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1. Introduction  

In the paper a new control algorithm for special mobile manipulator, namely 
for nonholonomic balancing robot, has been presented. A mobile manipulator is defined as a 
robotic system composed of a mobile platform equipped with non-deformable wheels and a 
manipulator mounted on the platform. Balancing robot is in fact a mobile robot, which 
platform can be considered as an inverted pendulum (i.e. rigid manipulator) mounted on 
the axis with two conventional fixed wheels. Such the axis it is called in the literature a 
mobile robot with structure of unicycle (Canudas de Wit et al., 1996). The balancing robot 
considered in this work is presented in Fig. 1. 
Taking into account the type of mobility of their components, there are 4 possible 

configurations of mobile manipulators: type ( )hh,  - both the platform and the manipulator 

holonomic, type ( )nhh, - a holonomic platform with a nonholonomic manipulator, type 

( )nhh, - a nonholonomic platform with a holonomic manipulator, and finally type ( )nhnh, -

 both the platform and the manipulator nonholonomic. The balancing robot is a mobile 

manipulator of ( )hnh, type because nonholonomic constraints occur only in the motion of 

the mobile part (wheels) and the motion of the inverted pendulum (rigid manipulator with 
only one degree of freedom) is holonomic. 
In the literature it can be found control laws for balancing robot but all solutions to this 
problem use either local linearization of the model (Segbot, 2004) or linear controllers (R. 
Chi Ooi, 2003). Such linear models and controllers are valid only local, near the desired 
configuration and therefore their application is limited only to stabilization of the pendulum 

about 0=dα . However, if the fully nonlinear character of the dynamics is explored, then it 

is possible to obtain other nonlinear control laws preserving not only point stabilization of 
the pendulum but the trajectory tracking, too. In this work a new nonlinear control 
algorithm for balancing robot guaranteeing trajectory tracking for the inverted pendulum is 
introduced.  
This paper is organized as follows. In Section 2 a mathematical model of nonholonomic 
balancing robot is obtained. Nonholonomic constraints in the model come from an 
assumption about frictionless motion of robot's wheels. In Section 3 control problem is 
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formulated. Section 4 is devoted to the design of nonlinear control algorithm. The proof of 
the convergence of this algorithm is included. Section 5 contains simulation results which 
illustrate proper working of the proposed nonlinear controller. In Section 6 some 
conclusions are presented.  
 

 

Fig. 1. Balancing robot: inverted pendulum with two fixed wheels on common axis 

2. Mathematical model of nonholonomic balancing robot  

We consider the mobile manipulator which consists of two subsystems, namely of rigid 
manipulator (inverted pendulum) and mobile platform (two fixed wheels located on 
common axis – unicycle). 

2.1 Nonholonomic constraints 

The motion of wheels can be described using generalized coordinates 5Rqm ∈  and genera-

lized velocities 5Rqm ∈$ .  

( )21 φφθyxqTm =  

where ( )yx, denote Cartesian coordinates of the center of the axis relative to the basic frame 

00YX ,  θ  is an angle between pX  and 0X  axis and iφ  is a rotation angle of ith wheel. The 

mobile subsystem should move without slipping of wheels. This assumption implies the 
existence of 3 independent nonholonomic constraints which can be expressed in the so-
called Pfaff’s form 

 ( ) 0=mm qqA $ ,  (1) 
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where ( )mqA  is a full rank matrix of (3 x 5) size. Due to (1), since the platform velocity is 

always in the null space of A, it is always possible to find a vector of special auxiliary 

velocities mR∈η ,  235 =−=m , such that 

 ( )ηmm qGq =$ ,  (2) 

where ( )mqG is an 5 x 2 full rank matrix satisfying ( ) ( ) 0≡mm qGqA . 

2.2 Dynamic model of the mobile manipulator of (nh, h) type 

Let a vector of generalized coordinates of the mobile manipulator be denoted as 

6R
q

q
m ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

α
, 

where 5Rqm ∈  is a vector of generalized coordinates for the mobile platform and R∈α  

describes an angle between the inverted pendulum (axis Xw) and vertical direction. Because 
of the nonholonomic character of constraints, to obtain the dynamic model of the balancing 
robot, the d'Alembert Principle should be used   

 ( ) ( ) ( ) ( ) ( )τλ qBqAqDqqqCqqM m +=++ $$$$ , .  (3) 

The model of dynamics (3) can be expressed in more detail as 
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where 

( )qM  = ⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

)(

)()(

MqM

qMqM
- inertia matrix, 

( )qqC $,  = ⎥
⎦

⎤
⎢
⎣

⎡
0),(

),(),(

21

1211

qqC

qqCqqC

$
$$

- matrix coming from Coriolis and centrifugal forces, 

( )qD  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
D

0
- vector of gravity, 

3R∈λ  - vector of Lagrange multipliers, 

( )qB  = ⎥
⎦

⎤
⎢
⎣

⎡
00

0)(
m
qB

 - input matrix, 

τ  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
mτ

- vector of controls. 

