and  

are very similar. The SPT  contains the edge (r2, r3) and all the incident edges of node r1 

except edge (r1, r3). The SPT  contains the edge (r4, r5) and all the incident edges of node 
r1 except edge (r1, r5). These two SPTs together guarantee that any shortest path that one of 
its end-node is in the set R is covered. They also cover the shortest path between every pair 

of nodes u, v ∈ V such that (u, v) ∉ E. The only shortest paths that are not covered by the 
two SPTs  and  are the one-edge paths defined by E. Let Nv be the set of adjacent 

nodes to node v in the graph G# (V# , E# ). The SPT Tv of every node v ∈ V contains of the set of 

edges, Tv = {(v, u)│u ∈ Nv}  {(r1, u)│u ∉ V#  - Nv}. 

                                                 
4 Definition of the vertex cover problem is given in the proof of Theorem 4. 
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Consider a solution S of size k to the VC problem defined by graph G(V,E). Then S#  = S  

{r2, r4} is a solution of size k+2 to the corresponding PM instance G# (V# , E# ). At least one end-

point of every edge e ∈ E is a node in S. Therefore, s∈S Ts covers all the paths with only one 
edge between any pairs of nodes in V . The rest of the paths are covered by the SPTs  and 

. Hence, S#  is a solution of size k + 2 to the PM problem. 

Let S#  be a solution of size k + 2 to the PM problem defined by the graph G# (V# , E# ). Then S 

= S#  ∩V is a solution of size at most k to the VC instance G(V,E). The set S#  must include at 

least two nodes from the set R. Thus, │S│≤ k. The SPTs of the nodes in R do not contain any 
edge in E. Therefore the edges of E are covered only by SPTs of nodes in S. Since for every 

node v ∈ V holds that Tv ∩ E = {(v, u)│u ∈ Nv – {r1}, The set S is a solution to the instance 
G(V,E) of the given VC problem.                                                                                                       □ 

6.2.1 Lower bounds for the PM and WPM problems 

We now turn our attention to computing the lower bounds on the best approximations for 

the PM and WPM problems. In the sequel, we limit our discussion to cases where 

monitoring stations are selected from a given subset of nodes Y ⊆ V . In our lower bound 

proof, we use a polynomial reduction, , from any instance I(Z,Q) of the SC problem to 

a corresponding PM instance. The graph (V,E) computed by the reduction  

contains the following nodes. The nodes ui and sj for every element zi ∈ Z and set Qj ∈ Q, 

respectively, and three additional nodes u0, t and r. The node u0 corresponds to a dummy 

element z0 that is included in every set Qj ∈ Q, and each one of the nodes t and r is the hub of 

a star that is connected to the rest of the nodes. The weight of all the graph edges is 1. An 

example of such a graph  (V,E) is depicted in Figure 9-(a), for the SC instance with 

four elements {z1, z2, z3, z4} and three sets Q1 = {z1, z2}, Q2 = {z2, z4}, Q3 = {z3, z4}. 
We next describe the routing paths between every pair of nodes, which are along their 
shortest paths. The nodes t and r have a direct edge to every other node. The shortest path 
between every pair of nodes sj and sk is through node t, and between every pair ui and ul, it is 

through node r. Between every pair of nodes sj and ui for a set Qj ∈ Q and an element zi ∈ Z, 

the shortest path traverses through node t if zi ∈ Qj , otherwise it passes through node r. The 
RTs of the various nodes for of the given example above are depicted in Figure 9. Moreover, 

for the proof, let assume that the set of possible monitoring stations is Y = {sj│∀Qj ∈ Q}  {r}. 

Lemma 1 Consider an instance I(Z,Q) of the SC problem and the corresponding graph  (V,E) 

and set Y. Then there is a solution of size k to the SC problem if and only if there is a solution of size  

k + 1 to the corresponding PM problem defined by  (V,E) and Y. 

Proof: Let S be a solution of size k to the given SC instance. Let set  = {sj │Qj ∈ S}  {r}. We 

claim that  is a feasible solution of size k + 1 to the given PM problem. First, observe that  

⊆ Y . Further, the RT Tr covers all the shortest paths that pass through node r. Also, the RT 

of any node sj ∈  for a set Qj ∈ Q covers all the shortest paths between arbitrary pairs of 

nodes sj and sk. Thus, we only need to show that all the shortest paths between pairs of 
nodes sk and ui that pass through node t are also covered. This is satisfied since for every ui, 

there is a Qj ∈ S such that zi ∈ Qj . Thus, sj ∈  and  contains all such paths between ui and 

sk through t. 
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Fig. 9. The graph  (V,E) and the RTs of the nodes. 

