
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322387377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

14

Output Coding Methods: Review and
Experimental Comparison

Nicolás García-Pedrajas and Aida de Haro García
University of Cordoba,

Spain

1. Introduction

Classification is one of the ubiquitous problems in Artificial Intelligence. It is present in
almost any application where Machine Learning is used. That is the reason why it is one of
the Machine Learning issues that has received more research attention from the first works
in the field. The intuitive statement of the problem is simple, depending on our application
we define a number of different classes that are meaningful to us. The classes can be
different diseases in some patients, the letters in an optical character recognition application,
or different functional parts in a genetic sequence. Usually, we are also provided with a set
of patterns whose class membership is known, and we want to use the knowledge carried
on these patterns to classify new patterns whose class is unknown.
The theory of classification is easier to develop for two class problems, where the patterns
belong to one of only two classes. Thus, the major part of the theory on classification is
devoted to two class problems. Furthermore, many of the available classification algorithms
are either specifically designed for two class problems or work better in two class problems.
However, most of the real world classification tasks are multiclass problems. When facing a
multiclass problem there are two main alternatives: developing a multiclass version of the
classification algorithm we are using, or developing a method to transform the multiclass
problem into many two class problems. The second choice is a must when no multiclass
version of the classification algorithm can be devised. But, even when such a version is
available, the transformation of the multiclass problem into several two class problems may
be advantageous for the performance of our classifier. This chapter presents a review of the
methods for converting a multiclass problem into several two class problems and shows a
series of experiments to test the usefulness of this approach and the different available
methods.
This chapter is organized as follows: Section 2 states the definition of the problem; Section 3
presents a detailed description of the methods; Section 4 reviews the comparison of the
different methods performed so far; Section 5 shows an experimental comparison; and
Section 6 shows the conclusions of this chapter and some open research fields.

2. Converting a multiclass problem to several two class problems

A classification problem of K classes and n training observations consists of a set of patterns
whose class membership is known. Let T = {(x1, y1), (x2, y2), ..., (xn, yn)} be a set of n training O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Pattern Recognition Techniques, Technology and Applications, Book edited by: Peng-Yeng Yin,
ISBN 978-953-7619-24-4, pp. 626, November 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Pattern Recognition Techniques, Technology and Applications

328

samples where each pattern xi belongs to a domain X. Each label is an integer from the set Y =
{1, ..., K}. A multiclass classifier is a function f: X→Y that maps a pattern x to an element of Y.
The task is to find a definition for the unknown function, f(x), given the set of training

patterns. Although many real world problems are multiclass problems, K > 2, many of the

most popular classifiers work best when facing two class problems, K = 2. Indeed many

algorithms are specially designed for binary problems, such as Support Vector Machines

(SVM) (Boser et al., 1992). A class binarization (Fürnkranz, 2002) is a mapping of a multi-

class problem onto several two-class problems in a way that allows the derivation of a

prediction for the multi-class problem from the predictions of the two-class classifiers. The

two-class classifier is usually referred to as the binary classifier or base learner.

In this way, we usually have two steps in any class binarization scheme. First, we must
define the way the multiclass problem is decomposed into several two class problems and
train the corresponding binary classifier. Second, we must describe the way the binary
classifiers are used to obtain the class of a given query pattern. In this section we show
briefly the main current approaches of converting a multiclass problem into several two
class problems. In the next section a more detailed description is presented, showing their
pros and cons. Finally, in the experimental section several practical issues are addressed.
Among the proposed methods for approaching multi-class problems as many, possibly
simpler, two-class problems, we can make a rough classification into three groups: one-vs-
all, one-vs-one, and error correcting output codes based methods:

• One-vs-one (ovo): This method, proposed in Knerr et al. (1990), constructs K(K-1)/2
classifiers. Classifier ij, named fij, is trained using all the patterns from class i as positive
patterns, all the patterns from class j as negative patterns, and disregarding the rest.
There are different methods of combining the obtained classifiers, the most common is a
simple voting scheme. When classifying a new pattern each one of the base classifiers
casts a vote for one of the two classes used in its training. The pattern is classified into
the most voted class.

• One-vs-all (ova): This method has been proposed independently by several authors
(Clark & Boswell, 1991; Anand et al., 1992). ova method constructs K binary classifiers.
Classifier i-th, fi, is trained using all the patterns of class i as positive patterns and the
patterns of the other classes as negative patterns. An example is classified in the class
whose corresponding classifier has the highest output. This method has the advantage
of simplicity, although it has been argued by many researchers that its performance is
inferior to the other methods.

• Error correcting output codes (ecoc): Dietterich & Bakiri (1995) suggested the use of
error correcting codes for multiclass classification. This method uses a matrix M of {-1,
1} values of size K × L, where L is the number of binary classifiers. The j-th column of
the matrix induces a partition of the classes into two metaclasses. Pattern x belonging to
class i is a positive pattern for j-th classifier if and only if Mij = 1. If we designate fj as the
sign of the j-th classifier, the decision implemented by this method, f(x), using the
Hamming distance between each row of the matrix M and the output of the L classifiers
is given by:

 ()
()()

1,2,...
1

1

2

L
ri i

r ,K
i=

sign M f x
f x = argmin ∈

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ (1)

www.intechopen.com

Output Coding Methods: Review and Experimental Comparison

329

These three methods comprehend all the alternatives we have to transform a multiclass
problem into many binary problems. In this chapter we will discuss these three methods in
depth, showing the most relevant theoretical and experimental results.
Although there are differences, class binarization methods can be considered as another
form of ensembling classifiers, as different learners are combined to solve a given problem.
An advantage that is shared by all class binarization methods is the possibility of parallel
implementation. The multiclass problem is broken into several independent two-class
problems that can be solved in parallel. In problems with large amounts of data and many
classes, this may be a very interesting advantage over monolithic multiclass methods. This is
a very interesting feature, as the most common alternative for dealing with complex
multiclass problems, ensembles of classifiers constructed by boosting method, is inherently
a sequential algorithm (Bauer & Kohavi, 1999).

