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1. Introduction 

In pattern recognition, a kind of classical classifier called k-nearest neighbor rule (kNN) has 
been applied to many real-life problems because of its good performance and simple 
algorithm. In kNN, a test sample is classified by a majority vote of its k-closest training 
samples. This approach has the following advantages: (1) It was proved that the error rate of 
kNN approaches the Bayes error when both the number of training samples and the value 
of k are infinite (Duda et al., 2001). (2) kNN performs well even if different classes overlap 
each other. (3) It is easy to implement kNN due to its simple algorithm. However, kNN does 
not perform well when the dimensionality of feature vectors is large. As an example, Fig. 1 
shows a test sample (belonging to class 5) of the MNIST dataset (LeCun et al., 1998) and its 
five closest training samples selected by using Euclidean distance. Because the selected five 
training samples include the three samples belonging to class 8, the test sample is 
misclassified into class 8. Such misclassification is often yielded by kNN in high-
dimensional pattern classification such as character and face recognition. Moreover, kNN 
requires a large number of training samples for high accuracy because kNN is a kind of 
memory-based classifiers. Consequently, the classification cost and memory requirement of 
kNN tend to be high. 
 

 

Fig. 1. An example of a test sample (leftmost). The others are five training samples closest to 
the test sample. 

For overcoming these difficulties, classifiers using subspaces or linear manifolds (affine 
subspace) are used for real-life problems such as face recognition. Linear manifold-based 
classifiers can represent various artificial patterns by linear combinations of the small 
number of bases. As an example, a two-dimensional linear manifold spanned by three 
handwritten digit images ‘4’ is shown in Fig. 2. Each of the corners of the triangle represents 
pure training samples, whereas the images in between are linear combinations of them. 
These intermediate images can be used as artificial training samples for classification. Due to 
this property, manifold-based classifiers tend to outperform kNN in high-dimensional 
pattern classification. In addition, we can reduce the classification cost and memory 
requirement of manifold-based classifiers easily compared to kNN. However, bases of linear O
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manifolds have an effect on classification accuracy significantly, so we have to select them 
carefully. Generally, orthonormal bases obtained with principal component analysis (PCA) are 
used for forming linear manifolds, but there is no guarantee that they are the best ones for 
achieving high accuracy. 
 

 

Fig. 2. A two-dimensional linear manifold spanned by three handwritten digit images ‘4’ in 
the corners. 

In this chapter, we consider about achieving high accuracy in high-dimensional pattern 
classification using linear manifolds. Henceforth, classification using linear manifolds is 
called manifold matching for short. In manifold matching, a test sample is classified into the 
class that minimizes the residual length from a test sample to a manifold spanned by 
training samples. This classification rule can be derived from optimization for 
reconstructing a test sample from training samples of each class. Hence, we start with 
describing square error minimization between a test sample and a linear combination of 
training samples. Using the solutions of this minimization, we can define the classification 
rule for manifold matching easily. Next, this idea is extended to the distance between two 
linear manifolds. This distance is useful for incorporating transform-invariance into image 
classification. After that, accuracy improvement through kernel mapping and transform-
invariance is adopted to manifold matching. Finally, learning rules for manifold matching 
are proposed for reducing classification cost and memory requirement without accuracy 
deterioration. In this chapter, we deal with handwritten digit images as an example of high-
dimensional patterns. Experimental results on handwritten digit datasets show that 
manifold-based classification performs as well or better than state-of-the-art such as a 
support vector machine. 

2. Manifold matching 

In general, linear manifold-based classifiers are derived with principal component analysis 
(PCA). However, in this section, we start with square error minimization between a test 
sample and a linear combination of training samples. In pattern recognition, we should not 

www.intechopen.com



Manifold Matching for High-Dimensional Pattern Recognition 

 

311 

compute the distance between two patterns until we had transformed them to be as similar 
to one another as possible (Duda et al., 2001). From this point of view, measuring of a 
distance between a test point and each class is formalized as a square error minimization 
problem in this section. 
Let us consider a classifier that classifies a test sample into the class to which the most 
similar linear combination of training samples belongs. Suppose that a d-dimensional 
training sample  belonging to class j (j = 1, ...,C), 

where nj and C are the numbers of classes and training samples in class j, respectively. The 

notation  denotes the transpose of a matrix or vector. Let  

be the matrix of training samples in class j. If these training samples are linear independent, 
they are not necessary to be orthogonal each other. 

