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1. Introduction     

Recently, with the increasing demand of high security, person identification has become 
more and more important in our everyday life. The purpose of establishing the identity is to 
ensure that only a legitimate user, and not anyone else, accesses the rendered services. The 
traditional identification methods are based on “something that you possess” and “something 
that you know” such as key, user-ID, password, PIN, etc. Examples of such applications 
include secure access to buildings, airports, computer systems, cellular phones and ATM 
machines. Another family of identification methods uses biometric characteristics. Biometric 
recognition, or simply biometrics, refers to the automatic recognition of individuals based on 
their physiological and/or behavioral characteristics. Biometrics allows us to confirm or 
establish an individual’s identity based on who she is, rather than by what she possesses (e.g., 
an ID card) or what she knows (e.g., a password). Current biometric systems make use of 
identifiers such as fingerprints, hand geometry, iris, face and voice to establish an identity. 
Biometric systems also introduce an aspect of user convenience. For example, they alleviate 
the need for a user to remember multiple passwords associated with different applications.  
Fingerprint characterization is the oldest and the prevalent member of the biometric family 
and has been extensively used for person identification in a number of commercial, civil and 
forensic applications. 
The question that is being asked about biometric technologies in general and about  
fingerprints in particular is that whether these technologies can work all the time, 
everywhere, and  in all contexts for reliable person identification and authentication.   
One of the design criteria for building such completely automatic and reliable fingerprint 
identification (and  verification) systems is that the underlying sensing, representation, and 
matching technologies must also be very robust. 
In practice, due to variations in impression conditions, ridge configuration, skin conditions 
(aberrant formations of epidermal ridges of fingerprints, postnatal marks, occupational 
marks), acquisition devices and non-cooperative attitude of subjects a significant percentage 
of acquired fingerprint images is of poor quality. In order to ensure that the performance of 
a feature extraction algorithm will be robust with respect to the quality of input fingerprint 
images, an enhancement algorithm which can improve the clarity of the ridge structures is 
useful. Most of the fingerprint image enhancement methods (Gabor, directional or 
anisotropic filter based) use convolution to obtain the results. Another way to address these O
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requirements of robust performance is to adopt robust representation schemes that capture 
the discriminatory information in fingerprint impressions.  
Also, thanks to the increasing power of computers and to the substantial improvement in 
capture devices, the use of fingerprint for personal identification in portable applications is 
very significant.  
For purpose of commercialization, a fingerprint verification system has to take the following 
four crucial factors into consideration: processing speed, recognition rate, power consumption 
and size. These approaches described are computationally very expensive tasks. 
An alternative to the traditional approaches is provided by the Cellular Neural Network 
(CNN) paradigm, introduced by Prof. L.O. Chua in 1988 (Chua & Yang, 1988a; 1988b). A 
CNN consists of a network of first order nonlinear circuits, locally interconnected by linear 
(resistive) connections. 
The rapidly growing field of Cellular Neural Networks (CNNs) and analogic cellular 
computing CNN-UM  (Chua & Roska, 1993) has found a number of potential applications 
(Chua & Yang, 1988b), especially in image and video processing problems (Moreira-
Tamayos & Gyvez, 1999; Iannizzotto et al., 2005, Costantini et al., 2004) where real-time 
signal processing is required. This architecture provides an efficient tool to explore the rich 
world of dynamical systems and makes possible to introduce new approaches for pattern 
recognition (Szirànyi & Csicsvàri, 1993; Theodoridis & Koutroumbas, 2006) and object 
classification (Milanova & Buker, 2000; Bálya, 2003), relevant problems in image processing.  
CNNs can process information at very high speeds comparable to today’s supercomputers. 
The regular lattice architecture of CNNs allows massive parallelism that makes it very 
suitable for performance-demanding applications in image processing.  
Fingerprint-based identification (and verification) systems using CNNs are very promising 
for personal identification and in particular, if incorporated in a VLSI chip, for use in 
portable applications. 
They have the potential to realize a fingerprint-based identification  (or verification) system on one 
chip assuming that it is possible to incorporate a capacitive or optical sensor on the same chip. 
Various approaches to implement real-time person verification and identification systems 
on CNNs have been proposed (Su et al., 2006; Gao et al., 2001; Gao & Moschytz, 2001;  2004). 
However in (Su et al., 2006) the level of accuracy and robustness of the fingerprint 
verification  system was not investigated and in (Gao & Moschytz, 2004) are not used public 
domain fingerprint databases.  
The most popular method for fingerprint representation is based on local landmarks called 
minutiae. The minutiae-based systems first locate the points, often referred as minutiae 
points, in fingerprint image where the fingerprint ridges either terminate or bifurcate (see 
fig. 1) and then match minutiae relative placement in a given finger and the stored template 
(Jain et al.,  1997).  
While minutiae-based fingerprint verification systems have shown to be fairly accurate, 
further improvements are needed for acceptable performance, especially in applications 
involving very large scale databases.  
The aim of this chapter is to re-formulate an algorithm for fingerprint verification using 
Scale Invariant Feature Transform (SIFT) (Lowe 1999; Lowe, 2004; Park et al., 2008) in such a 
way to exploit the high degree of parallelism inherent in a single-layer CNN.  
SIFT detects and describes local features in images. The SIFT features are local and based on 
the appearance of the object at particular interest points and are invariant to image scale and 
rotation. They are also robust to changes in illumination, noise, occlusion and minor 
changes in viewpoint. In addition, the SIFT features are discriminant and allow for correct 
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object identification with low probability of mismatch and are easy to match against a (large) 
database of local features (Bicego et al., 2006). 