Now consider a solution  of size k + 1 to the PM problem and let S = {Qj │sj ∈ }. We claim 

that S is a solution of size k to the given SC problem. Note that r ∈  for covering all the 

shortest paths between node u0 and any node ui. This is because element z0 is contained in all 

sets of Q and thus edge (u0, r) is not contained in any RT . Hence, S is of size k. The set   

 – {r} covers all the shortest paths that pass through node t. Every element zi ∈ Z appears in 

at least one set Qk ∈ Q. Thus, there is a shortest path through t between every node ui and at 

least one node sk. This path is covered by at least one node sj ∈  for whom the shortest path 

to ui also passes through t. As a result, for every element zi ∈ Z there is a set Qj ∈ S such that 

zi ∈ Qj .                                                                                                                                                    □ 
Theorem 8 The lower bound of any approximation algorithm for the PM and WPM problems is 
ln(│V │).  
Proof: Let J be a bad SC instance with m elements and  subsets, as 

constructed in [26] for proving the ln(m) lower bound for the SC problem. Let (J) be the 

graph calculated by . The lower bound for the PM problem, PM(│V│), satisfies, 

 

The number of nodes in the graph (J) is . Consequently, 

for a large m we assume that │V│ 0  m and thus, PM(│V│) ≥ ln(│V│).                                     □ 
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6.2.2 A greedy algorithm for station selection 
Similar to the WLM problem, an efficient solution to a WPM instance is obtained by 

mapping it to an instance of the CS problem and using the greedy heuristic given in Figure 3 

to solve this problem. Consider a graph G(V,E), a weight wv and an RT Tv for every node v ∈ 

V and let Pu,v be the routing path between any nodes u, v ∈ V. The corresponding SC 

instance in as follows. Every shortest path Pu,v  is represented by an element, denoted by  

[u, v]. Thus, the universe of elements, Z, contains  elements. For every 

node v ∈ V we define a set Qv with weight wv that contains all the routing paths covered by 

the RT of node v, i.e., Qv = {[x, y]│x, y ∈ V, x ∉ y, Px,y ⊆ Tv}. Now consider a feasible solution 

S =  to the defined SC problem. Then, S = {v│Qv ∈ S} defines a feasible 

solution to the WPM problem and for every path Pu,v, u, v ∈ V there is a monitoring station  

s ∈ S such that Pu,v ⊆ Ts. As a result, an efficient solution to the CS problem defines also an 

efficient solution of the WPM problem.  

Theorem 9 The greedy algorithm computes a 2· ln(│V│)-approximation for the PM and WPM 
problems. 
Proof: Similar to the proof of Theorem 3.                                                                                         □ 

6.3 An efficient probe assignment algorithm 
Suppose that the greedy algorithm selects a set of monitoring stations S. A monitoring 

station s ∈ S can monitor any path Pu,v ⊆ Ts by sending at most three probe messages to 

nodes u, v and w, where w ∈ Pu,v is the common ancestor of nodes u, v in the tree Ts. Let 

delay(y, x) be the estimated delay of the path between nodes y and x. Since, s can estimate its 

delay to the nodes u, v and w, the delay of the path Pu,v can be computed as follows: 

 

Theorem 10 Given a set of stations S, the problem of computing the optimal probe assignment is 
NP-hard. 
Proof: We show a similar reduction to the one given in the proof of Theorem 4 from the vertex 

cover (VC) problem. For a given graph  (( ), ), we define an instance of the probe 

assignment problem and show that there exists a vertex cover of size at most k for  if and 

only if there exists a feasible probe assignment A with cost no more than COST  = 2·│ │+ 

2·│ │+ k + 1. We assume that all cs,u = 1 (thus, COST  is the number of probes in A). 

 

 
 

Fig. 10. The RTs of nodes r and u13. 
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For a graph , we construct the network graph G(V,E) and set of stations S for the probe 

assignment problem as follows. The graph G contains two root nodes, denoted by r1, r2, and 

for each node  in  it contains two additional nodes denoted by wi and ui. The set E of 

edges of the graph G consists of the following edges. The edge (r1, r2) and for each node  in 

G, the edges (r2,wi) and (wi, ui). Also, for every edge ( , ) in , we add the edge (wi,wj) to 

G. The weight of each edge (wi,wj) in G is set to 1 + ε, while the remaining edges have a 

weight of 1. Finally, we assume that there are monitoring stations at node r1 and nodes ui for 

each vertex  ∈ . For example, consider the graph ( , ) that contains nodes  = { , 

, } and edges ( ) = { , ), ( , )}. Figure 10 shows the corresponding graph G as 

well as the routing trees of the nodes r1 and u1. Note that edge (wi,wj) is only contained in the 

RTs of ui and uj. 

