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Hybrid Heuristic Algorithms 
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Faculty of Electrical Engineering and Information Technologies 

Republic of Macedonia 

1. Introduction 

Constraint Programming is a methodology for problem solving which allows the user to 
describe data and constraints of the problem without explicitly solving in the declarative 
phase. Constraint Satisfaction Problems (CSP) can simply be defined as a set of variables 
and a set of constraints among the values of the variables. Typical method of solving CSP 
models is building the solution by backtracking approach in which a partial assignment to 
the variables is incrementally extended, while maintaining feasibility of the current solution. 
The constraints are kept satisfied throughout the solving process. 
Many optimization problems of practical as well as theoretical significance consist of finding 
"the best" configuration of values for a set of variables. Such problems where the solution is 
modelled using discrete variables belong to combinatorial optimization (CO).  The problems 
of combinatorial optimization consist of a set of variables, their domains, constraints among 
variables and a goal function that requires to be optimized. School scheduling is a typical 
example of a CO problem. 
High school schedule generation includes both temporal and spatial scheduling. It is a 
computation demanding and usually a complex task. It is a NP hard optimization problem 
that requires a heuristic solving approach (Zhaohui & Lim, 2000). 
It is interesting to note that educational institutions rarely use automated tools for schedule 
generation, although the area has been researched for a long time. A survey in British 
universities (Zervoudakis 2001) showed that only 21% of the universities use a computer in 
the generation of exam timetables. Only 37% of the universities use the computer as 
assistance in the process, while 42% do not use a computer at all. Generation of schedules in 
some schools in Japan takes up to 100 man hours a year. In bigger schools, schedule 
generation begins in April and does not end until June, two months after the beginning of 
the school year, almost 150 work days. 
Constraint satisfaction is usually not the first choice for modelling scheduling problems, due to 
their high complexity. Only the final schedule (hopefully) satisfies all imposed constraints. 
During schedule generation, most of the constraints will be dissatisfied at some point. We 
created a system where the extent of constraint satisfaction is measured and compared, so CSP 
can be successfully used in scheduling (Chorbev et al. 2007). When a measurement of constraint 
satisfaction is included, the system becomes a Constraint Optimization Problem (COP). O
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A very general approach to solve combinatorial optimization problems like scheduling is to 
generate an initial, suboptimal solution and then to apply heuristics to improve the solution. 
This method is somewhat incompatible with the standard backtracking method in 
constraints programming. In NP hard problems, building the solution by backtracking 
approach in which a partial assignment to the variables is incrementally extended is 
virtually impossible. For example, when the number of queens in the N-Queens problem 
exceeds certain number (for example 50), the Generalised Arc Consistency – Conflict Based 
Back-jumping (GAC-CBJ) algorithm fails to give a result in reasonable time (Jolevski et al., 
2005b). The duration of the search quickly grows beyond any reasonable amount. 
Initially, the aim of our research was to achieve a successful symbiosis of constraint 
programming and heuristic algorithms. Additionally, we aimed to create hybrid heuristic 
algorithms that would use the advantages of known algorithms. Therefore, we developed 
hybrid combinations of different heuristic approaches. Our solving approach begins with an 
initial suboptimal solution followed by heuristic repair to achieve the final correct solution. 
Ideas from algorithms like Simulated Annealing, Tabu Search, and Guided Search were 
incorporated to achieve quicker and more accurate solving. Heuristic algorithms demand a 
constraint satisfaction system that can measure the level of constraint satisfaction and 
provide heuristics for solution improvement (Leenen et al. 2003). 
Most of the heuristic decisions in our solving process are made in the process of repairing 
the first suboptimal solution. We had to implement mechanisms to avoid trapping at local 
optima, avoid deadlocks and achieve convergence. The functions that generate the proper 
next solution based on the previous one are the key to successful, quick and accurate 
solving. They use knowledge about the problem and reuse information of the specific 
inconsistent constraints to generate an improved solution in the neighbourhood of the 
current one. Exact generation of improved solutions based on previous inconsistencies 
showed useful up to the moment when a deadlock occurs. A stochastic component in the 
solving process proved effective in avoiding deadlocks and guiding toward the final 
solution. 
To test and implement the hybrid algorithms and their use over constraint modelled 
problems, a broader software framework was necessary. Therefore we developed and 
implemented a universal Constraint Solving Engine (CSE) and a Constraint Programming 
Library (CPL). We developed a set of constraint types for modelling different problem types 
and a mechanism for selection an optimal algorithm for the given problem. CPL contains 
different algorithms, including Simulated Annealing, Tabu search, Arc consistency etc., as 
well as their hybrids.  
This approach offers several advantages. The tool can be applied on different problems by 
cost of very little to no further programming at all. For the user it is only necessary to model 
a new problem with given constraint types, choose an algorithm, and initiate the solution 
process. The engine can be easily implemented in any commercial problem solving 
software. Our solving engine has substantial theoretical implications, too. The use of object-
oriented approach provides a mechanism for adding and testing new algorithms based on 
the same problem description. This system enables comparing efficiency, and results of 
different algorithms as well.  
Part 2 of the chapter gives an overview of Constraint Programming and Constraint 
Optimization where the origins, the definitions and the basic concepts are explained. Part 3 
of the chapter gives an overview of the concept of hybridization of heuristic algorithms. 
Some strategies are explained and examples are given. Part 4 of the chapter gives a short 
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description of the constraint solving engine with multiple optimization algorithms that we 
developed and used for simulations. Part 5 gives the model of the high school scheduling 
problem expressed in terms of mathematical constraints. The hybrid heuristic algorithm that 
we developed is explained in part 6 of the chapter. Finally, part 7 of the chapter contains the 
closing remarks and ideas for future work.  

2. Constraint programming and constraint optimization  

During the seventies of the 20th century, David Waltz within one of his algorithms set the 
basic concept of the technique of Constraint Propagation (Kumar, 1992). Ever since, the 
concept has evolved surpassing the boundaries of artificial intelligence and affecting wide 
range of research areas. Today, an increasing number of explorers in the area of 
programming logic, knowledge representation, expert systems, theoretical computer 
science, operational research, and other similar fields explore the use of constraint 
programming techniques, both as theoretical basis as well as true practical applications. In 
time, it is understood that constraint satisfaction is the main problem of a wasp area of 
problems like time reasoning, spatial planning, configuration planning, timetable 
generation, telecommunications, even in databases (Der-Rong & Tseng, 2001). The main 
reason for the increased interest and success of constraints processing techniques is their 
ability for good declarative formulation of problems as well as efficient solving (Meyer, 
1994). 
A constraint is simply a logical relation among several unknowns (or variables), each taking 
a value in a given domain (Bartak, 1999). More formal definition states: 
 

Definition 1: (Gavanelli, 2002) 
A Constraint Satisfaction Problem (CSP) is a triple P = {X, D, C} where: 
X= {X1, X2, ..., Xn} is a set of unknown variables, 
D = {D1, D2, ..., Dn} is a set of domains and 
C = {c1, c2, ..., cn} is a set of constraints. 

Each c1(Xi1, ..., Xik) is a relation, i.e., a subset of the Cartesian product  Di1×··· × Dik. 