 
Fig. 1. An example of bifurcation and ridge ending in a fingerprint image 

In our implementation we extract characteristic SIFT feature points in scale space and 
perform a matching based on the texture information around the feature points using the 
SIFT operator (Chikkerur, 2006).  
The input to the system is a gray level fingerprint image where a number of feature points 
(keypoints) are located using a difference-of-Gaussian function in a scale space. A descriptor,  
representing each feature point and invariant to rotation, scale and change of lighting, is 
calculated.   
In this chapter we describe the technique developed and present a set of experimental 
results. In the final section we draw our conclusions on the work carried out. 

2. Scale invariant feature transform  

There are three typical categories of fingerprint verification methods: i) minutiae, ii) 
correlation, and iii) ridge features. However, considering the types of information used, a 
method can be broadly categorized as minutiae based or texture based. While the minutiae 
based fingerprint verification systems have shown high accuracy (Jain et al., 1997; Ratha et 
al., 1996), they ignore the rich information in ridge patterns which can be useful to improve 
the matching accuracy. Most of the texture based matchers use the entire fingerprint image 
or local texture around minutiae points (Chikkerur et al., 2006). Using local texture is more 
desirable because the global texture will be more sensitive to non-linear and non-repeatable 
deformation of fingerprint images. When the local texture is collected based on the minutiae 
points, the texture based fingerprint representation is again limited and its performance 
depends upon the reliability of extracted minutiae points. It is not obvious how one could 
capture the rich discriminatory texture information in the fingerprints that is not critically 
dependent on finding minutiae points or core points.   
For the purpose of extending characteristic feature points of fingerprint beyond minutiae 
points, we adopt Scale Invariant Feature Transform (SIFT) (Lowe, 2004). SIFT extracts 
repeatable characteristic feature points from an image and generates descriptors 
representing the texture around the feature points. In (Park, 2008) the authors have 
demonstrated the  utility of SIFT representation for fingerprint-based identification.  As the 
SIFT feature points have already demonstrated their efficacy in generic object recognition 
problems, in the same way  this representation is also stable and reliable for many of the 
matching problems related to the fingerprint domain. Further, since SIFT feature points are 
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based on texture analysis of the entire scale space, these feature points are probably robust 
to the fingerprint quality and deformation variation.  
The features are selected to be invariant to image scale and rotation, and to provide robust 
matching across a substantial range of affine distortion, addition of noise and partial    
change in lighting.  
The features are highly distinctive, in the sense that a single feature can be correctly 
matched with high probability against a large database of features from many images, 
providing a basis for object and scene recognition. In the original implementation, the 
recognition proceeds by matching individual features to a database of features from known 
objects using a fast nearest-neighbour algorithm, followed by a generalized Hough 
transform to identify clusters belonging to a single object, and finally performing 
verification through least-squares solution for  consistent pose parameters. 
Following are the major stages of computation used to generate the set of image features:  
• Scale-space extrema detection: to identify potential interest points invariant to scale it's 

used a difference-of-Gaussian function (see fig.2). 
• Keypoint localization: at each candidate location, a detailed model is fit to determine 

location and scale. Keypoints are selected based on measures of their stability.  
• Orientation assignment: one or more orientations are assigned to each keypoint 

location based on local image gradient directions. All future operations are performed 
on image data that has been transformed relative to the assigned orientation (providing 
invariance to these transformations).  