3. Class binarization methods

This section describes more profoundly the three methods mentioned above with a special
interest on theoretical considerations. Experimental facts are dealt with in the next section.

3.1 One-vs-one
The definition of one-vs-one (ovo) method is the following: ovo method constructs, for a
problem of K classes, K(K-1)/2 binary classifiers1, fij, i = 1, ..., K-1, j = i+1, ..., K. The classifier fij
is trained using patterns from class i as positive patterns and patterns from class j as
negative patterns. The rest of patterns are ignored. This method is also known as round-robin
classification, all-pairs and all-against-all.
Once we have the trained classifiers, we must develop a method for predicting the class of a
test pattern x. The most straightforward and simple way is using a voting scheme, we
evaluate every classifier, fij(x), which casts a vote for either class i or class j. The most voted
class is assigned to the test pattern. Ties are solved randomly or assigning the pattern to the
most frequent class among the tied ones. However, this method has a problem. For every
pattern there are several classifiers that are forced to cast an erroneous vote. If we have a test
pattern from class k, all the classifiers that are not trained using class k must also cast a vote,
which cannot be accurate as k is not among the two alternatives of the classifier. For
instance, if we have K = 10 classes, we will have 45 binary classifiers. For a pattern of class 1,
there are 9 classifiers that can cast a correct vote, but 36 that cannot. In practice, if the classes
are independent, we should expect that these classifiers would not largely agree on the same
wrong class. However, in some problems whose classes are hierarchical or have similarities
between them, this problem can be a source for incorrect classification. In fact, it has been
shown that it is the main source of failure of ovo in real world applications (García-Pedrajas
& Ortiz-Boyer, 2006).
This problem is usually termed as the problem of the incompetent classifiers (Kim & Park,
2003). As it has been pointed out by several researchers, it is an inherent problem of the
method, and it is not likely that a solution can be found. Anyway, it does not prevent the
usefulness of ovo method.

1 This definition assumes that the base learner used is class-symmetric, that is,
distinguishing class i from class j is the same task as distinguishing class j from class i, as
this is the most common situation.

www.intechopen.com

 Pattern Recognition Techniques, Technology and Applications

330

Regarding the causes of the good performance of ovo, Fürnkranz (2002) hypothesized that
ovo is just another ensemble method. The basis of this assumption is that ovo tends to
perform well in problems where ensemble methods, such as bagging or boosting, also
perform well. Additionally, other works have shown that the combination of ovo and
ADABOOST boosting method do not produce improvements in the testing error (Schapire,
1997; Allwein et al, 2000), supporting the idea that they perform a similar work.
One of the disadvantages of ovo appears in classification time. For predicting the class of a
test pattern we need to evaluate K(K-1)/2 classifiers, which can be a time consuming task if
we have many classes. In order to avoid this problem, Platt et al. (2000) proposed a variant
of ovo method based on using a directed acyclic graph for evaluating the class of a testing
pattern. The method is identical to ovo at training time and differs from it at testing time.
The method is usually referred to as the Decision Directed Acyclic Graph (DDAG). The
method constructs a rooted binary acyclic graph using the classifiers. The nodes are
arranged in a triangle with the root node at the top, two nodes in the second layer, four in
the third layer, and so on. In order to evaluate a DDAG on input pattern x, starting at the
root node the binary function is evaluated, and the next node visited depends upon the
results of this evaluation. The final answer is the class assigned by the leaf node visited at
the final step. The root node can be assigned randomly. The testing error reported using ovo
and DDAG are very similar, the latter having the advantage of a faster classification time.
Hastie & Tibshirani (1998) gave a statistical perspective of this method, estimating class
probabilities for each pair of classes and then coupling the estimates together to get a
decision rule.

3.2 One-vs-all

One-vs-all (ova) method is the most intuitive of the three discussed options. Thus, it has been
proposed independently by many researchers. As we have explained above, the method
constructs K classifiers for K classes. Classifier fi is trained to distinguish between class i and
all other classes. In classification time all the classifiers are evaluated and the query pattern
is assigned to the class whose corresponding classifier has the highest output.
This method has the advantage of training a smaller number of classifiers than the other two
methods. However, it has been theoretically shown (Fürnkranz, 2002) that the training of
these classifiers is more complex than the training of ovo classifiers. However, this
theoretical analysis does not consider the time associated with the repeated execution of an
actual program, and also assumes that the execution time is linear with the number of
patterns. In fact, in the experiments reported here the execution time of ova is usually shorter
than the time spent by ovo and ecoc.
The main advantage of ova approach is its simplicity. If a class binarization must be
performed, it is perhaps the first method one thinks of. In fact, some multiclass methods,
such as the one used in multiclass multilayer Perceptron, are based on the idea of separating
each class from all the rest of classes.
Among its drawbacks several authors argue (Fürnkranz, 2002) that separating a class from
all the rest is a harder task than separating classes in pairs. However, in practice the
situation depends on another issue. The task of separating classes in pairs may be simple,
but also, there are fewer available patterns to learn the classifiers. In many cases the
classifiers that learned to distinguish between two classes have large generalization errors
due to the small number of patterns used in their training process. These large errors
undermine the performance of ovo in favor of ova in several problems.