An assignment A={X1->d1, …, Xn->dn} (where d1∈ D1, …, d1∈ Dn1) is a solution if it satisfies 
all constraints.  
 

In the declaration phase of Constraint Programming, the user describes the data and the 
constraints of the problem without explicitly solving it. When using constraints, the 
problems can simply be defined with a set of variables and a set of constraints. The 
constraints specify a certain relation over a subset of variables. The relations limit the values 
that the variable can have. Different constraints engage different variables making a 
network of constraints. The problem that requires to be solved is finding a relation over the 
entire network of variables that simultaneously satisfies all constraints. The derived problem 
type is named Constraint Satisfaction Problem – CSP. This methodology is perfectly suited 
for schedule generation, since the entities engaged can be defined and the expected correct 
schedule can be declaratively expressed. If the object-oriented approach is added, the result 
will be general, in the same time having the possibilities for exact specialization.  
Constraint programming is a term close to mathematical programming (Sedgewick, 1983). 
Mathematical programmes contain a set of variables interconnected by a set of mathematical 
equations called constraints and an objective function that calculates the quality of the 
solution represented by certain combination of values for the variables. If all equations are 
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only linear combinations of variables, the problem is a special case named linear 
programming.  
After the problem is modelled with constraints, the state space derived from the variable 
domain and the constraints requires to be searched for the best solution. The algorithms for 
searching the state space are a key phase in the solving process. 
Constraint Optimization Problems (COP), also known as Constraint Relaxation Problem – 
CRP (Yoshikawa, 1996), can be defined as common problems of constraint satisfaction in 
which the level of satisfaction of every constraint can be measured. The goal is to find a 
solution that maximises the sum of constraint satisfactions. Also, constraint optimization 
problems can be defined as constraint satisfaction problems upgraded with several local cost 
functions. The goal of the optimization is finding a solution whose cost, evaluated as a sum 
of all cost functions, should be maximal or minimal. Regular constraints are called hard, 
while cost functions are known as soft constraints. Names illustrate that hard constraints 
must be satisfied, while the soft ones only express preferability toward some solutions. 

3. Metaheuristic algorithms and their hybridization 

In recent decades we have witnessed the development of a new kind of approximative 
algorithms that combine basic heuristic methods in frameworks designed for efficient and 
effective search of the state space. These methods are named metaheuristics. The term was 
suggested by Glover in 1986, based on the ancient words: “heuristic” meaning “to discover”, 
and the prefix “meta” meaning “above, higher level”. These groups include, among others: 
Ant Colony Optimization (ACO), Evolutionary Computation (EC) – like Genetic Algorithms 
(GA), Iterated Local Search (ILS), Simulated Annealing (SA), Tabu Search (TS), Brute-force 
search, Random optimization, Local search, Greedy algorithm, hill-climbing, Random-
restart hill climbing, Greedy best-first search, Branch and bound, Swarm intelligence - Ant 
colony optimization, Greedy Randomized Adaptive Search Procedure – GRASP etc. There is 
no strict definition for what metaheuristic is, but main axioms found in literature state that 
metaheuristics are a group of strategies that guide the search process. They search for an 
optimal or near optimal solution aproximatively and non-deterministically (Blum & Roli 
2003).  
The combination of different heuristic can be done in several ways. Various heuristic 
methods can be chronologically applied in different phases of the search, when their 
advantages are required the most. Besides chronological sequential application of different 
search methods, the algorithms themselves can be a hybrid of more metaheuristic or basic 
optimization approaches. 
There are various forms of hybridization of algorithms. The first form advocates integration 
of components from one metaheuristic into another. The second form includes systems 
known as cooperative search. They are consisted of various algorithms that exchange 
information. The third option is integration of approximative and systematic (complete) 
methods. By emphasizing the advantages and flaws of different metaheuristic approaches, it 
is evident that hybridization and integration of different heuristic algorithms might result in 
better solutions to problems. 
Since schedule generation is a NP hard problem, methods for exhaustive search are not an 
option. Algorithms like Tabu search, Genetic Algorithms and Simulated Annealing have been 
previously applied to such problems. Although they all have advantages, no one solves the 
problem completely. The goal of our research was to implement combinations of algorithms.  
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3.1 Exchange of components between metaheuristics 

A popular way of hybridization is the use of trajectory methods with populations based 
methods (Blum et al., 2005). The most successful applications of evolutionary algorithms 
and ant-colony optimization use procedures for local search. The reasons are obvious when 
the appropriate advantages of trajectory and population methods are analysed.  
The power of population methods is based on recombining solutions to derive new ones. 
Evolutionary algorithms and Scatter search implement explicit recombination with one or 
more operators (Glover et al., 2003). In Ant-colony optimization and some evolutions 
algorithms, the recombination is implicit, because new solutions are generated by using a 
distribution in the state-space, based on the previous populations. This allows guided steps 
in the search space that are usually bigger than steps made in trajectory methods. That 
means the solution based on recombination in population methods is more “different” from 
the parents as opposed to a solution derived with one move from the previous solution. 
There can also be “big steps” in trajectory methods, like iterated local search and variable 
neighbourhood search, but, in these methods the steps are not guided (these steps are called 
trials or perturbations to emphasise the lack of guidance). In every population based 
method, there are mechanisms that use the good solutions that have been found to influence 
the search to find even better solutions. The idea has been explicitly implemented in the 
Path Relinking algorithm (Blum et al., 2005). There, the basic elements are initial solutions 
and guiding solutions (the best found so far). New solutions are derived by applying moves 
to decrease the distance between the resulting and the guiding solution. Evolution 
algorithms achieve the same effect by keeping the best found solutions so far in the 
population. The approach is called an evolution process with stable states. Scatter search 
performs a process with stable states. In some implementations of ant colony optimization, 
there is a schedule for updating the pheromones that uses only the best found solution 
when the algorithm converges toward the end. It corresponds with changing the direction of 
the search process toward a good solution hoping to find better on the way. 
The power of trajectory methods is the way that they search the promising regions in the 

state space. Since local search is the main component, a promising part of the search space is 

searched in a more structural way than in population based methods. This approach 

reduces the possibility of missing the optimal solution when the search is near it, as opposed 

to population methods. The conclusion is that population methods are better in identifying 

promising regions in the search space, while trajectory methods are better in exploring the 

promising area. Therefore, metaheuristic methods that combine the advantages of 

population and trajectory methods are successful. 