• Keypoint descriptor: the local image gradients are measured at the selected scale in the 
region around each keypoint. These are transformed into a representation that allows 
for significant levels of local shape distortion and change in illumination.  

 
Fig. 2. Scale-space extrema detection 

This approach has been named Scale Invariant Feature Transform (SIFT), as it transforms 
image data into scale-invariant coordinates relative to local features.  
An important property of this approach is that it generates large numbers of features that 
densely cover the image over the full range of scales and locations. A typical image of size 
500x500 pixels will give rise to about 2000 stable features (although this number depends on 
both image content and choices for various parameters). The quantity of features is 
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particularly important for object recognition, where the ability to detect small objects in 
cluttered backgrounds requires that at least 3 features be correctly matched from each object 
for reliable identification.  
For image matching and recognition, SIFT features are first extracted from a set of reference 
images and stored in a database. A new image is matched by individually comparing each 
feature from the new image to this previous database. In seminal work of Lowe (Lowe, 
1999) the finding candidate matching features is based on Euclidean distance of their feature 
vectors. Specifically,  a fast nearest-neighbour algorithm is used to perform this computation 
rapidly against large  databases. In our implementation, we have evaluated two different 
metrics: the Lowe and  Szatmári (Szatmári, 2006) metrics. 

3. Cellular Neural Network 

As stated in the introduction, a CNN consists of an array of non-linear, locally 
interconnected, first order circuits. As connections are local, each cell is connected only to 
the cells belonging to its neighbourhood, as it is shown in fig.3. 
 

 
Fig. 3. Architecture of a CNN  

If we call the generic cell in the MxN array as Cij (the cell on the i-th row and the j-th column 
of the array), a formal definition of the neighbourhood of radius r of the cell Cij, Nr(i,j), is 
given by: 

 ( ) ( ( ( ({ }{ }1 1
r kl
N i, j = C : max k i , l j r, k M, l N− − ≤ ≤ ≤ ≤ ≤  (1) 

An MxN CNN, with MxN cells arranged in M rows and N columns, is entirely characterized 
by a set of MxN non-linear differential equations, associated with each cell. The generic cell 
xij is described by the following relations: 
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where:  
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where 
xij
v ,

uij
v ,

yij
v are respectively the state, input and output voltage of the CNN cell.  

The state and output vary in time, whereas the input is kept constant. The indexes ij refer to 
the position of the cell in the 2D grid, while 

r
kl N∈  is a grid point in the neighborhood 

within the radius r of the cell ij. Matrices A, B, A1, B1, D, called templates, describe the 
interaction of the cell with its neighbourhood and regulate the evolution of the CNN state 
and output vectors. Template connections can be realised by voltage-driven current 
generators. 

ij,kl
A  is called linear feedback template, 

ij,kl
B the linear control template, 

ij
I is a current bias 

in the cell. 
ij,kl

A1 , 
ij,kl

B1  and 
ij,kl
D  are non-linear templates respectively applied to 

yy
Δv , 

uu
Δv  and Δv . 

ij,kl
A1  is called difference controlled nonlinear feedback template, 

ij,kl
B1  is 

the difference controlled non-linear control template, 
ij,kl
D  is the generalized non-linear 