We first show that if there exists a vertex cover V’ of size at most k for , then there exists a 

feasible assignment A containing no more than 2·│ │+ 2·│ │+ k + 1 probes. Recall that 

by sending a single probe from r1 to every other node We can calculate the path delay of 

every path that traverses through node r2 and every sub-paths of these paths. This requires 

2·│ │+1 probes assign to r1. Thus the only paths that are not monitored by r2 are the ones 

that contain an edge (wi,wj ), corresponding to edges ( , ) in . These include the paths 

= {ui,wi,,wj , uj}, = {wi,wj , uj}, = {ui,wi,wj} and = {wi,wj}. Consider such 

path  = {ui,wi,wj , uj}. This path can be monitored only by ui or uj . Let assume without 

the lose of generality that it is monitored by ui. This is done by sending a single probe from 

ui to uj . Similarly the path = {ui,wi,wj} can be monitored by sending a single probe from 

ui to wj . From this follows that 2·│ │ are required for each edge in . Yet, we still need to 

monitor the paths = {wi,wj , uj} and = {wi,wj}. This can be done by sending a single 

message from ui to wi. Recall that this probe message can be used for path monitoring of 

every path  and such that ( , ) in . Since V’ is a vertex cover of , it must 

contain one of  or . Let assume the node . So by selecting node ui as the monitoring 

station of the path  and the corresponding sub-paths that contains the edge (wi,wj), 

only 2·│ │+ k additional probes are required. 

We next show that if there exists a feasible probe assignment A containing at most 2·│ │+ 

2·│ │+ k + 1 probes, then there exists a vertex cover of size at most k for . As mentioned 

above, at least 2·│ │+ 1 probes are required to monitors all the paths that traverse through 

node r2 and any sub path of them. Now, let V’ consists of all nodes  such that A contains 

the probe (ui,wi). Since each edge (wi,wj) is in the RT of only ui or uj, A must contain one of 

(ui,wi) or (uj ,wj ), and thus V’ must be a vertex cover of . Further, we can show that V’ 

contains at most k nodes. Suppose that this is not the case and V’ contains more than k 

nodes. Then, A must contain more than k probes (ui,wi) for ∈ . However, as mentioned 

above at least 2·│ │probes are required to measure any path and one of the paths 

 or . This contradict the assumption that there are 2·│ │+ 2·│ │+ k + 1 

probes.                                                                                                                                                    □ 

Finding a low-cost optimal probe assignment for monitoring path delays is more 

challenging than computing the probe assignment for link monitoring (see Section 5.2). 
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Unlike the link monitoring case, we cannot claim that the optimal solution for path 

monitoring must contain at least one probe for every routing path5, which makes the 

problem for paths more dificult to approximate. We believe that a greedy algorithm similar 

to the one described in Section 5.2 will achieves good results. Yet, finding an algorithm with 

a low approximation ratio is still an open problem. 

7. Experimental results 

In this section, we present experimental results for the number of monitoring stations and 

probe messages required to measure the latency of every link in the network. The 

experiments are based on network topologies generated using the Waxman Model [27], 

which is a popular model used by the networking research community (e.g., [15]). Different 

network topologies are generated by varying three parameters: (1) n, the number of nodes in 

the network graph; (2) α, a parameter that controls the density of short edges in the 

network; and (3) β, a parameter that controls the average node degree. 

For computing the locations of monitoring stations that cover all the links in the network 

graph, we use the greedy algorithm described in Section 5.1.2. These monitoring stations are 

then used to compute probe messages for measuring the latency of every network link using 

the greedy algorithm from Sub-Section 5.2.2. We consider two measures for the cost of a 

probe: cs,v = 1 and cs,v is the number of links in the shortest path between s and v. The former 

optimizes the number of probe messages generated, while the latter optimizes total number 

of links traversed by all the probe messages. 
 

 

 
 

Table 1. Number of Monitoring Stations/Probes, n = 1000, α = 0.2, β ∈ {0.02, 0.05, 0.08, 0.1, 
0.15}. 

Table 1 depicts the results of our experiments for networks containing 1000 nodes. We 

vary the number of edges in the graph by increasing the β parameter and leaving α fixed. 

From the tables, it follows that as the number of edges in the graph increases, we need 

more monitoring stations to cover all the links in the network. However, even for large 

networks, a few monitoring stations suffice for monitoring all the links in the network. 

For instance, for n = 1000 and 2200 edges, only 10 monitoring stations cover all the 

network links. 

                                                 
5 We only know that it must contain one probe for every edge. 
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In terms of probe messages, the number of probe messages generated by the greedy 

algorithm closely tracks the number of edges, which is good since this implies a high degree 

of sharing among the probe messages. Note that this is almost optimal since the number of 

probe messages needed to measure all the network links is at least the number of edges in 

the graph. Finally, observe that the average number of links traversed by each probe 

message is fairly low, ranging between 2 and 4 in most cases. 

8. Summary 

This chapter introduces a greedy approach for delay monitoring of IP networks. It proposed 

two-phased monitoring scheme that ensures complete coverage of the network from both 

links and paths point of views, and it minimizes the monitoring overhead on the underlying 

production network. In the first phase it computes the locations of monitoring stations such 

that all network links or paths are covered by the minimal number of stations. Subsequently, 

in the second phase, it computes the minimal set of probe messages to be sent by each 

station such that the latency of every routing path can be measured. Unfortunately, both the 

station selection and the probe assignment problems are NP-hard. However, by using 

greedy approximation algorithms the scheme finds solutions close to the best possible 

approximations to both the station selection and the probe assignment problems. Further, 

the experimental results demonstrate the effectiveness of the presented algorithms for 

accurately monitoring large networks with very few monitoring stations and probe 

messages close to the number of network links. 
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