3.2 Cooperative search  

A loose form of hybridization is achieved in joint search (Hogg & Huberman, 1993) which 
consists of searching by various algorithms that exchange information for states, models, 
entire sub problems, solutions or other specifics of the search space. Usually, the solving 
process is based on parallel execution of algorithms with different level of communication. 
The algorithms may be entirely different, or instances of the same algorithm functioning on 
different models or different configuration parameters. The algorithms that make the joint 
search can be aproximative or complete, or a mixture of aproximative and complete 
methods. Cooperative search receives increased interest because of the interest in 
parallelisation of metaheuristic.   
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3.3 Integration of metaheuristic and systematic methods 
The approach of integration of metaheuristic and systematic methods is quite effective when 
used over practical problems. The discussion about similarities, differences and possible 
integration of metaheuristic and systematic methods can be found in (Glover & Laguna, 
1997). Recent research papers suggest that integration of metaheuristic and constraint 
programming is proving especially useful and successful. (Duong & Lam, 2004), (Gomes et 
al., 2005), (Crawford et al., 2007)  

3.4 Hybridization with parallelization 

Some of the heuristic algorithms are inherently easily executed in parallel, while others 
require sophisticated strategies for parallel execution. Generally, genetic algorithms (GA) 
are easy to execute in parallel, while SA is sequential by nature. On the other hand, there is a 
mathematical proof that SA slowly, but surely converges toward the final solution. Since 
there is no such proof for the GA, a hybrid SA with operators from genetic algorithms is a 
good approach. 
There are various Parallel Genetic Simulated Annealing Algorithms – HGSA. In literature 
[Ohlidal 2004] there are a couple of published versions: 
- S. W. Mahfoud and D. E. Goldberg suggest a concept of a GA using a Metropolis 

algorithm in the selection process. 
- M. Krajic describes a hybrid parallel SA based on genetic operators (mutation and 

cross-reference). 
- N. Mori, J. Yoshida and H. Kita use a thermodynamic rule for selection. 
Czech describes a parallel implementation of SA without GA. (Czech et al., 2006) 

3.4.1 Parallel SA with a Boltzmann synchronization function  

Within our research we experimented with parallel execution of SA and developed parallel 
SA with a Boltzmann synchronization function. (Chorbev et al., 2006) 
The cooperation of more processors can be used either to speed up the sequential annealing 
algorithm or to achieve a higher accuracy of solutions to a problem. In this work we 
considered both goals. The accuracy of a solution is meant as its proximity to the global 
optimum solution.  
We designed a system with r available processors and each of them is capable of generating 
its own annealing process. The architecture includes a master computer and given number 
of slave computers, interconnected in a Local Area Network. The starting - master computer 
P1 imports the initialization data, generates the first proposed solution and passes data to r-1 
remaining computers. All remaining computers – processors start independent annealing 
process after receiving the initial data. All processors communicate by exchanging current 
best solutions during annealing processes, at a chosen rate. The scheme of communication is 
given in the figure 1. 

 
Fig. 1. Processor communication  
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The communication model used is synchronized point-to point. Before the temperature is 
decreased, every process sends its best found solution to the remaining r-2 processes, and 
waits the best found solutions from all other processes, too. Once all data is received, each 
process calls its acceptance function to decide whether to accept the best solution from all 
other processes or continue with the one found by the process itself. With this architecture, 
the master computer only starts the solving process and eventually, collects best solutions 
from slave computers. It serves no purpose during solving iterations and information 
exchange; therefore its functions could be performed by some of the slaves. Keeping 
master’s functions limited excludes it being a bottleneck in the architecture. 
We analyzed a possible problem of certain faster converging processes to wait for slower 
processes to send their best solutions. This architecture is only as fast as the slowest of the 
included computers. However, we consider this not to be a setback. All computers used in 
the network are of same type, design and performance. Also, all computers execute the same 
annealing algorithm; use the same temperature decrement coefficient, the same number of 
iterations during each temperature and the same metropolis function. The only difference is 
the independent random generation of the next proposed solution in every computer. This 
provides different search paths through the solution space in every parallel process and 
increase diversity of the search. Therefore, all computers are expected to make at average 
the same number of acceptance and declination of new proposed solutions (due to the 
metropolis function). The cumulative result is roughly the same computational effort (time 
of execution) in each computer. Sometimes some processors might converge faster toward a 
local optimum, but the necessary broad search of the domain that this parallel architecture 
brings is worth waiting. 
The acceptance function (the decision in every processor to accept the best solution from 
others or continue with its own) was also a subject of interest in our research. We tried: 
always accepting the best solution from all others, randomly accepting any of the given 
solutions from other processes and eventually accepting solutions using the Boltzmann 
distribution. We got the best results using the Boltzmann distribution. This probability 
function is fundamental for SA and it seems natural for it to be part of SA’s parallelization. 
There are other points among the algorithm steps where parallel processes could 
communicate, i.e. different rates of communication. Data could be exchanged within the 
inner annealing iteration at every nth iteration or after certain number of temperature 
decreasing iterations. In our parallel SA the processes P2, P3, …, Pr cooperate among each 
other at every temperature decreasing iteration. 
Implementation of the parallel SA is the following: 
 

Process P0: 

INITIALIZE; 
Dispatch initial solution to processes Pp, p=2, 3, …, r 
Wait until final solutions from processes Pp, p=2, 3,…, r are received 
Choose and display the best solution from processes Pp, p=2, 3,…, r 
Process Pp, p=2, 3,…, r: 

INITIALIZE;//receive initially proposed solution 
repeat 
               repeat 

                              PERTUB(solution(i) -> solution(j), Δcostij); 
                              if METROPOLIS(Δcostij) then accept 
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                              if accept then UPDATE(solution(j)); 
               until predefined number of iterations; 
               Send current solution s(p) to other processes Pq,  q=2, 3,…, r, q≠p 
               Receive solutions from all proc. Pq, q=2, 3,…, r, q≠p 
               Choose the best solution s(q) from received solutions 
               if exp(-Δcostpq/TEMP) > random[0; 1) //Boltzmann 
               then accept; 
               if accept then UPDATE (solution s(j)); 
               TEMP+1 = f (TEMP); //Decrease temperature 
until stop criterion = true (system is frozen);  
 

A crucial component when designing a parallel algorithm is finding the best tradeoff 
between the amount of communication and every processor’s independence. 
Communication of the parallel processes within the inner annealing cycle causes extensive 
communication slowing the overall performance. On the other hand, delaying the 
communication for every nth temperature iteration gave worse solution quality because of 
lack of sufficient information exchange. The experimental results given in figure 2 show that 
best results are attained when communicating at every temperature iteration. This graph is 
generated with 5, 10 and 20 processors. 
 

 

Fig. 2. Course of solution quality versus the rate of communication among processes. The 
horizontal axis is the number of temperature iterations between the processes 
communication. The vertical axis is the solution cost. The dashed line is the optimal solution  
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Besides increasing solution quality, main reason for parallelization is the expected speedup. 
Speedup is defined as the ratio of solving time using single processor versus multiple 
parallel processors solving time. Efficiency is defined as the ratio of speedup versus the 
number of processors used. Efficiency gives the utilization of the processors. According to 
experimental results in figure 3, the speedup is obviously increasing when going from one 
processor toward five or ten. Further increasing of the number of processors brings no 
advantage since large amount of communication among processes slows the overall 
performance. According to experimental results, our parallel SA implementation achieves 
best speedup at 10 – 20 processors. However, if we take the efficiency into consideration, 
using more than 10 processors is highly inefficient. 

4. Constraint solving engine with multiple optimization algorithms 

The research presented in this chapter is performed using a Constraint Programming 

Library (CPL) (Jolevski et al. 2005a). The software library is consisted of a set of classes – 

generic constraint types for modeling different problem types and a mechanism for selection 

an optimal algorithm for the given problem. This approach is required because the 

Constraint Solving Engine (CSE) is developed to enable solution of problems with different 

nature. The engine is modular, allowing specific heuristics for certain problems to be 

implemented in overridden functions. Every step of the problem solving process could be 

implemented either with existing components or with newly added modules overriding 

those already contained in the basic object-oriented system. 