generator. The output characteristic f adopted is a sigmoid-type piecewise-linear function.  
CNNs are exploited for image processing by associating each pixel of the image to the input 
or initial state of a single cell. Subsequently, both the state and output of the CNN matrix 
evolve  to reach an equilibrium state. The evolution of the CNN is governed by the choice of 
the template. A lot of templates have already been defined in order to perform basic image 
processing operations, like gradient computation, smoothing, hole detection, line deletion, 
isolated pixel extraction and deletion, and so on. Simple operations can be performed just by 
using the basic templates A, B, and the bias I, whereas more complicated processing 
requires the use of the nonlinear templates A1, B1, and the generalized nonlinear generator 
D.  The proposed algorithm can be totally implemented onto a “CNN Universal Machine” 
(CNN-UM), an hardware structure able to implement CNNs (Chua & Roska, 1993). 
The main advantage of using CNNs in image processing is related to the increasing of 
throughput due to the massive parallelism of the structure, joined to the similar  way of 
signal processing, typical of CNNs. In fact they are able to perform a complete image 
processing analysis in time of order of 10-6 s (by using a CNN hardware implementation), 
this in form of sequences of simple tasks like array target segmentation, background 
intensity extraction, target detection and target intensity extraction. 
Depending on the type of neurons that are basic elements of the network, it is possible to 
distinguish continuous-time CNN (CTCNN), discrete-time CNN (DTCNN) (oriented 
especially on binary image processing), CNN based on multi-valued neurons (CNN-MVN) 
and CNN based on universal binary neurons (CNN-UBN). CNN-MVN makes possible 
processing, which is defined by some multiple-valued threshold functions, and CNN-UBN 
allows processing defined not only by threshold, but also by arbitrary boolean function. 
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4. The fingerprint verification system 

Scale Invariant Feature Transform (SIFT) (Lowe, 2004) was originally developed for general 
purpose object recognition. SIFT detects stable feature points in an image and performs 
matching based on the descriptor representing each feature point.   
Even though SIFT was originally developed for general purpose object recognition and does 
not require image preprocessing, we have performed a few preprocessing steps on 
fingerprint images to obtain better matching performance. The preprocessing is performed 
in two steps: i) adjusting the graylevel distribution (Csapodi & Roska, 1996) ii) defining a   
bounding box search area to filter the boundary points of fingerprint. When the fingerprint 
images show similar texture, the performance is expected to be improved because SIFT uses  
texture information both for extracting feature points and matching. First, to overcome some 
apparent differences in gray level distributions, we consider the “image intensity” and 
adjust the histogram. Second, the boundary area of a fingerprint always causes some feature 
points to be detected because they are local extrema.  
However, the boundary region is different for every fingerprint impression even for the 
same finger. Therefore, feature points on the fingerprint boundary usually result in false 
matches. We construct a binary mask that includes only the inner part of a fingerprint and 
use it to prevent any noisy feature points from being detected on the boundary. In fig.4 is 
shown a schematic representation of the our algorithm. 
 

 
Fig. 4. Flow chart of fingerprint matching using SIFT operator 

The feature points are detected using a cascade filtering approach to identify candidate 
locations that are then examined in further detail. The first stage of keypoint detection is to 
identify locations and scales that can be assigned under differing “views” of the same object. 
Detecting locations that are invariant to scale change of the image can be accomplished by 
searching for stable features using a continuous function of scale known as scale space 
(Witkin, 1983).  
To obtain a scale space (see fig. 2) the initial image is incrementally convolved with 
Gaussians to produce images separated by a constant factor k in scale space, shown stacked 
in the left column of fig. 2. Adjacent image scales are subtracted to produce the difference-
of-Gaussian images (DOG) shown on the right of fig. 2. The set of Gaussian-smoothed 
images and DOG images are called an octave. Once a complete octave has been processed, 
we resample the Gaussian image that has twice the initial value of σ by taking every second 
pixel in each row and column. As stated in (Park, 2008) a typical number of scales and 
octaves for SIFT operation is 5 and 6, respectively. 
In a CNN, an implementation of the Gaussian filter with aperture σ can be obtained using  
the Heat Diffusion template (Rekeczky et al., 1998; 1999) with ad hoc diffusion coefficient 
(Roska, 1999). As pointed out by Witkin (Witkin, 1983), convolution of the original signal 
with Gaussians at each scale is equivalent to solving the heat equation with the original 
image as initial condition.   
An example of Heat Diffusion template is as follow: 
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(4) 

where z is the central element of the matrix I (see eq. 2). 
In fig. 5 is shown the obtained results applying the Heat Diffusion template on an image of 
example. 