Given a test sample q = (q1 … qd) ⊤ ∈ Rd, we first construct linear combinations of training 

samples from individual classes by minimizing the cost for reconstructing a test sample 
from Xj before classification. For this purpose, the reconstruction error is measured by the 
following square error: 

 

(1) 

where  is a weight vector for the linear combination of training 

samples from class j, and  is a vector of which all elements are 1. The 

same cost function can be found in the first step of locally linear embedding (Roweis & Saul, 
2000). The optimal weights subject to sum-to-one are found by solving a least-squares 

problem. Note that the above cost function is equivalent to E(Q－Xj)bjE2 with Q = (q|q| · · · 

|q) ∈ Rd× jn
 due to the constraint T

j
b 1

jn
 = 1. Let us define Cj = (Q － Xj) ⊤(Q － Xj), and by 

using it, Eq. (1) becomes 

 

(2) 

The solution of the above constrained minimization problem can be given in closed form by 
using Lagrange multipliers. The corresponding Lagrangian function is given as 

 
(3) 

where λ is the Lagrange multiplier. Setting the derivative of Eq. (3) to zero and substituting 

the constraint  into the derivative, the following optimal weight is given: 

 
(4) 
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Regularization is applied to Cj before inversion for avoiding over fitting or if nj > d using a 

regularization parameter α> 0 and an identity matrix  

In the above optimization problem, we can get rid of the constraint T

j
b 1

jn
= 1 by 

transforming the cost function from , where mj is the 

centroid of class j, i.e., , 

respectively. By this transformation, Eq. (1) becomes 

 
(5) 

By setting the derivative of Eq. (5) to zero, the optimal weight is given as follows: 

 (6) 

Consequently, the distance between q and the linear combination of class j is measured by 

 

(7) 

where Vj ∈Rd×r
 is the eigenvectors of ∈Rd×d, where r is the rank of . This 

equality means that the distance dj is given as a residual length from q to a r-dimensional 
linear manifold (affine subspace) of which origin is mj (cf. Fig. 3). In this chapter, a manifold 
spanned by training samples is called training manifold. 
 

 

Fig. 3. Concept of the shortest distance between q and the linear combination of training 
samples that exists on a training manifold. 

In a classification phase, the test sample q is classified into the class that has the shortes 
distance from q to the linear combination existing on the linear manifold. That is we define 
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the distance between q and class j as  test 

sample’s class (denoted by ω) is determined by the following classification rule: 

 (8) 

The above classification rule is called with different names according to the way of selection 
the set of training samples Xj . When we select the k-closest training samples of q from each 
class, and use them as Xj , the classification rule is called local subspace classifier (LSC) 
(Laaksonen, 1997; Vincent & Bengio, 2002). When all elements of bj in LSC are equal to 1/k, 
LSC is called local-mean based classifier (Mitani & Hamamoto, 2006). In addition, if we use 

an image and its tangent vector as mj and jX  respectively in Eq. (7), the distance is called 

one-sided tangent distance (1S-TD) (Simard et al., 1993). These classifier and distance are 

described again in the next section. Finally, when we use the r’2 r eigenvectors 

corresponding to the r’ largest eigenvalues of  as Vj , the rule is called projection 

distance method (PDM) (Ikeda et al., 1983) that is a kind of subspace classifiers. In this 
chapter, classification using the distance between a test sample and a training manifold is 
called one-sided manifold matching (1S-MM). 

2.1 Distance between two linear manifolds 
In this section, we assume that a test sample is given by the set of vector. In this case the 
dissimilarity between test and training data is measured by the distance between two linear 

manifolds. Let Q = (q1|q2|…|qm) ∈ Rd×m
 be the set of m test vectors, where qi = (qi1 · · · qid) ⊤ 

∈Rd
 (i = 1, ...,m) is the ith test vector. If these test vectors are linear independent, they are not 

necessary to be orthogonal each other. Let a = (a1 … am) ⊤ ∈ Rm
 is a weight vector for a linear 

combination of test vectors. 
By developing Eq. (1) to the reconstruction error between two linear combinations, the 
following optimization problem can be formalized: 

 

(9) 

The solutions of the above optimization problem can be given in closed form by using 
Lagrange multipliers. However, they have complex structures, so we get rid of the two 

constraints a ⊤ 1m = 1 and b ⊤ 1n = 1 by transformating the cost function from EQa － XbE2 to 

E(mq + Q a) － (mj + jX bj )E2, where mq  and Q  are the centroid of test vectors (i.e., mq = 

1

m

i=Σ qi/m) and Q  = (q1 －mq|…|qm － mq) ∈ Rd×m, respectively. By this transformation, Eq. (9) 

becomes 

 
(10)

The above minimization problem can be regarded as the distance between two manifolds 
(cf. Fig. 4). In this chapter, a linear manifold spanned by test samples is called test manifold. 
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Fig. 4. Concept of the shortest distance between a test manifold and a training manifold. 