www.intechopen.com

Output Coding Methods: Review and Experimental Comparison

331

3.3 Error-correcting output codes

This method was proposed by Dietterich & Bakiri (1995). They use a “coding matrix“

{ 1, 1}KxLM +∈ − which has a row for each class and a number of columns, L, defined by the

user. Each row codifies a class, and each column represents a binary problem, where the
patterns of the classes whose corresponding row has a +1 are considered as positive
samples, and the patterns whose corresponding row has a -1 as negative samples. So, after
training we have a set of L binary classifiers, {f1, f2, ..., fL}. In order to predict the class of an
unknown test sample x, we obtain the output of each classifier and classify the pattern in the
class whose coding row is closest to the output of the binary classifiers (f1(x), f2(x), ..., fL(x)).
There are many different ways of obtaining the closest row. The simplest one is using
Hamming distance, breaking the ties with a certain criterion. However, this method loses
information, as the actual output of each classifier can be considered a measure of the
probability of the bit to be 1. In this way, L1 norm can be used instead of Hamming distance.
The L1 distance between a codeword Mi and the output of the classifiers F = {f1, f2, ..., fL} is
defined by:

 ()1

0

L

i ij j
j

L M ,F = M f
=

−∑ (2)

The L1 norm is preferred over Hamming distance for its better performance and as it has
also been proven that ecoc method is able to produce reliable probability estimates. Windeatt
& Ghaderi (2003) tested several decoding strategies, showing that none of them was able to
improve the performance of L1 norm significantly. Several other decoding methods have
been proposed (Passerini et al., 2004) but only with a marginal advantage over L1 norm.
This approach was pioneered by Sejnowski & Rosenberg (1987) who defined manual
codewords for the NETtalk system. In that work, the codewords were chosen taking into
account different features of each class. The contribution of Dietterich & Bakiri was
considering the principles of error-correcting codes design for constructing the codewords.
The idea is considering the classification problem similar to the problem of transmitting a
string of bits over a parallel channel. As a bit can be transmitted incorrectly due to a failure
of the channel, we can consider that a classifier that does not predict accurately the class of a
sample is like a bit transmitted over an unreliable channel. In this case the channel consists
of the input features, the training patterns and the learning process. In the same way as an
error-correcting code can recover from the failure of some of the transmitted bits, ecoc codes
might be able to recover from the failure of some of the classifiers.
However, this argumentation has a very important issue, error-correcting codes rely on the
independent transmission of the bits. If the errors are correlated, the error-correcting
capabilities are seriously damaged. In a pattern recognition task, it is debatable whether the
different binary classifiers are independent. If we consider that the input features, the
learning process and the training patterns are the same, although the learning task is
different, the independence among the classifiers is not an expected result.
Using the formulation of ecoc codes, Allwein et al. (2000) presented a unifying approach,
using coding matrices of three values, {-1, 0, 1}, 0 meaning “don't care”. Using this approach,
ova method can be represented with a matrix of 1's in the main diagonal and -1 in the
remaining places, and ovo with a matrix of K(K-1)/2 columns, each one with a +1, a -1 and
the remaining places in the column set to 0. Allwein et al. also presented training and

www.intechopen.com

 Pattern Recognition Techniques, Technology and Applications

332

generalization error bounds for output codes when loss based decoding is used. However,
the generalization bounds are not tight, and they should be seemed more as a way of
considering the qualitative effect of each of the factors that have an impact on the
generalization error. In general, these theoretical studies have recognized shortcomings and
the bounds on the error are too loose for practical purposes. In the same way, the studies on
the effect of ecoc on bias/variance have the problem of estimating these components of the
error in classification problems (James, 2003).
As an additional advantage, Dietterich & Bakiri (1995) showed, using rejection curves, that
ecoc are good estimators of the confidence of the multiclass classifier. The performance of
ecoc codes has been explained in terms of reducing bias/variance and by interpreting them
as large margin classifiers (Masulli & Valentini, 2003). However, a generally accepted
explanation is still lacking as many theoretical issues are open.
In fact, several issues concerning ecoc method remain debatable. One of the most important
is the relationship between the error correcting capabilities and the generalization error.
These two aspects are also closely related to the independence of the dichotomizers. Masulli
& Valentini (2003) performed a study using 3 real-world problems without finding any clear
trend.

3.3.1 Error-correcting output codes design

Once we have stated that the use of codewords designed by their error-correcting
capabilities may be a way of improving the performance of the multiclass classifier, we must
face the design of such codes.
The design of error-correcting codes is aimed at obtaining codes whose separation, in terms
of Hamming distance, is maximized. If we have a code whose minimum separation between

codewords is d, then the code can correct at least ()1 / 2d −⎢ ⎥⎣ ⎦ bits. Thus, the first objective is