 
Fig. 5. An example of use of the Heat Diffusion template 

The standard deviation of the Gaussian filter depend on the aij matrix elements.  
Also, to obtain a difference image it's possible to use the technology described in (Sadeghi-
Emamchaie, 1998), where a locally connected analog cellular neural networks (CNNs) is 
used to implement digital arithmetic arrays; the arithmetic is implemented using a Double-
Base Number System (DBNS).  Specifically, a CNN array, using a simple non-linear 
feedback template, with hysteresis, can perform arbitrary length arithmetic with good 
performance in terms of stability and robustness.  
In according to (Lowe, 2004), to obtain a number of feature points we detect the local 
maxima and minima of the DOG images; each sample point is compared to its eight 
neighbours in the current image and nine neighbours in the scale above and below           
(see fig.  2). A feature point is selected only if it is larger than all of these neighbours or 
smaller than all of them. Then, the same technique is applied for the higher (and lower) 
octave. 
If the first octave is sampled at the same rate as the input image, the highest spatial 
frequencies will be ignored. This is due to the initial smoothing, which is needed to provide 
separation of peaks for robust detection.  
Therefore, we expand the input image by a factor of 2, using an algorithm of interpolation, 
prior to building the scale space. In a CNN, an implementation of an algorithm of 
interpolation (Roska, 1999) can be obtained using the following template: 

 

(5) 

In fig. 6 we show an example of interpolation obtained with this template. 
The local maximum (and minimum) in a given neighbourhood (see fig. 7) can be computed 
using a single layer CNN through a difference-controlled template (Local maxima detector 
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template), as described in (Chua et al., 1993). Each local minimum can also be detected if the 
input image is inverted. However an improvement of the performances can be obtained 
using a local maxima detector based on multi-layer CNN (Roska & Chua, 1993). 
 

 
Fig. 6. Fitting a surface on three given points. Image size: 80x80. 

 
Fig. 7. Maxima and minima of the difference-of-Gaussian images are detected by comparing 
a pixel (marked with X) to its 26 neighbours in 3x3 regions at the current and adjacent scales 
(marked with circles).  

A local extrema is observed if its derivative in scale space is stable and if it is on an apparent 
edge. If an extremum is decided as unstable or is placed on an edge, it is removed because it 
can not be reliably detected again with small deformations or lighting changes.    
To remove the extremum placed on an edge we use a mask image obtained processing the 
input image with an edge-detector described in (Roska, 1999). Then, the next step is to reject 
the points that have low contrast (and are therefore sensitive to noise). 
In order to reject the points that have low contrast we use a mask image obtained processing 
the input image with the technique introduced in (Cserey et al., 2003). In this approach a 
parallel histogram modification technique based on embedded morphological pre-
processing is formulated in terms of non-linear partial differential equations (PDE).  
Now, to characterize the image at each key location (keypoint), the first smoothed image at 
each octave of the pyramid is processed to extract image gradients and orientations.  
In a CNN, the estimation of the gradient intensity in a local neighbourhood can be obtained 
using the following template: 

 

(6) 

where b =|vuij – vukl|/8 . 
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To each key location is assigned a “canonical orientation”, so that the image descriptors are 
invariant to rotation. This orientation is estimated by the gradient orientations of sample 
points within a region around the keypoints. To make the descriptor stable against lighting 
or contrast changes, the orientation is determined as follow: 
• we estimate the gradient orientation of the pixels, within a region around the keypoint, 

applying a grayscale line detector template (8 templates for 8 directions) presented in 
(Roska, 1999); 

• we add the 8 maps obtained (SUM – to each pixel of the image we have an estimate of 
its orientation); 

• we obtain an image mask applying the mathematical morphology operator dilation 
(Roska, 1999) on an image that contains only keypoints (keypoints mask). The mask 
locates the points that will contribute to the estimate of the keypoints orientation;  

• we calculate the local mean (neighbourhood – 3x3) of the image SUM (Moreira-
Tamayos &  Gyvez, 1999) on the points “selected” by the mask image. 

The orientations estimated correspond to dominant directions of local gradients. Given a 
stable location, scale, and orientation for each key, it is now possible to describe the local 
image region in a manner invariant to these transformations. In addition, it is desirable to 
make this representation robust against change in lighting and small shifts in local 
geometry, such as arise from affine. 
One obvious approach would be to sample the local image intensities around the keypoint 
at the appropriate scale, and to match these using a normalized correlation measure. 
However, simple correlation of image patches is highly sensitive to changes that cause 
misregistration of samples, such as affine or non-rigid deformations.  
In according to (Park, 2008), now we generate a map of gradient orientations around each local 
extremum and then to make the descriptor orientation invariant, all gradient orientations are 
rotated respect to the major orientation (keypoints orientation) of the local extremum. 
To obtain a local map of gradient orientation we proceed as follow: 
• we calculate the gradient intensity of the fingerprint image; 
• we use the grayscale line detector templates (8 orientation images, applied only on the 

keypoints neighbourhood – size: 16x16); 
• we add the 8 orientation images to obtain a local gradient orientation image;  
• we calculate the difference (SUB) between the local gradient orientation image and the 

keypoints orientation image (canonical orientation of the keypoints), the SUB image 
contains the gradient orientations rotated respect to the keypoints orientation; 