The model of dynamics (3) of the ( )hnh, mobile manipulator is often called a model in 

generalized coordinates. 
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Now we want to express the dynamics using auxiliary velocities (2) for the mobile platform. 
We compute 

( ) ( )ηη mmm qGqGq $$$$ +=
 

and eliminate from the model (3) the vector of Lagrange multipliers (using the condition 

( ) ( ) 0≡
m

T

m

T qAqG ) by left-sided multiplying the mobile platform equations by ( )
m

T qG  

matrix. After substituting for mq$ and mq$$  we get 
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 (4) 

We introduce a new symbol covering centrifugal and Coriolis forces as well as gravity. Then 
we obtain the model expressed in more compact form as follows 
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 (5) 

where the arguments of matrices and vectors are omitted for the sake of simplicity. We will 

refer to the model (5) as the model of dynamics of the ( )hnh,  mobile manipulator expressed 

in auxiliary variables. 

2.3 Partial global linearization 

The dynamic model of nonholonomic balancing robot can be considered as a mobile 

manipulator with one passive degree of freedom (degree of freedom without actuator). The 

role of this passive joint plays the inverted pendulum. For such the object it is possible to 

introduce due to (De Luca et al., 2001) partial global linearization, which transforms the 

model in auxiliary velocities to a form more convenient from control's point of view. For this 

reason we extract α$$  from the second matrix equation of (5)  

 ( ) ( )*
2

*
21

1*
22 FMM +−= − ηα $$$   (6) 

and put it into the first equation, (Ratajczak & Tchoń, 2007). Then we get the following 
expression 

 ( ) ( )
mBqqFqM τη *, =+ $$ ,  (7) 

where 

( ) ( ) ( ) ( )qMqMqMMqM *
21

1*
22

*
12

*
11

−−=
 

( ) ( ) ( ) ( )qqFqMqMFqqF $$ ,, *
2

1*
22

*
12

*
1

−−=
 

Now a linearizing control law with a new control input u should be introduced 

 ( ) ( ) ( ){ }qqFuqMBm
$,

1* += −τ  (8) 
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to get a model (5) defined as a partially linearized control system  

 
( ) ( )

⎪⎩

⎪
⎨
⎧

=
+−= −

u

FMM

η
ηα

$
$$$ *

2
*
21

1*
22  (9) 

Such a system is a point of departure to design a new nonlinear control algorithm 
preserving not only point stabilization but trajectory tracking as well. 

3. Control problem statement  

In the paper we will find a control law guaranteeing the proper behaviour of the balancing 

robot. The task of the robot is to follow the desired trajectory ( )tdα  (trajectory tracking or 

point stabilization) of the inverted pendulum without slipping of platform's wheels.  
A goal of this paper will be to address the following control problem for balancing robot 
given by the model (9):  

Find control law u such that the balancing robot with the known dynamics follows a 

desired trajectory ( )tdα  without slippage of platform's wheels and tracking errors 

converge against zero. 
To design a controller for the such the mobile manipulator, it is necessary to observe that 
complete nonholonomic system (9) is a cascade with two subsystems. For this reason the 
structure of the controller is divided into two parts due to backstepping-like procedure 
(Krstić et al., 1995): 

1. kinematic level - rη represents an embedded control input, which ensures the 

convergence the real trajectoryα of the inverted pendulum to the desired trajectory 

( )tdα  for the equation of constraints (6) if the dynamics were not present, 

2. dynamic level - as a consequence of cascaded structure of the system model, the 
pendulum's angle α  cannot be commanded directly, as is assumed in the design of 

control on kinematic level, and instead it must be realized as the output of the partially 
linearized dynamics driven by u. The dynamic input u intends to regulate η  toward 

the embedded control input rη , and therefore, attempts to provide control input 

necessary to track the desired trajectory. 
Because there exists a difference between the real velocity of the mobile platform η  and the 

embedded control input rη at the start position, it is necessary to account for the influence of 

the error re ηηη −= on the behaviour of the full mathematical model of the nonholonomic 

balancing robot. 

4. Nonlinear control law 

4.1 Reference auxiliary velocities 
r

η  

Let some reference functions describing desired accelerations of platform's wheels will be 
defined as follows 

 ( ) ( ) αααη eKeKFMM pddr −−=+− − $$$$ *
2

*
21

1*
22 ,     0, >pd KK ,  (10) 
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where  

de ααα −=
 

is a tracking error of the inverted pendulum. It is obvious that rη is not unique defined, 

because this equation is scalar and 2R
r
∈η . However, it is possible to assume some 

relationship between r1η and r2η  (for instance rr 21 ηη = ) and to get unique solution of (10). 

The motion of wheels with velocities rη  preserves convergence of the inverted pendulum to 

the desired constant configuration dα or to the desired trajectory ( )tdα . The main problem is 

that the real velocities of wheels η  are not equal to the reference velocities rη  at the 

beginning of the motion. It means that some errors occur on the dynamic level and disturb 

the behaviour of the balancing robot. Therefore we want to prove using Lyapunov-like 

function that the properly chosen control law on dynamic level can guarantee the 

asymptotic convergence of these errors to zero. As a consequence we obtain stabilization of 

the pendulum about the desired trajectory (or configuration). 