The solutions of Eq. (10) are given by setting the derivative of Eq. (10) to zero. Consequently, 
the optimal weights are given as follows: 

 (11)

 (12)

where 

 (13)

 (14)

If necessary, regularization is applied to Q1 and X1 before inversion using regularization 

parameters α1, α2 > 0 and identity matrices Im
 ∈Rm×m and  such as Q1 +α1Im

 and 

X1 + α2I
jn
. 

In a classification phase, the test vectors Q is classified into the class that has the shortest 
distance from Qa to the Xjbj

 . That is we define the distance between a test manifold and a 
training manifold as  and the class of the test 

manifold (denoted by ω) is determined by the following classification rule: 

 (15)

The above classification rule is also called by different names according to the way of selecting 
the sets of test and training, i.e., Q and Xj . When two linear manifolds are represented by 
orthonormal bases obtained with PCA, the classification rule of Eq. (15) is called inter-

subspace distance (Chen et al., 2004). When mq, mj are bitmap images and Q , jX  are their 

tangent vectors, the distance d(Q,Xj) is called two-sided tangent distance (2S-TD) (Simard et al., 
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1993). In this chapter, classification using the distance between two linear manifolds is called 
two-sided manifold matching (2S-MM). 

3. Accuracy improvement 

We encounter different types of geometric transformations in image classification. Hence, it 
is important to incorporate transform-invariance into classification rules for achieving high 
accuracy. Distance-based classifiers such as kNN often rely on simple distances such as 
Euclidean distance, thus they suffer a high sensitivity to geometric transformations of 
images such as shifts, scaling and others. Distances in manifold-matching are measured 
based on a square error, so they are also not robust against geometric transformations. In 
this section, two approaches of incorporating transform-invariance into manifold matching 
are introduced. The first is to adopt kernel mapping (Schölkopf & Smola, 2002) to manifold 
matching. The second is combining tangent distance (TD) (Simard et al., 1993) and manifold 
matching. 

3.1 Kernel manifold matching 
First, let us consider adopting kernel mapping to 1S-MM. The extension from a linear 
classifier to nonlinear one can be achieved by a kernel trick  for 

mapping samples from an input space to a feature space Rd U F (Schölkopf & Smola, 2002). 

By applying kernel mapping to Eq. (1), the optimization problem becomes 

 

(16)

where QΦ and X
j

Φ are defined as  

respectively. By using the kernel trick and Lagrange multipliers, the optimal weight is given 
by the following: 

 
(17)

where  is a kernel matrix of which the (k, l)-element is given as 

 (18)

When applying kernel mapping to Eq. (5), kernel PCA (Schölkopf et al., 1998) is needed for 

obtaining orthonormal bases in F. Refer to (Maeda & Murase, 2002) or (Hotta, 2008a) for 

more details. 
Next, let us consider adopting kernel mapping to 2S-MM. By applying kernel mapping to 
Eq. (10), the optimization problem becomes 

 
(19)

where  are given as follows: 
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(20)

 (21)

 
(22)

By setting the derivative of Eq. (19) to zero and using the kernel trick, the optimal weights 
are given as follows: 

 (23)

 (24)

where  and kX 

∈R jn of which the (k, l)-elements of matrices and the lth element of vectors are given by 

 

(25)

 

(26)

 

(27)

 

(28)

 

(29)
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(30)

In addition, Euclidean distance between Φ(mq) and Φ (mx) in F is given by 

 

(31)

Hence, the distance between a test manifold and a training manifold of class j in F is 

measured by 

 

(32)

If necessary, regularization is applied to KQQ and KXX such as KQQ +α1Im, KXX +α2I
jn
. 

For incorporating transform-invariance into kernel classifiers for digit classification, some 
kernels have been proposed in the past (Decoste & Sch¨olkopf, 2002; Haasdonk & Keysers, 
2002). Here, we focus on a tangent distance kernel (TDK) because of its simplicity. TDK is 
defined by replacing Euclidean distance with a tangent distance in arbitrary distance-based 
kernels. For example, if we modify the following radial basis function (RBF) kernel 

 (33)

by replacing Euclidean distance with 2S-TD, we then obtain the kernel called two sided TD 
kernel (cf. Eq.(36)): 

 (34)

We can achieve higher accuracy by this simple modification than the use of the original RBF 
kernel (Haasdonk & Keysers, 2002). In addition, the above modification is adequate for 
kernel setting because of its natural definition and symmetric property. 