• we calculate a weighted mean (Moreira-Tamayos &  Gyvez, 1999) of the intensity 

gradient image and of the “rotated” local gradient orientation image. 
In the original implementation (Lowe, 1999) of SIFT the best candidate match for each 
keypoint is found by identifying its nearest neighbour in the database of keypoints from 
training images. The nearest neighbour is defined as the keypoint with minimum Euclidean 
distance for the invariant descriptor vector. To obtain more details on matching process read 
(Lowe, 2004).  
In our tests we used two metrics: 
• the original solution described in (Lowe, 1999); 
• the metric described in (Szatmári, 2006). 
The first solution is more accurate (see Section 5) but it's not implemented on a CNN. The 
second metric though implemented on CNN, indeed,  is less accurate, reliable and robust. 
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In  (Szatmári, 2006) the author investigated PDE-based dynamic phenomena for comparing 
objects and introduced a spatio-temporal non-linear wave metric. This metric is capable of 
comparing both binary and gray-scale object pairs in a parallel way. Spatio-temporal waves 
are controlled to explore the quantitative properties of objects. In addition to spatial data  
time related information is also extracted and used for evaluating differences and 
similarities. The detailed analysis of the proposed metric shows that this wave-based 
approach can outperform well-known metrics such as Hausdorff and Hamming metrics in 
selectivity and sensitivity. 

5. Experimental results 

In according to (Park, 2008), the performances of the proposed SIFT based fingerprint 
verification has been evaluated on FVC2002 DB1 and DB2 fingerprint databases (Maio,  
2002). Both the databases contain images of 100 different fingers with 8 impressions for each 
finger. In FVC2002 project, a total of ninety students (20 years old on the average) enrolled 
in the first two years of a Computer Science degree program agreed to act as volunteers for 
providing fingerprints. The volunteers were randomly partitioned into different groups, 
each group was associated to a DB and therefore to a different fingerprint scanner. 
Forefinger and middle finger of both the hands (four fingers total) of each volunteer were 
acquired by interleaving the acquisition of the different fingers to increase differences in 
finger placement. The top-ten quality fingers were removed from each database since they 
do not constitute an interesting case study. The remaining 110 fingers were split into set A 
(100 fingers - evaluation set) and set B (10 fingers - training set). To make set B 
representative of the whole database, the 110 collected fingers were ordered by quality. 
During a session, fingers were alternatively dried and moistened.   
Some characteristics of these two databases are summarized in table 1. 
 

 Sensor Type Image Size Images Resolution 

DB1 Optical Sensor 388x374 100x8 500 dpi 

DB2 Optical Sensor 296x560 100x8 569 dpi 

Table 1. Description of FVC 2002 DB1 and DB2 databases 

The performance of the whole system, was evaluated by the Equal Error Rate (EER) for each 
metric used (see table 2). At Equal Error Rate, FAR=FRR. As the name implies, the FAR 
(False Acceptance Rate)  describes the ability of the system to reject fingerprints which are 
not allowed to access the system, while  the FRR (False Rejection Rate) describes the ability 
of the system to accept fingerprints which belong to the system users. 
 

 EER1 EER2 

DB1 9.30% 9.67% 

DB2 11.65% 12.36% 

Table 2. Description of the experimental results. EER1 and EER2 are, respectively, the equal 
error rate with the Lowe's metric and the Szatmári's metric. 

As stated in section 4, the first metric is more accurate but  it's not implemented on CNNs 
(therefore with a lower matching speed). 
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6. Conclusion 

In this chapter we re-formulate an algorithm for fingerprint verification using the Scale 
Invariant Feature Transform (SIFT) (Lowe, 2004; Park et al., 2008) in such a way to exploit 
the high degree of parallelism inherent in a single-layer CNN.  In our implementation we 
extract characteristic SIFT feature points in scale space and perform a matching based on the 
texture information around the feature points using the SIFT operator (Chikkerur, 2006). 
Experimental measures of the accuracy of the our fingerprint verification system  were 
carried out. 
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