maximizing minimum row separation. However, there is another objective in designing ecoc
codes, we must enforce a low correlation between the binary classifiers induced by each
column. In order to accomplish this, we maximize the distance between each column and all
other columns. As we are dealing with class symmetric classifiers, we must also maximize
the distance between each column and the complement of all other columns. The underlying
idea is that if the columns are similar (or complementary) the binary classifiers learned from
those columns will be similar and tend to make correlated mistakes.
These two objectives make the task of designing the matrix of codewords for ecoc method
more difficult than the designing of error-correcting codes. For a problem with K classes, we
have 2k-1 – 1 possible choices for the columns. For small values of K, we can construct
exhaustive codes, evaluating all the possible matrices for a given number of columns.
However, for larger values of K the designing of the coding matrix is an open problem.
The designing of a coding matrix is then an optimization problem that can only be solved
using an iterative optimization algorithm. Dietterich & Bakiri (1995) proposed several
methods, including randomized hill-climbing and BCH codes. BCH algorithm is used for
designing error correcting codes. However, its application to ecoc design is problematic,
among other factors because it does not take into account column separation, as it is not
needed for error-correcting codes. Other authors have used general purpose optimization
algorithms such as evolutionary computation (García-Pedrajas & Fyfe, 2008).
More recently, methods for obtaining the coding matrix taking into account the problem to
be solved have been proposed. Pujol et al. (2006) proposed Discriminant ECOC, a heuristic

www.intechopen.com

Output Coding Methods: Review and Experimental Comparison

333

method based on a hierarchical partition of the class space that maximizes a certain
discriminative criterion. García-Pedrajas & Fyfe (2008) coupled the design of the codes with
the learning of the classifiers, designing the coding matrix using an evolutionary algorithm.

4. Comparison of the different methods

The usual question when we face a multiclass problem and decide to use a class binarization
method is which is the best method for my problem. Unfortunately, this is an open question
which generates much controversy among the researchers.
One of the advantages of ovo is that the binary problems generated are simpler, as only a
subset of the whole set of patterns is used. Furthermore, it is common in real world
problems that the classes are pairwise separable (Knerr et al., 1992), a situation that is not so
common for ova and ecoc methods.
In principle, it may be argued that replacing a K classes problem by K(K-1)/2 problems

should significantly increase the computational cost of the task. However, Fürnkranz (2002)

presented theoretical arguments showing that ovo has less computational complexity than

ova. The basis underlying the argumentation is that, although ovo needs to train more

classifiers, each classifier is simpler as it only focuses on a certain pair of classes

disregarding the remaining patterns. In that work an experimental comparison is also

performed using as base learner Ripper algorithm (Cohen, 1995). The experiments showed

that ovo is about 2 times faster than ova using Ripper as base learner. However, the

situation depends on the base learner used. In many cases there is an overhead associated

with the application of the base learner which is independent of the complexity of the

learning task. Furthermore, if the base learner needs some kind of parameters estimation,

using cross-validation or any other method for parameters setting, the situation may be

worse. In fact, in the experiments reported in Section 5, using powerful base learners, the

complexity of ovo was usually greater than the complexity of ova.

There are many works devoted to the comparison of the different methods. Hsu & Lin
(2002) compared ovo, ova and two native multiclass methods using a SVM. They concluded
that ova was worse than the other methods, which showed a similar performance. In fact,
most of the previous works agree on the inferior performance of ova. However, the
consensus about the inferior performance of ova has been challenged recently (Rifkin &
Klautau, 2004). In an extensive discussion of previous work, they concluded that the
differences reported were mostly the product of either using too simple base learners or
poorly tuned classifiers. As it is well known, the combination of weak learners can take
advantage of the independence of the errors they make, while combining powerful learners
is less profitable due to their more correlated errors. In that paper, the authors concluded
that ova method is very difficult to be outperformed if a powerful enough base learner is
chosen and the parameters are set using a sound method.

5. Experimental comparison

As we have shown in the previous section, there is no general agreement on which one of

the presented methods shows the best performance. Thus, in this experimental section we

will test several of the issues that are relevant for the researcher, as a help for choosing the

most appropriate method for a given problem.

www.intechopen.com

 Pattern Recognition Techniques, Technology and Applications

334

For the comparison of the different models, we selected 41 datasets from the UCI Machine
Learning Repository which are shown in Table 1. The estimation of the error is made using
10-fold cross-validation. The datasets were selected considering problems of at least 6
classes for ecoc codes (27 datasets), and problems with at least 3 classes for the other
methods. We will use as main base learner a C4.5 decision tree (Quinlan, 1993), because it is
a powerful widely used classification algorithm and has a native multiclass method that can
be compared with class binarization algorithms. In some experiments we will also show
results with other base learners for the sake of completeness. It is interesting to note that this
set of problems is considerably larger than the used in the comparison studies cited along
the paper.
When the differences between two algorithms must be statistically assessed we use a
Wilcoxon test for several reasons. Wilcoxon test assumes limited commensurability. It is
safer than parametric tests since it does not assume normal distributions or homogeneity of
variance. Thus, it can be applied to error ratios. Furthermore, empirical results show that it
is also stronger than other tests (Demšar, 2006).