4.2 Nonlinear controller 

We consider the model of the balancing robot (9) expressed in auxiliary variables. We  

assume that we know the solution rη to the constraints equation (10), which preserves a 

convergence of real coordinate )(tα of the inverted pendulum to the desired trajectory 

( )tdα . Then we propose a new control algorithm guaranteeing asymptotic trajectory 

tracking for all coordinates of the mobile manipulator. This control law is defined by 

expression 

 ηη eKu mr −= $ ,     0>mK   (11) 

 

where Km  is some diagonal regulation matrix and 
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is an error appearing on dynamic level, if real velocities of wheels are not equal to reference 

velocities, i.e. ( ) ( )00 rηη ≠ . In such a situation, on the dynamic level we have the dynamic of 

the closed-loop error given by 

 0=+ ηη eKe m
$   (12) 

 

which due to positive definiteness of Km matrix is exponentially fast convergent to 0. On the 

other side, on kinematic level (the equation describing constraint, i.e. trajectory of a passive 

joint) the motion of the inverted pendulum is disturbed in the following way  

 ( ) ( ) ( ) ( ) ηααη αηα eKMeKeKFMeKMM mpddmr

1*
22

*
2

1*
22

*
21

1*
22

−−− +−−=−−−= $$$$$$ . (13) 
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4.3 Proof of convergence of the control algorithm  

Lets consider trajectories of the disturbed closed-loop system (12) and (13). We choose the 

following Lyapunov-like function 

 ηηααηαα eeeeeeeV T++= 2)(
2

1
),,( $$ . (14) 

Now we calculate the time derivative of V 

ηηαααα eeeeeeV T $$$$$$ +++= ))((  

which along solutions of the closed-loop system (12)-(13) is equal to 
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with parameters defined in the following way 

( ) [ ]2211
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mm
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,       12 −+= dp KKK  

where Ip is a moment of inertia of the inverted pendulum. Then the time derivative of the V 

function can be evaluated by the expression 
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Using the same method of estimation, we can obtain the following formula 
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1 2
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If the regulation parameters Km, Kp, Kd are properly chosen, i.e. 

111 >mK , 122 >mK , 
2

1
2
3KK p +> , 

2
1

2
2KKd +> , 

then from LaSalle invariance principle we can deduce that all errors, i.e. ( )ηαα eee ,, $  converge 

to 0 asymptotically. 
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5. Simulations 

As the object of simulations we have chosen a model of the inverted pendulum on two fixed 

wheels presented in Fig. 1. The goal of simulations is to examine the behaviour of the 

presented control algorithm using a full knowledge about the dynamics. The motion of the 

closed loop system has been examined by simulations which have run with the MATLAB 

package and the SIMULINK toolbox. 

• First, the desired trajectory for inverted pendulum was chosen as a constant 

configuration 3/πα =d . The start position of the platform was equal to 

( ) ( )0,0,0)0(),0(),0( =θyx  and start position of the manipulator ( ) 00 =α . In Fig. 2b 

tracking terror 1ηe  for the mobile platform have been shown. The relationship between 

reference velocities is selected as rr 21 ηη =  (straightforward motion). Figure 2a presents 

tracking error αe  for the inverted pendulum. The gains of control parameters used for 

getting plots presented in Figure 2 are equal to 

50=mK , 100=pK , 50=dK . 

 

a) 
 

b) 

Fig. 2. Tracking errors occurring in the balancing robot during tracking constant 

configuration: a) αe   b) 1ηe  

• Next, the desired trajectory for inverted pendulum was chosen as a slowly changing 

periodic function ( ) ( )10/sin05.0 ttd =α . The start position of the platform was equal to 

( ) ( )0,0,0)0(),0(),0( =θyx  and start position of the manipulator ( ) 00 =α . In Fig. 3b 

tracking error 1ηe  for the mobile platform has been shown. The relationship between 

reference velocities is selected as rr 21 ηη = . Figure 3a presents tracking error αe  for the 

inverted pendulum. The gains of control parameters used for getting plots presented in 
Fig. 3 are equal to 

 

50=mK , 100=pK , 50=dK . 
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a) 
 

b) 

Fig. 3. Tracking errors occurring in the balancing robot during tracking periodic trajectory: 

a) αe    b) 1ηe  

6. Concluding remarks 

In the paper a new control algorithm for nonholonomic balancing robot (inverted pendulum 

mounted on a two fixed conventional wheels) has been introduced. The algorithm covers 

not only stabilization of the pendulum about a desired constant configuration dα , not 

necessary 0, but the tracking of some time-dependent trajectory as well. Differently from 

previous works presenting control problem of the balancing robot, the motion of the robot is 

not restricted to straight-line motion but it is possible to realize more complicated 

manoeuvres on XY plane without slipping of robot's wheels. It depends on the selection of 

relationship between reference velocities designed for the wheels, what case of robot's 

motion will be realized in practice.  

In our forthcoming research we will focus on extending the presented approach to other 

cases of mobile manipulators ( )hnh,  with different structures of passive joints. 
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