The CSE is based on the concept of variables and their domains. The domains are bounded 
by the existing constraints in the moment of their creation, making the search space smaller. 
Later in the process of proposing new solutions, the constraints evaluate the extent of 
satisfaction and measure the progress toward the best (final) solution. 
The main constraint class provides an integrated interface to all its children. The inherited 
interface enables algorithms to use the constraints, gives them their variables and checks the 
consistency of conditions. The constraints return Boolean or in some cases a quantitative 
measure of the constraint satisfaction. 
In our model, the solution cost originates from the level of satisfaction of every constraint. 

Every constraint has an implemented function for calculation of the amount of its 

dissatisfaction. Additional multipliers to the dissatisfaction levels exist, to increase the 

influence of certain constraint over others in the total cost.  

The set of given constraints is appropriate for modeling different problems. That is so 
because most of the problems can be divided into smaller and simpler ones that later can be 
modeled and solved. From mathematical point of view a broad variety of common, 
appearing different from the outside, problems are turned into the same or similar tasks. 
When modeling a problem it can always be expressed through a mathematical language. 

Very often, the problem can be expressed as a couple of arrays of integer values that comply 

with certain rules. For the user, those model arrays are converted into understandable 

solution data like the shortest path for a traveling salesman or into the most optimal high 

school schedule. In the background, in the mathematical model, the problem rules transform 

into constraints like: "no two elements of the array can have the same value" or "the sum of 

all elements of the array must always be a constant value." All rules and value checks are 

done by methods within the constraints classes.  
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5. Constraints modelling of the high school scheduling problem 

Scheduling covers a wide area of problems with temporal and spatial distribution of 
resources. Three broad families of scheduling problems can be distinguished depending on 
the degrees of freedom in positioning resource supply and resource demand intervals in 
time (Abramson, 1991): pure scheduling problems, pure resource allocation and finally, joint 
scheduling and resource allocation problems. High School scheduling is a composite 
problem. 
In case of School Scheduling, the model includes means for temporal and spatial 
distribution of resources. It is required to implement priorities among constraints, providing 
methods for satisfying primarily more important rules followed by less significant. 
The main interest of constraint programming lies in actively using the constraints to reduce 
the computational effort required to solve a problem, in the same time achieving good 
declarative problem formulation. Constraints are used not only to test the validity of a 
solution, but also in a constructive mode to deduce new constraints and detect 
inconsistencies. This process is called constraint propagation. 
This problem domain falls within the category of Constraint Optimization Problems (COP), 
where the constraint(s) satisfaction requires to be evaluated (in opposition to those problems 
where they can only be satisfied or unsatisfied, called constraint satisfaction problems, CSP) 
(Penya et al., 2005). Application of algorithms like Simulated Annealing (SA) demands a 
solution cost function that the algorithm will tend to decrease (Leenen et al., 2003). 
Therefore, the implemented constraints of the model are capable of producing a numerical 
measurement of their satisfaction. Abramson (Abramson, 1991) in his model separates the 
total cost to three parts: teacher cost, class and room cost as a result of clashes in the trial 
solutions on those three bases. 
Schedule generation has been formalized as a problem of optimizing constraints, or 
Constraint Relaxation Problem – CRP by (Yoshikawa et al., 1996). They focused on using the 
min-conflict heuristics to generate an initial solution for solving both school and university 
timetabling problems. After a fairly good-quality initial solution is generated by an Arc-
Consistency algorithm, their proposal relies on a heuristic billiard-move operator to 
iteratively repair the current solution and complete assignment of lessons for 
school/university timetabling. The min-conflicts heuristic (MCH) tries to examine each 
variable to assign a value with the minimum number of constraint violations. Tam and Ting 
(Tam & Ting, 2003) combine the min-conflicts and look-forward heuristics used in local 
search methods to effectively solve general university timetabling problems. 

5.1 Notation 

The problem in our case is modeled as follows: There are G·D·N (G – Groups, D – Days, N – 
lessons per day) variables (items) that define the assignment of lessons to groups and rooms. 
Variables are grouped in blocks of D·N variables. Every block corresponds to the timetable 
for one group.  
Let’s denote the set of all lessons in a timetable by T = {t0, t1, …, tT-1} , where T = |T | = 
G·D·N is the number of lessons in a timetable. Lessons are grouped in blocks of N lessons 
that are all in the same day. Lessons are ordered in an increasing day order. 
The next stage, before actually turning the constraints into program code, is creating the 
mathematical model. For that purpose, an exact notation was required, part of which is 
defined as follows:  
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Π = {π0, π1, …, πP-1}   set of teachers;  

Β = {β0, β1, …, βB-1}   set of subjects;  

Ψ = {ψ0, ψ1, …, ψY-1}   set of school years;  

Δ = {δ0=0, δ1=1, …, δD=D-1} set of working days;  

Γ = {γ0, γ1, …, γG-1}    set of groups; 

Χ = {χ0, χ1, …, χC-1}   set of rooms; 

Ι = {Imin, Imin+1, …, N}   set of number of lessons in a day; 
Imin minimum number of lessons in a day; and 
N maximum number of lessons in a day. 

5.2 Data 

The algorithm works using existing data. The data has to be previously entered in the 
program (in the relational database through an intuitive user interface of the scheduling 
software (Jolevski et al., 2005d)), and prepared in the specified format. Certain data is 
exploitive in more than one constraint. Our model contains eight previously entered data 
structures. They are: 

1. Number of weekly lessons x per subject β per group γ is defined by the following set of 

ordered triples: ΒΓ = {(βi, γj, x) | i = 0, …, B-1; j = 0, …, G-1}. 

Function x = Xβγ(β, γ): Β×Γ → Z+ returns the required number of lessons for subject β for 

group γ. 

Function x = wγ(γ): Γ → Z+ returns the required number of weekly lessons for group γ. 
2. All combinations of groups and subjects that a particular teacher can teach are given in 

the following set. Teacher π who teaches subject β for group γ is defined by the 

following set of ordered triples: ΠΒΓ = {(πk, βi, γl) = | k = 0, …, P-1; i = 0, …, B-1; l = 0, …, 
G-1}. 

Function π = Pβγ(β, γ): Β×Γ → Π returns the teacher π for subject β for group γ.  

3. Subjects β that can be taught in a room χ is defined by the following set of ordered 

pairs: ΒΧ = {(βi, χj) | i = 0, …, B-1; j = 0, …, C-1}. 

Function Tβχ(β, χ): Β×Χ → {0, 1} returns 1 if subject β can be taught in room χ, otherwise 
returns 0. 

4. Maximum number m of groups that can share a room χ is defined by the following set 
of ordered pairs:  

Χ M = {(χi, m) | i = 0, …, C-1}. 

Function Mχ(χ): Χ → Z+ returns the maximum number of groups that can share room χ 
at any point in time.  