Binary classifiers
Dataset Cases Inputs Classes

Dense ecoc Sparse ecoc One-vs-one

Abalone 4177 10 29 2.68e+8 3.43e+13 406

Anneal 898 59 5 15 90 10

Arrhythmia 452 279 13 4095 7.88e+5 78

Audiology 226 93 24 8.38e+6 1.41e+11 276

Autos 205 72 6 31 301 15

Balance 625 4 3 3 6 3

Car 1728 16 4 7 25 6

Dermatology 366 34 6 31 301 15

Ecoli 336 7 8 127 3025 28

Gene 3175 120 3 3 6 3

Glass 214 9 6 31 301 15

Horse 364 58 3 3 6 3

Hypo 3772 29 4 7 25 6

Iris 150 4 3 3 6 3

Isolet 7797 617 26 3.35e+7 1.27e+12 325

Krkopt 28056 6 6 1.31e+5 1.93e+8 153

Led24 200 24 10 511 28501 45

Letter 20000 16 26 3.35e+7 1.27e+12 325

Lrs 531 101 10 511 28501 45

Lymph 148 38 4 7 25 6

Mfeat-fou 2000 76 10 511 28501 45

Mfeat-kar 2000 64 10 511 28501 45

Mfeat-mor 2000 6 10 511 28501 45

www.intechopen.com

Output Coding Methods: Review and Experimental Comparison

335

Binary classifiers
Dataset Cases Inputs Classes

Dense ecoc Sparse ecoc One-vs-one

Mfeat-zer 2000 47 10 511 28501 45

New-thyroid 215 5 3 3 6 3

Nursery 12960 23 5 15 90 10

Optdigits 5620 64 10 511 28501 45

Page-blocks 5473 10 5 15 90 10

Pendigits 10992 16 10 511 28501 45

Primary 339 23 22 2.09e+6 1.56e+10 231

Satimage 6435 36 6 31 301 15

Segment 2310 19 7 63 966 21

Soybean 683 82 19 2.62e+5 5.80e+8 171

Texture 5500 40 11 1023 86526 55

Vehicle 846 18 4 7 25 6

Vowel 990 10 11 1023 86526 55

Waveform 5000 40 3 3 6 3

Wine 178 13 3 3 6 3

Yeast 1484 8 10 511 28501 45

Zip 9298 256 10 511 28501 45

Zoo 101 16 7 63 966 21

Table 1. Summary of datasets used in the experiments.

The first set of experiments is devoted to studying the behavior of ecoc codes. First, we test
the influence of the size of codewords on the performance of ecoc method. We also test
whether the use of codes designed by their error correcting capabilities are better than codes
randomly designed. For the first experiment we use codes of 30, 50, 100 and 200 bits.
In many previous studies it has been shown that, in general, the advantage of using codes
designed for their error correcting capabilities over random codes is only marginal. We
construct random codes just generating the coding matrix randomly with the only post-
processing of removing repeated columns or rows. In order to construct error-correcting
codes, we must take into account two different objectives, as mentioned above, column and
row separation. Error-correcting design algorithm are only concerned with row separation
so their use must be coupled with another method for ensuring column separation.
Furthermore, many of these algorithms are too complex and difficult to scale for long codes.
So, instead of these methods, we have used an evolutionary computation method, a genetic
algorithm to construct our coding matrix.
Evolutionary computation (EC) (Ortiz-Boyer at al., 2005) is a set of global optimization
techniques that have been widely used over the last years for almost every problem within
the field of Artificial Intelligence. In evolutionary computation a population (set) of
individuals (solutions to the problem faced) are codified following a code similar to the
genetic code of plants and animals. This population of solutions is evolved (modified) over a
certain number of generations (iterations) until the defined stop criterion is fulfilled. Each

www.intechopen.com

 Pattern Recognition Techniques, Technology and Applications

336

individual is assigned a real value that measures its ability to solve the problem, which is
called its fitness.
In each iteration, new solutions are obtained combining two or more individuals (crossover
operator) or randomly modifying one individual (mutation operator). After applying these
two operators a subset of individuals is selected to survive to the next generation, either by
sampling the current individuals with a probability proportional to their fitness, or by
selecting the best ones (elitism). The repeated processes of crossover, mutation and selection
are able to obtain increasingly better solutions for many problems of Artificial Intelligence.
For the evolution of the population, we have used the CHC algorithm. The algorithm
optimizes row and columns separation. We will refer to these codes as CHC codes
throughout the paper for brevity's sake.
This method is able to achieve very good matrices in terms of our two objectives, and also
showed better results than other optimization algorithms we tried. Figure 1 shows the
results for the four sizes of code length and both types of codes, random and CHC. For
problems with few classes, the experiments are done up to the maximum length available.
For instance, glass dataset has 6 classes, which means that for dense codes we have 31
different columns, so for this problem only codes of 30 bits are available and it is not
included in this comparison.
The figure shows two interesting results. Firstly, we can see that the increment in the size of
the codewords has the effect of improving the accuracy of the classifier. However, the effect
is less marked as the codeword is longer. In fact, there is almost no differences between a
codeword of 100 bits and a codeword of 200 bits. Secondly, regarding the effect of error
correcting capabilities, there is a general advantage of CHC codes, but the differences are
not very marked. In general, we can consider that a code of 100 bits is enough, as the
improvement of the error using 200 bits is hardly significant, and the added complexity
important.
Allwein et al. (2000) proposed sparse ecoc codes, where 0's are allowed in the columns,
meaning “don't care”. It is interesting to show whether the same pattern observed for dense
codes, is also present in sparse codes. In order to test the behavior of sparse codes, we have
performed the same experiment as for dense codes, that is, random and CHC codes of 30,
50, 100 and 200 bits and C.45 as base learner. Figure 2 shows the testing error results. For
sparse codes we have more columns available (see Table 1), so all the datasets with 6 classes
or more are included in the experiments.

Fig. 1. Error values for ecoc dense codes using codewords of 30, 50, 100 and 200 bits and a
C4.5 tree as base learner.

www.intechopen.com

Output Coding Methods: Review and Experimental Comparison

337

As a general rule, the results are similar, with the difference that the improvement of large
codes, 100 and 200 bits, over small codes, 30 and 50 bits, is more marked than for dense
codes. The figure also shows that the performance of both kind of codes, dense and sparse,
is very similar. It is interesting to note that Allwein et al. (2000) suggested codes of

⎣10log2(K)⎦ bits for dense codes and of ⎣15log2(K)⎦ bits for sparse codes, being K the number
of classes. However, in our experiments it is shown that these values are too small, as longer
codes are able to improve the results of codewords of that length.

Fig. 2. Error values for ecoc sparse codes using codewords of 30, 50, 100 and 200 bits and a
C4.5 tree as base learner.

We measure the independence of the classifiers using Yule's Q statistic. Classifiers that
recognize the same patterns will have positive values of Q, and classifiers that tend to make
mistakes in different patterns will have negative values of Q. For independent classifiers the
expectation of Q is 0. For a set of L classifiers we use an average value Qav:

()

1

1 1

2

1

L L

av i,k
i= k=i+

Q = q ,
L L

−

−
∑∑ (3)

where qi,j is the value of Q statistic between i and j classifiers which is given by:

11 00 01 10

11 00 01 10i, j

N N N N
q = ,

N N +N N

−
 (4)

where N11 means both classifiers agree and are correct, N00 means both classifiers agree and
are wrong, N01 means classifier i is wrong and classifier j is right, and N10 means classifiers i
is right and classifier j is wrong. In this experiment, we test whether constructing codewords
with higher Hamming distances improves independence of the classifiers.
After these previous experiments, we consider that a CHC code of 100 bits can be
considered representative of ecoc codes, as the improvement obtained with longer codes is
not significant.
It is generally assumed that codes designed by their error correcting capabilities should
improve the independence of the errors between the classifiers. In this way, their failure to
improve the performance of random codes is attributed to the fact that more difficult
dichotomies are induced. However, whether the obtained classifiers are more independent
is not an established fact. In this experiment we study if this assumption of independent
errors is justified.

www.intechopen.com

 Pattern Recognition Techniques, Technology and Applications

338

For this experiment, we have used three base learners, C4.5 decision trees, neural networks

and support vector machines. Figure 3 shows the average values of Q statistic for all the 27

datasets for dense and sparse codes using random and CHC codes in both cases. For dense

codes, we found a very interesting result. Both types of codes achieve very similar results in

terms of independence of errors, and CHC codes are not able to improve the independence

of errors of random codes, which is probably one of the reasons why CHC codes are no

better than random codes. This is in contrast with the general belief, showing that some of

the assumed behavior of ecoc codes must be further experimentally tested.

(a) Dense codes (b) Sparse codes

Fig. 3. Average Q value for dense and sparse codes using three different base learners

The case for sparse codes is different. For these types of codes, CHC codes are significantly
more independent for neural networks and C4.5. For SVM, CHC codes are also more
independent although the differences are not statistically significant. The reason may be
found in the differences between both types of codes. For dense codes, all the binary
classifiers are trained using all the data, so although the dichotomies are different, it is more
difficult to obtain independent classifiers as all classifiers are trained using the same data.
On the other hand, sparse codes disregard the patterns of the classes which have a 0 in the
corresponding column representing the dichotomy. CHC algorithm enforces column
separation, which means that the columns have less overlapping. Thus, the binary classifiers
induced by CHC matrices are trained using datasets that have less overlapping and can be
less dependent.
So far we have studied ecoc method. The following experiment is devoted to the study of the
other two methods: ovo and ova. The differences in performance between ovo and ova is a
matter of discussion. We have stated that most works agree on a general advantage of ovo,
but a careful study performed by Rifkin & Klautau (2004) has shown that most of the
reported differences are not significant. In the works studied in that paper, the base learner
was a support vector machine (SVM). As we are using a C4.5 algorithm, it is interesting to
show whether the same conclusions can be extracted from our experiments. Figure 4 shows
a comparison of results for the 41 tested datasets of the two methods. The figure shows for
each dataset a point which reflects in the x-axis the testing error of ovo method, and in the y-
axis the testing error of ova method. A point above the main diagonal means that ovo is

www.intechopen.com

Output Coding Methods: Review and Experimental Comparison

339

performing better than ova, and vice versa. The figures shows a clear advantage of ovo
method, which performs better than ova in 31 of the 41 datasets. The differences are also
marked for many problems, as it is shown in the figure by the large separation of the points
from the main diagonal. As C4.5 has no relevant parameters, the hypothesis of Rifkin &
Klautau of a poor parameter setting is not applicable.

Fig. 4. Comparison of ovo and ova methods in terms of testing error.

In the previous experiments, we have studied the behavior of the different class binarization

methods. However, there is still an important question that remains unanswered. There are

many classification algorithms that can be directly applied to multiclass problems, so the

obvious question is whether the use of ova, ovo or ecoc methods can be useful when a

“native” multiclass approach is available. For instance, for C4.5 ecoc codes are more complex

than the native multiclass method, so we must get an improvement from ecoc codes to

overcome this added complexity. In fact, this situation is common with most classification

methods, as a general rule class binarization is a more complex approach than the available

native multiclass methods.

We have performed a comparison of ecoc codes using a CHC code of 100 bits, ovo and ova
methods and the native multiclass method provided with C4.5 algorithm. The results are
shown in Figure 5, for the 41 datasets.
The results in Figure 5 show that ecoc and ovo methods are able to improve native C4.5

multiclass method most of the times. In fact, ecoc method is better than the native method in

all the 27 datasets. ovo is better than the native method in 31 out of 41 datasets. On the other

hand, ova is not able to regularly improve the results of the native multiclass method. These

results show that ecoc and ovo methods are useful, even if we have a native multiclass

method for the classification algorithm we are using.

www.intechopen.com

 Pattern Recognition Techniques, Technology and Applications

340

Fig. 5. Error values for ovo, ova and ecoc dense codes obtained with a CHC algorithm using
codewords of 100 bits (or the longest available) and a C4.5 tree as base learner, and the
native C4.5 multiclass algorithm.