5. If a subject β should be taught in blocks of 2 consecutive lessons, than there is an 

appropriate element in the set C = {β | β ∈ Β} 

The function cβ(β): Β → {0,1} returns 1 if the subject β can be taught in blocks of 2 

lessons, because β ∈ C, else returns 0 meaning β ∉ C. 
6. The availability of the teacher in a particular time slot during the week is kept in this 

set.  A teacher πi available to teach a class a on a day δj in a shift μk is defined with the 
following set:  

Α = {(πi, δj, μk, a) | i = 0, …, P – 1; j = 0, …, D – 1; k = 0, …, M – 1} 
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If elements exist for a professor in the set ΠΔΜ, then these elements hold the availability 

of the teacher. If there is no element for the particular teacher in the set ΠΔΜ the teacher 
is available at any time in the week. 

The function aα(πi, δj, μk, a): Α → {0,1} returns 1 if the teacher πi is available to teach the 

subject a in the day δj in shift μk , that is (πi, δj, μk, a) ∈ Α, else returns 0 meaning (πi, δj, μk, 

a) ∉ ΒΑ. 

7. The subject β can not be taught in a lesson j: 

 ΒΑ = {(β, j) | β ∈ Β; j ∈ {1, …, N}}.  

The function Bα(β, j): Β → {0,1} returns 1 if the subject β can be taught in the lesson  j, 

meaning (β, j) ∉ ΒΑ, else returns 0 meaning (β, j) ∈ ΒΑ. 

8. The set of elective subjects is Ε = {β | β ∈ Β}.  

The function eβ(β): Β → {0,1} returns 1 if β is elective subject or β ∈ Ε, else returns  0 

meaning β ∉ Ε. 

5.3 Constraints 

The problem is modeled by representing it through 16 constraints. They are defined as follows:  

1. 
1

( ) )(
i D N

k j
k i

bτ βτ
+ ⋅ −

=

=∑ =Xβγ(βj, γi) for i =0,D·N,2·D·N,…, (G-1)·D·N and j = 1, 2, …, B, where 

the sum represents the number of weekly lessons for subject βj in group γi. The number 
of weekly lessons per subject in a group is defined by a set in the entered data.  
When this constraint was coded with the given tools in the Constraint Solving Engine, 
in the implementation, the generic constraint class CSetCover was used. The generic 
constraint classes are developed universally so that they could be used in different 
forms to express different real problem constraints. The CSetCover constraint class, as 
all other in the CSL, inherits from the basic constraint class (Chorbev et al., 2007). Its 
task is to check the number of occurrences of a certain value for a given variable 
coordinate in the array of variables (the “subject” value of the complex time slot 
variable in this case). When the number of occurrences of the given value in the variable 
is adequate, the constraint is “covered”. The set of values to be covered was equal to the 

set of courses Β. Every set value requires to be covered exactly Xβγ(β,γ) times. Since the 
set to be covered can be different for different groups, a separate instance of the 
CSetCover class is necessary to be created for every group. 

2. 
1

( ) ( ) 1)(
i D

k k

k i

l fν νν ν
+ −

=

− +∑ = wγ(γm) for i = 0, D, 2·D, …, (G-1)·D, m = i/D, where the sum is 

the number of weekly lessons for group γm. Number of weekly lessons per group is 
defined by a set in the entered data.  

3. Tβχ(bτ(τi), rτ(τi)) = 1 for i = 0, 1, 2, …, G·D·N-1 
Subjects are always taught in appropriate rooms as defined by the input data. 

4. aτ(τj) = 0 for i≤ j < i+f and i+l+1 < j ≤ i+N-1 for k = 0, 1, …, G-1 and  l = 0, 1, …, D-1, i = 

k·D·N +l·N, where n = k·D+l, f = fν(νn), l = lν(νn). There can be no timetable breaks. Empty 

lessons are determined by variables νn.  

5. aτ(τj) = 1 for i+f ≤ j ≤ i+l for for k = 0, 1, …, G-1 and  l = 0, 1, …, D-1, i = k·D·N +l·N, where 

n = k·D+l, f = fν(νn), l = lν(νn). There can be no timetable breaks. Non-empty lessons are 

determined by variables νn.  
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∑ ≤ Mχ(χj) for j = 1, 2, …, C and  l = 1, 2, 3, …, D·N 

At any point in time l, room χj can have at most Mχ(χj) groups as defined by the set Χ M 
in the input entered data.  
As it was described in the previously published material (Chorbev et al., 2007, Jolevski 
et al., 2005b) the constraints classes implemented in the Constraint Solving Library 
(CSL) were created to be universal and applicable to different problems. Therefore, in 
this constraint the class CSetCover (generic constraint) was used. The set of values to be 

covered was ΧM. In the constraint-variable network, practically the model of the 
problem, there were D·N copies of this constraint. There was a copy for each time slot 
(lesson) in the work week. However, every copy is in fact the same instance of the 

generic CSetCover constraint, since the set of values to be covered was always ΧM. In 
every different copy, the classroom coordinate of the variables for different groups for 
that lesson was taken in consideration.  

7. bτ(τi) ∈ Α 噂 i ≠ lν(νk) 噂 (bτ(τi)≠bτ(τi-1) 云 i = fν(νk))⇒ bτ(τi+1) = bτ(τi) for i = 0, 1, …, G·D·N-1, 
and k = i div N. 

If subject bτ(τi) must be taught in blocks of 2 lessons, and τi is not the last lesson in the 

day k, and subject bτ(τi) is different from the previous subject bτ(τi-1) or τi is the first 

lesson in a day, then the next lesson needs to be for the same subject bτ(τi+1). 

8. bτ(τi) ≠ bτ(τj) for k = 0, 1, …, G-1 and  l = 0, 1, …, D-2, where i = lν(νn) and j = fν(νn+1), n = 

k·D+l. n is the index of the variable νn that defines the index i for the last lesson τi in day 

l for group γk. 

Subject bτ(τi) for the last lesson in a day except for the last day in the week (usually Friday) 

and subject bτ(τj) for the first lesson in the previous day for any group must be different.  

9. bτ(τi+f) ≠ bτ(τi+f+1) ≠ … ≠ bτ(τi+l) for all bτ(τ) ∉ Α, for k = 0, 1, …, G-1 and  l = 0, 1, …, D-1, i 

= k·D·N +l·N, where n = k·D+l, f = fν(νn), l = lν(νn). n is the index of the variable νn that 

defines the indices for the first and last lessons τi+l and τi+l in day l for group γk. 

Subjects for all lessons τi+f to τi+l in a day l must be different for all subjects that can not 

be taught in blocks of two lessons bτ(τ) ∉ Α. 

10. aα(pτ(τi), j, mλ(λl), k) = 1 for l = 0, 1, …, G-1; j = 0, 1, 2, …, D-1; k = 0, 1, 2, …, N-1; where i 
= l·D·N +j·N+k. 
For all groups (l = 0, 1, …, G-1), all days (j = 0, 1, …, G·D-1), and all lessons (k = 0, 1, 2, 

…, N-1), the teacher pτ(τi) must be available for the lesson τi. 

11. Bα(bτ(τi·N+j), j) = 1 for i = 0, 1, …, G·D-1; j = 1, 2, …, N. 

For all groups and all days (i = 0, 1, …, G·D-1), the subject bτ(τi·N+j) taught at any lesson (j 

= 1, 2, …, N) must be allowed by the set ΒΑ. 