Several authors have hypothesized that the lack of improvement when using codes
designed by their error correcting capabilities over random ones may be due to the fact that
some of the induced dichotomies could be more difficult to learn. In this way, the
improvement due to a larger Hamming distance may be undermined by more difficult
problems. In the same way, it has been said that ovo binary problems are easier to solve than
ova binary problems. These two statements must be corroborated by the experiments.
Figure 6 shows the average generalization binary testing error of all the base learners for
each dataset for random and CHC codes. As in previous figures a point is drawn for each

Fig. 6. Average generalization binary testing error of all the base learners for each dataset for
random and CHC codes, using a C4.5 decision tree. Errors for dense codes (triangles) and
sparse codes (squares).

www.intechopen.com

Output Coding Methods: Review and Experimental Comparison

341

dataset, with error for random codes in x-axis and error for CHC codes in y-axis. The figure
shows the error for both dense and sparse codes. The results strongly support the
hypothesis that the binary problems induced by codes designed by their error correcting
capabilities are more difficult. Almost all the points are below the main diagonal, showing a
general advantage of random codes. As the previous experiments failed to show a clear
improvement of CHC codes over random ones, it is clear that the fact that the binary
performance of the former is worse may be one of the reasons.
In order to assure the differences shown in the figure we performed a Wilcoxon test. The test
showed that the differences are significant for both, dense and sparse codes, as a
significance level of 99%.
In the same way we have compared the binary performance of ovo and ova methods. First,
we must take into account that this comparison must be cautiously taken, as we are
comparing the error of problems that are different. The results are shown in Figure 7, for a
C4.5 decision tree, a support vector machine and a neural network as base learners.

Fig. 7. Average generalization binary testing error of all the base learners for each dataset for
ovo and ova methods, using a C4.5 decision tree (triangles), a support vector machine
(squares) and a neural network (circles).

In this case, the results depend on the base learner used. For C4.5 and support vector
machines, there are no differences, as it is shown in the figure and corroborated by Wilcoxon
test. However, for neural networks the figure shows a clear smaller error of ovo method. The
difference is statistically significant for Wilcoxon test at a significance level of 99%.
We must take into account that, although separating two classes may be easier than
separating a class for all the remaining classes, the number of available patterns for the

www.intechopen.com

 Pattern Recognition Techniques, Technology and Applications

342

former problem is also lower than the number of available patterns for the latter. In this
way, this last problem is more susceptible to over-fitting. As a matter of fact, binary
classifiers training accuracy is always better for one-vs-one method. However, this problem
does not appear when using a neural network, where one-vs-one is able to beat one-vs-all in
terms of binary classifier testing error. As in previous experiments, C4.5 seems to suffer
most from small training sets.
It is noticeable that for some problems, namely abalone, arrhythmia, audiology, and
primary-tumor, the minimum testing accuracy of the binary classifiers for one-vs-one
method is very low. A closer look at the results shows that this problem appears in datasets
with many classes. For some pairs, the number of patterns belonging to any of the two
classes is very low, yielding to poorly trained binary classifiers. These classifiers might also
have a harmful effect on the overall accuracy of the classifier. This problem does not arise in
one-vs-all methods, as all binary classifiers are trained with all the data.

7. Conclusions

In this chapter, we have shown the available methods to convert a k class problem into
several two class problems. These methods are the only alternative when we use
classification algorithms, such as support vector machines, which are specially designed for
two class problems. But, even if we are dealing with a method that can directly solve
multiclass problems, we have shown that a class binarization can be able to improve the
performance of the native multiclass method of the classifier.
Many research lines are still open, both in the theoretical and practical fields. After some
recent works on the topic (García-Pedrajas & Fyfe, 2008) (Escalera et al., 2008) it has been
shown that the design of the ecoc codes and the training of the classifiers should be coupled
to obtain a better performance. Regarding the comparison among the different approaches,
there are still many open questions, one of the most interesting is the relationship between
the relative performance of each method and the base learner used, as contradictory results
have been presented depending on the binary classifier.

8. References

Allwein, E. L., Schapire, R. E. & Singer, Y (2000). Reducing multiclass to binary: A unifying
approach for margin classifiers, Journal of Machine Learning Research, vol. 1, pp. 113-
141.

Anand, R., Mehrotra, K. G., Mohan, C. K. & Ranka, S. (1992). Efficient classification for
multiclass problems using modular neural networks, IEEE Trans. Neural Networks,
vol. 6, pp. 117-124.

Bauer, E. & Kohavi, R. (1999). An Empirical Comparison of Voting Classification
Algorithms: Bagging, Boosting, and Variants, Machine Learning, vol. 36, pp. 105-139.

Boser, B. E., Guyon, I. M. & Vapnik, V. N. (1992). A training algorithm for optimal margin
classifiers, Proceedings of the 5th Annual ACM Workshop on COLT, pp. 144-152, D.
Haussler, Ed.

Clark, P. & Boswell, R. (1991). Rule induction with CN2: Some recent improvements,
Proceedings of the 5th European Working Session on Learning (EWSL-91), pp. 151-163,
Porto, Portugal, Spinger-Verlag.

www.intechopen.com

Output Coding Methods: Review and Experimental Comparison

343

Cohen, W. W. (1995). Fast effective rule induction, In: Proceedings of the 12th International
Conference on Machine Learning (ML-95), Prieditis A. & Russell, S. Eds., pp. 115-123,
Lake Tahoe, CA, USA, 1995, Morgan Kaufmann.