12. eβ(bτ(τf·D·N +j·N+k))= eβ(bτ(τ(f+1)·D·N +j·N+k))=…= eβ(bτ(τl·D·N +j·N+k)) for i = 0, 1, …, Y-1; j = 0, 1, …, 

D-1; k = 0, 1, 2, …, N-1; where f=fψ(ψi) and l=lψ(ψi ). 
For all school years (i = 0, 1, …, Y-1) and all days (j = 0, 1, …, D-1), and all lessons in a 
day (k = 0, 1, 2, …, N-1), the elective/non-elective property of the subject is equal for all 
groups.  

13. yγ(γi) = yγ(γj) ⇒ sλ(γi) = sλ(γi) for i = 0, 1, …, G-1; j = 0, 1, …, G-1; i ≠ j 

If two groups γi and γj are in the same school year yγ(γi) = yγ(γj), then they are in the same 

shift sλ(γi) = sλ(γi).  
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14. rτ(τi+k) = rτ(τj+k) 噂 sλ(γm) = sλ(γn) ⇒ bτ(τi+k) = bτ(τj+k) for i = 0, D·N, 2·D·N,…, (G·D-1)·N; j = 
0, D·N, 2·D·N,…, (G·D-1)·N; i ≠ j; m = i/(D·N); n = j/(D·N); k = 0, 1, …, D·N-1. 

If two groups γm and γn from the same shift sλ(γm) = sλ(γn) are scheduled to share room 

rτ(τi+k) = rτ(τj+k) during lesson k, then lesson’s subject will be same for both groups. 

15. rτ(τi+k) ≠ rτ(τj+k) 噂 sλ(γm) = sλ(γn) ⇒ pτ(τi+k) ≠ pτ(τj+k) for i = 0, D·N, 2·D·N,…, (G·D-1)·N; j = 
0, D·N, 2·D·N,…, (G·D-1)·N; i ≠ j; m = i/(D·N); n = j/(D·N); k = 0, 1, …, D·N-1. 

If two lessons τi+k and τj+k that happen at the same time k and in the same shift sλ(γm) = 

sλ(γn) are held in different rooms rτ(τi+k) ≠ rτ(τj+k), the teachers must be different pτ(τi+k) ≠ 

pτ(τj+k). 
16. Timetable breaks for teachers are minimized.  

6. Implementation of a hybrid simulated annealing algorithm 

When solving the school scheduling problem, we attempted to add additional 
functionalities from other optimization algorithms in Simulated Annealing (SA). We started 
by SA knowing of its power to avoid local optima and its theoretical guaranty to find the 
global optimum. SA has been extensively researched and has shown satisfactory results in 
solving problems of combinatorial optimization and temporal and spatial scheduling 
(Duong & Lam, 2004), (Abramson, 1991), (Aarts et al., 2003), (Czech et al., 2006). In the 
software library, we implemented a combined version of the SA algorithm. It has elements 
of memory from the Tabu Search as well as a complex neighborhood function for local 
search similar to the Guided Search algorithm. 
Detailed explanation of the algorithm follows after the pseudo code: 
 

initialSol ← ConstructAsCorrectInitSolutAsPossible(); 
SolutionNeighborhood.SetSolution( initialSol ); 
{listOfVarsToChange, currentEnergy} ← CalculateEnergy(initialSol); 
temp = InitialTemperature; 
do 
do 

SolutionNeighborhood.GenerateCandidateSol ( currentSol, listOfVarsToChange); 
FindAffectedConstraints(); 
{listOfVarsToChange,newEnergy} ←   CalcEnergy(SolNeighborhood.Candidate); 
 

if  ( Metropoliten(newEnergy - currentEnergy,temp)) 
  SolutionNeighborhood.AcceptCandidate(); 
else 

  SolutionNeighborhood.RefuseCandidate(); 
endif 

 
while ( !stopSearch and (trials < saMaxTrials )  
  and successfulTrials < saMaxSuccessfulTrials  
  and smallestEnergy > lowerEnergyBound ); 
 
temp = TempSchedule.GetNewTemperature(); 
 
while ( !stopSearch  
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 and numberOfTempDecreases < MaxTempDecreases 
 and SolutionCount < MaxNumberOfSolutionsToFind  
 and smallestEnergy > lowerEnergyBound 
 and consecutiveNoSuccess < MaxConsecNoSuccess )  
 
return SolutionNeighborhood.ReturnBestFoundSolution(); 
 
The algorithm initially constructs the solution in a way that as many as possible constraints 
are satisfied, and the cost - energy is reduced to minimum. In the particular high school 
schedule generation, for every group, in the available time slots, the appropriate number of 
classes per subject is filled. A teacher is assigned for every subject. All lessons are inserted in 
the time slots continually, until the appropriate numbers of classes per subject per group are 
achieved. The remaining task for the algorithm is to move the items (group, subject, teacher) 
in other time slots during the week, so that the remaining constraints are satisfied (not 
repetition of the same subject twice in the same day etc.) 
In the meantime, an object from the CNeighborhood class is generated (Jolevski et al., 
2005a). This object holds the current solution, and when asked for, generates a new proposal 
solution in the neighborhood of the current one. This is the place where the local search in 
the search space is performed. 
After the neighborhood function generates a new solution, the algorithm invokes the 
function FindAffectedConstraints(). It detects the constraints whose satisfaction has been 
changed during the previous solution perturbation. Having this information, the function 
CalculateEnergy() calculates only the participation of the affected constraints within the 
overall energy, as opposed to recalculating the entire cost. Additionally, the function 
CalculateEnergy() generates a new list listOfVarsToChange. The list states which variables 
to change in the next solution perturbation so that a better solution is derived. 
The Metropoliten() function implements the Metropolis probability distribution function. 
Considering the difference of energies of the previous and actual solution, as well as the 
temperature parameter, it decides whether to accept or reject the new solution. 

⎪⎩

⎪
⎨
⎧

Δ
−

<=Δ
=Δ

otherwise
T

XE

XE

XEPT
),

)(
exp(

0)(,1

))((
 

The inner iterations continue executing at constant temperature until one of the given 
conditions is met. Execution stops when the predefined maximal number of iterations per 
temperature is achieved, the maximally allowed number of accepted solutions is achieved, 
or the expected minimal energy is evaluated. 
After ending the internal iterations, the function myTempSchedule.GetNewTemperature() is 
invoked. Depending on the chosen temperature schedule, a new value for the parameter 
temperature is derived. Having the new temperature, a new cycle of the internal iterations 
follows. If the conditions for ending the entire solving are met, the algorithm returns the 
best found solution. The ending conditions consist of achieving predefined number of 
temperature iterations, achieving minimal energy or achieving a predefined number of 
iterations where the metropolis function has not accepted any solution proposals. 
In the presented implementation of SA we included functionalities from other metaheuristic 
algorithms. Memorizing and using the list of previously affected variables in the new 
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solution proposal in our algorithm includes memory in the solving. Memory is an element 
from Tabu Search. The list of affected variables helps in guiding the search and avoiding 
cycles. Generating a new solution proposal based on knowledge of the problem and 
previous experience adds elements of Guided search. 