Dietterich, T. G. & Bakiri, G. (1995). Solving multiclass learning problems via error-
correcting output codes, Journal of Artificial Intelligence Research, vol. 2, pp. 263-286.

Demšar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets, Journal of
Machine Learning Research, vol. 7, pp. 1-30.

Escalera, S., Tax, D. M. J., Pujol, O., Radeva, P. & Duin, R. P. W. (2008). Subclass Problem-
Dependent Design for Error-Correcting Output Codes, IEEE Trans. Pattern Analysis
and Machine Intyelligence, vol. 30, no. 6, pp. 1041-1054.

Fürnkranz, J. (2002). Round robin classification, Journal of Machine Learning Research, vol. 2,
pp. 721-747.

García-Pedrajas, N. & Fyfe, C. (2008). Evolving output codes for multiclass problems, IEEE
Trans. Evolutionary Computation, vol. 12, no. 1, pp. 93-106.

García-Pedrajas, N. & Ortiz-Boyer, D. (2006). Improving multiclass pattern recognition by
the combination of two strategies, IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 28, no. 6, pp. 1001-1006.

Hastie, T. & Tibshirani, R. (1998). Classification by pairwise coupling, The Annals of Statistics,
vol. 26, no. 2. pp. 451-471.

Hsu, Ch.-W. & Lin, Ch.-J. (2002). A Comparison of methods for support vector machines,
IEEE Trans. Neural Networks, vol. 13, no. 2, pp. 415-425.

James, G. M. (2003). Variance and bias for general loss functions, Machine Learning, vol. 51,
no. 2, 115-135.

Kim, H. & Park, H. (2003). Protein secondary structure prediction based on an improved
support vector machines approach, Protein Engineering, vol. 16, no. 8, pp. 553-560.

Knerr, S., Personnaz, L. & Dreyfus, G. (1990). Single-layer learning revisited: A stepwise
procedure for building and training a neural network, In: Neurocomputing:
Algorithms, Architectures and Applications, Fogelman, J. Ed., Springer-Verlag, New
York.

Knerr, S., Personnaz, L. & Dreyfus, G. (1992). Handwritten digit recognition by neural
networks with single-layer training, IEEE Trans. Neural Networks, vol. 3, no. 6, pp.
962-968.

Masulli, F. & Valentini, G. (2003). Effectiveness of error correcting output coding methods in
ensemble and monolithic learning machines, Pattern Analysis and Applications, vol.
6, pp. 285-300.

Ortiz-Boyer, D., Hervás-Martínez, C. & García-Pedrajas, N. (2005). CIXL2: A crossover
operator for evolutionary algorithms based on population features, Journal of
Artificial Intelligence Research, vol. 24, pp. 33-80.

Passerini, A., Pontil, M. & Frasconi, P. (2004). New results on error correcting output codes
of kernel machines, IEEE Trans. Neural Networks, vol. 15, no. 1, pp. 45-54.

Platt, J. C., Cristianini, N. & Shawe-Taylor, J. (2000). Large margin DAGs for multiclass
classification, In: Advances in Neural Information Processing Systems 12 (NIPS-99),
Solla, S. A., Leen, T. K. & Müller, K.-R. Eds., pp. 547-553, MIT Press.

Pujol, O., Radeva, P. & Vitriá, J. (2006). Discriminant ECOC: A heuristic method for
application dependent design of error correcting output codes, IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 28, no. 6, pp. 1007- 1012.

www.intechopen.com

 Pattern Recognition Techniques, Technology and Applications

344

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo,
CA, USA.

Rifkin, R. & Klautau, A. (2004). In defense of one-vs-all classification, Journal of Machine
Learning Research, vol. 5, pp. 101-141.

Schapire, R. E. (1997). Using output codes to boost multiclass learning problems, In:
Proceedings of the 14th International Conference on Machine Learning (ICML-97), Fisher,
D. H. Ed., pp. 313-321, Nashville, TN, USA, 1997, Morgan Kaufmann.

Sejnowski, T. J. & Rosenberg, C. R. (1987). Parallel networks that learn to pronounce English
text, Journal of Complex Systems, vol. 1, no. 1, pp. 145-168.

Windeatt, T. & Ghaderi, R. (2003). Coding and decoding strategies for multi-class problems,
Information Fusion, vol. 4, pp. 11-21.

www.intechopen.com

Pattern Recognition Techniques, Technology and Applications

Edited by Peng-Yeng Yin

ISBN 978-953-7619-24-4

Hard cover, 626 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between

technologies of effective visual features and the human-brain cognition process. Effective visual features are

made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and

viable information processing architectures. While the understanding of human-brain cognition process

broadens the way in which the computer can perform pattern recognition tasks. The present book is intended

to collect representative researches around the globe focusing on low-level vision, filter design, features and

image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in

this book disclose recent advances and new ideas in promoting the techniques, technology and applications of

pattern recognition.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Nicolás García-Pedrajas and Aida de Haro García (2008). Output Coding Methods: Review and Experimental

Comparison, Pattern Recognition Techniques, Technology and Applications, Peng-Yeng Yin (Ed.), ISBN: 978-

953-7619-24-4, InTech, Available from:

http://www.intechopen.com/books/pattern_recognition_techniques_technology_and_applications/output_codin

g_methods__review_and_experimental_comparison

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