6.1 Neighborhood function for generation of an improved solution 

Despite the effort to build a universal solving engine, there are certain parts of the system 
that seriously benefit from specialization. We estimated that the best part to implement 
specialization, in respect to both modularity and performance, is the neighborhood function.  
A neighborhood generation function is required to generate a new solution similar to, or in 
the "neighborhood" of, the previous one. The new solution is expected to have a lower cost 
(energy), meaning that the level of constraint satisfaction is higher. Presumably, the next 
solution should keep the qualities of the former and hopefully correct its weaknesses. The 
new solution proposal sometimes might have worse qualities than the previous one, but it 
still might be accepted as base of future solutions. Such acceptance has to be allowed to 
escape local in the pursuit of the global optima. 
There are numerous ways to implement new trial solution generation. We used several 
combined approaches. The first method that we used, mainly during the first iterations of 
the solving process, is random based variable permutation. The method at the beginning 
considers how big part of the current solution should be changed in each iteration. We 
experimented with numbers from two variables up to 10% of the overall variables. The 
number of improvements in the solution during algorithm iteration increased as we 
decreased the number of changed variables. This behavior implies that a small change in the 
new solution is easier to find wrong and undo, while massive changes in the solution might 
compensate both corrections and faults, to a minor collective change in overall cost. 
Therefore, changing a small number of variables in each iteration makes the cost function an 
objective measure of progress or regress.      
The neighborhood function randomly chooses which variables to change, keeps an array of 
changed variables and randomly assigns new values to the chosen variables from their 
domain. The array of changed variables is later used to calculate the new cost as a difference 
with the former one. Other approaches found in literature (Abramson, 1991) consist of 
swapping values of two variables. Nevertheless, for the sake of speed, the tendency is to 
always achieve calculation of the new cost as a difference with the last one. 

6.2 Intelligent generation of the initial solution 

The first place to implement intelligence in the solving process is the initial solution of the 
search. Significant number of iterations is avoided if the initial solution is not generated 
randomly, but in respect to the imposed constraints. Naturally, not all constraints could be 
satisfied at the start, otherwise, no search would have been necessary. We decided to satisfy 
as many constraints as possible at the beginning. Later during the solving process, initially 
satisfied constraints are not even checked for consistency, sparing many calculations in the 
evaluation step. This behavior is only possible if the neighborhood function includes special 
precaution. The functions must not dissatisfy these initial rules while generation of the next 
solution.  
For example, all groups are initially given the right number of classes per subject. Therefore, 
no additional checks are necessary for this constraint, assuming the neighborhood function 
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only swaps positions of those classes in the available time and space slots. The 
neighborhood function must not add or subtract new classes per subject per group. Also, the 
classes are initially placed in rooms that they can be taught in. 

6.3 Guided generation of new trial solutions 

Different algorithm hybridizations based on SA for solving constraint modeled non-linear 
problems have been previously proposed. An example algorithm is CSAGA by Wah et. al 
(Wah & Chen, 2001). They combine SA and Genetic Algorithms (GA). The participation of 
the GA is in the creation of new solution proposals. A new generation of solution proposals 
is generated with genetic operators in each SA iteration. Every proposal is evaluated by 
multiplying its Lagrange-multipliers. The best proposal is selected with a GA.  
In our SA implementation, additional intelligence was implemented in the neighborhood 
function. In the generation of the next solution, the neighborhood function uses 
listOfVarsToChange, the list of variables that it should change. The list of variables is 
derived when checking the constraint satisfaction and the particular variables that 
participate in the unsatisfied constraints. During the evaluation of the previous solution, the 
algorithm remembers which constraint generated the most of the unwanted cost. Knowing 
the variables that participate in the given constraint, the algorithm knows which variables 
should be changed to correct the current solution. This is how intensification of the search is 
achieved. Diversification is achieved by occasionally invoking a more complex 
neighborhood function, in a way explained later in the text. 
One could favor the idea of generating the new solution by forcing changes in the variables 
that make the most of the unwanted cost at that point. However, we face two setbacks: the 
increased intelligence in the neighborhood function will decelerate the iterations; and the 
danger of trapping in local minima is increased. Nevertheless, random generation not 
always succeeds to find the final correct solution and therefore guided search is required to 
be implemented. Guided local search has already proven effective in solving the scheduling 
problem (Tsang et al., 1999). 
We implemented guided search that includes different algorithms of swapping variable 
values. Depending on the constraint that has been dissatisfied, adequate neighborhood sub 
function is invoked. The neighborhood function swaps values of variables either in 
informed manner, generating a better solution, or in random position. For instance, if an 
empty class is spotted in-between classes, this empty time slot has to be filled with a class, 
so the last class of that day for the group is placed in that position, pushing the empty 
classes at the end. If two identical classes are found next to each other, one of them has to go 
in a different day. Swapping is performed between this class and a class from the next day, 
separating identical classes in different days. 
Figure 4 presents the invoking of particular neighborhood sub-functions during algorithm 

iterations. The horizontal axis represents the algorithm iterations, while the vertical axes 

contains all 16 constraints that model the problem. Clearly, some constraints that were 

satisfied in the construction of the initial solution never have their sub-functions invoked 

later. The remaining constraints (5, 6, 7, 8, 15) are invoked with variable frequencies. 

Figure 5 shows the distribution of calls of the particular constraint’s sub-functions during 
the solutions search. The horizontal axis represents the constraints invoked during solving, 
and the vertical axis gives the number of calls of the given constraint. The most invoked 
constraint is the 15th, the collision when one teacher is placed to teach in two classrooms in 
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the same time. Because of its frequent invocations, a rather simple algorithm for correction 
has been developed. Two lessons from two time slots of one of the groups in the collision 
are chosen and swapped. For example, one of the collided lessons and another random 
lesson from the same group exchange their time slots. It is important to emphasize the 
random component that forces diversification in the solution search. 
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Fig. 4. Calls for evaluation of particular constraints of the model in every iteration of the 
solution search 
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Fig. 5. Distribution of calls toward particular constraint's sub-functions during solving  

6.4 Deadlocks 

Practice has shown that simple variable swapping often brings to deadlocks. Initially a 
certain constraint is dissatisfied causing the appropriate swapping neighborhood function to 
swap values. The new solution dissatisfies a different constraint causing its swapping 
function to make the previous swap rollback. At this point a cyclic deadlock starts, with no 
possibility of ending. We solved this problem rather simply, but effectively. Every 
neighborhood function contains more than one swapping algorithm that triggers randomly, 
with different probability.  
Certain more effective and easily calculable swapping methods are executed more often. 
Since they tend to cause deadlocks, once in a while, another different neighborhood function 
is triggered for the same constraint dissatisfaction (equation 1). For instance, if rnd is a 
randomly generated number such that 1≤ rnd ≤1000, then:  
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Varying the probability of triggering different neighborhood functions evidently influences 
solving time and result quality. Table 1 shows the dependences of solving speed and 
solution quality from the probability of using a more thorough permutation opposite to 
simple swap in the neighborhood function. A measure of solving quality is achieved 
minimal cost, number of made improvements, number of temperature decreases (SA 
parameter) and duration of the search. 
 

Probabil. Min. Cost Number Improve. 
Nr.Temp 
Decreases 

Duration (msec) 

1/5 315 68 2926 335857 

1/10 355 80 5558 306890 

1/100 326 86 3434 137983 

1/1000 201 99 4273 133300 

1/5000 297 99 4440 238560 

1/10000 300 83 3214 259314 

Table 1. Dependences of solving from the probability of using a complex neighborhood 

Extremely high probabilities (0.2, 0.1) do not achieve the lowest solution cost, and solving 
duration is prolonged. Here the complex and thorough permutation is triggered too often 
and convergence toward the final solution is interrupted even when there is no deadlock. 
Extremely low probabilities (0.0001) also give unsatisfactory results because with such low 
probabilities, the thorough permutation is not triggered even when there is a deadlock 
going on. We chose to use a probability 1/1000 = 0.001, because it seems, the required 
neighborhood function triggers exactly when a deadlock happens. 
Figure 6 shows the dependences of cost - energy in terms of SA, number of improvements 
and temperature decreases from the probability of using a complex neighborhood. It is 
visually evident that the chosen probability of 1/1000 = 0.001 gives the maximal number of 
improvements and the minimal energy - cost. 
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Fig. 6. Dependences of improvements, cost and energy from the probability of using a 
complex permutation. 
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Some of the parameters of SA must be functionally dependant from the input parameters of 
the problem. For instance, the number of iterations of the inner loop of SA or the number of 
overall temperature decrements of SA is a multiple of 100 and the number of variables in the 
problem model. The maximal number of algorithm executions without accepting new 
solutions is 100. 

6.5 Impact of guided search 

Our search through the solution space is guided in a manner such that the neighborhood 
function accepts the old solution proposal, along with the constraint that generates most of 
the cost function. Since the neighborhood function includes specific algorithms for solution 
improvement of each constraint, the appropriate one is triggered. The neighborhood 
function generates a new solution in the “neighborhood” of the current one, precisely 
marking the changed variables. Only the participation of the changed variables is 
recalculated into the overall solution cost. The recalculation function marks the constraint 
that contributes most to the cost. 
Every constraint involves a different number of variables that create the problem model. 
Hence, every new solution generation changes a different number of variables depending 
on the constraint scope. We already determined (Chorbev et al., 2007) that changing a 
smaller amount of variables in every iteration gives better results. Still, letting the affected 
constraint decide the degree of change in the new iteration, allows appearing of occasional 
jumps in the search space. Massive change among the variables means jumping to new 
solution neighborhoods, when previous local search is exhausted. 
The experimental results are generated from solving a school scheduling problem with 60 
groups, 75 teachers, 37 rooms (utilized on two shifts) and 45 different subjects. Figure 7 
shows the variations of the solution cost (energy) during the first 100 iterations of the 
solving process. 
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Fig. 7. Variation of solution cost in time during the first 100 iterations 

The graph on figure 7 shows that informed - guided search in the beginning quickly directs 
the solution toward a lower solution cost. At that point the algorithm performs exact solving 
rather than heuristic search in each iteration. The neighborhood function exactly changes the 
dissatisfying variable for the most influential constraint to an accurate value. However, this 
process does not last long, quickly getting to a situation where every intervention among 
variables causes another equally influential constraint to become dissatisfied. In each 
succeeding iteration of the optimization algorithm, a triggered neighborhood corrects one, 
but dissatisfies other constraints. 
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This period of averagely constant cost, with a very small overall cost decrement lasts for 
most of the solving process (figure 8). During this period, swift jumps and depressions 
characterize the graph. The neighborhood function easily jumps to often completely new 
solutions. This behavior is inherited from Simulated Annealing, because high “temperature” 
allows the probability for acceptance of worse solutions to remain significantly big. As 
temperature decreases in SA and many of the neighborhoods have been tested, jumps start 
happening rarely. The search is directed in the neighborhood that has shown best potential 
for the final solution. The entire solving process can be seen at figure 8. 
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Fig. 8. Variation of solution cost in time during entire schedule generation 

In this process, resulting from the nature of the algorithm SA, worsened solutions are 
accepted as bases for further improvement, therefore managing to escape the emerging 
deadlocks. Although the search is guided, and the functions change specific error variable 
values, randomness must still be present. The neighborhood functions swap values between 
time slots in the schedule, but often new positions for swapping values are given randomly. 
The randomness is controlled with the domain of the variables and the goal to satisfy other 
constraints. The combination of worse solution acceptance and randomness in new solution 
generation is the key to avoiding trapping in local optima and escaping deadlocks.  

7. Conclusion 

The chapter deals with description of the heuristic algorithm that we implemented to build 
a school scheduling software. The scheduling software is based on a Constraint Solving 
Engine (CSE) and a Constraint Programming Library (CPL) which we previously developed 
(Chorbev et al., 2007). Various simulations and tests of the solving process implied the 
required corrections to the model (Jolevski et al., 2005c) and the algorithms. 
Every mentioned heuristic algorithm has certain advantages that come in handy in specific 
circumstances and specific problems. The goal in our research was to extract the best ideas and 
develop a novel hybrid algorithm that will achieve better performances. In this particular case, 
we tried to add additional functionalities from other optimization algorithms in Simulated 
Annealing as basis. We started from SA knowing of its power to avoid local optima and its 
theoretical guaranty to find the global optimum. We combined the memory from Tabu search, 
the intelligence of guided search and the completeness of GAC-CBJ. Initially we tested and 
fine tuned the algorithms on trivial problems like the traveling salesman, quadratic 
assignment or the n-queens problem. Eventually we took the schedule generation problem as 
a way to give practical implementation of the developed hybrid algorithms. 
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The area of constraint programming is quite perspective in the sense that it can use a lot of 
knowledge previously gathered from analysis in logical programming (Prolog). 
Furthermore, new better heuristic algorithms are implemented for solving problems 
modeled with constraints turning the constraint satisfaction into a perspective strategy.  
Even in worse case scenario, if solving through constraints does not give the promised 
results, the universal mathematical modeling of problems is a contribution by itself. Having 
the problem modeled in a reusable way is a base for implementing new ideas in future.  
The modularity of the concept, the clear distinction between the model and the algorithm 
leaves room for separate independent corrections and enhancements. The concept of 
universality that results from the modularity is exceptionally useful. Having the model and 
the algorithm separated, they can both be replaced. The algorithm can be used for another 
problem, or the modeled problem can be solved with another algorithm, with only minor 
additional interventions. Enhancing and optimizing the clearly distinct model is easier. The 
separated model can be used for testing new algorithms and getting better results. 
When building a solving engine, the universal algorithms and functions are implemented 
manage to give a solution. However, certain customizations and integration of small 
heuristic drastically accelerate the solving process. Adding guided search of the solution 
space showed significant improvement opposed to simple random solution proposal. 
However, a stochastic component is useful to avoid deadlocks and trapping in local optima.     
By limiting the involvement of appropriate heuristic for the given problem type to modular 
components in the engine, the universality of the library is maintained. At the same time the 
performance is significantly increased. Finding a balance between universal optimizing 
functions and problem dependent heuristics, improves the engine for further more or less 
similar tasks. 
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