3.2 Combination of manifold matching and tangent distance 
Let us start with a brief review of tangent distance before introducing the way of combining 
manifold matching and tangent distance. 

When an image q is transformed with small rotations that depend on one parameter α, and 

so the set of all the transformed images is given as a one-dimensional curve Sq (i.e., a 

nonlinear manifold) in a pixel space (see from top to middle in Fig. 5). Similarly, assume that 
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the set of all the transformed images of another image x is given as a one-dimensional curve 

Sx. In this situation, we can regard the distance between manifolds Sq and Sx as an adequate 

dissimilarity for two images q and x. For computational issue, we measure the distance 

between the corresponding tangent planes instead of measuring the strict distance between 

their nonlinear manifolds (cf. Fig. 6). The manifold Sq is approximated linearly by its tangent 

hyperplane at a point q: 

 
(35)

where t q

i  is the ith d-dimensional tangent vector (TV) that spans the r-dimensional tangent 

hyperplane (i.e., the number of considered geometric transformations is r) at a point q and 

the α q

i  is its corresponding parameter. The notations Tq and αq denote Tq = (t
1

q … t q

r
) and  

αq = (α
1

q  … α q

r
) ⊤, respectively. 

 

 

Fig. 6. Illustration of Euclidean distance and tangent distance between q and x. Black dots 
denote the transformed-images on tangent hyperplanes that minimize 2S-TD. 

For approximating Sq, we need to calculate TVs in advance by using finite difference. For 

instance, the seven TVs for the image depicted in Fig. 5 are shown in Fig. 7. These TVs are 

derived from the Lie group theory (thickness deformation is an exceptional case), so we can 

deal with seven geometric transformations (cf. Simard et al., 2001 for more details). By using 

these TVs, geometric transformations of q can be approximated by a linear combination of 

the original image q and its TVs. For example, the linear combinations with different 

amounts of α of the TV for rotation are shown in the bottom in Fig. 5. 
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Fig. 7. Tangent vectors ti for the image depicted in Fig. 3. Fromleft to right, they correspond 
to x-translation, y-translation, scaling, rotation, axis deformation, diagonal deformation and 
thickness deformation, respectively. 

When measuring the distance between two points on tangent planes, we can use the 
following distance called two sided TD (2S-TD): 

 (36)

The above distance is the same as 2S-MM, so the solutions of αq and αx can be given by using 
Eq. (11) and Eq. (12). Experimental results on handwritten digit recognition showed that kNN 
with TD achieves higher accuracy than the use of Euclidean distance (Simard et al., 1993). 
Next, a combination of manifold matching and TD for handwritten digit classification is 
introduced. In manifold matching, we uncritically use a square error between a test sample 
and training manifolds, so there is a possibility that manifold matching classifies a test 
sample by using the training samples that are not similar to the test sample. On the other 
hand, Simard et al. investigated the performance of TD using kNN, but the recognition rate 
of kNN deteriorates when the dimensionality of feature vectors is large. Hence, manifold 
matching and TD are combined to overcome each of the difficulty. Here, we use the k-closest 
neighbors to a test sample for manifold matching for achieving high accuracy, thus the 
algorithm of the combination method is described as follows: 

Step1: Find k-closest training samples x
1

j , ..., x j

k  to a test sample from class j according to 

d2S. 
Step2: Store the geometric transformed images of the k-closest neighbors existing on their 

tangent planes as  is calculated using the optimal weight α
i

j

x  as 

follows: 

 (37)

Step3: Also store the k geometric transformed images of the test sample used for selecting 

the k-closest neighbors x j

i  using 2S-TD as Q = ( q 1|…| q k), where q i is calculated using 

the optimal weight α j

i  as follows: 

 (38)

Step4: Classify Q with 2S-MM using Xj. 
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The two approaches described in this section can improve accuracy of manifold matching 
easily. However, classification cost and memory requirement of them tend to be large. This 
fact is showed by experiments. 

4. Learning rules for manifold matching 

For reducing memory requirement and classification cost without deterioration of accuracy, 
several schemes such as learning vector quantization (Kohonen, 1995; Sato & Yamada, 1995) 
were proposed in the past. In those schemes, vectors called codebooks are trained by a 
steepest descent method that minimizes a cost function defined with a training error 
criterion. However, they were not designed for manifold-based matching. In this section, we 
adopt generalized learning vector quantization (GLVQ) (Sato & Yamada, 1995) to manifold 
matching for reducing memory requirement and classification cost as small as possible. 

Let us consider that we apply GLVQ to 1S-MM. Given a labelled sample q ∈ Rd for training 

(not a test sample), then measure a distance between q and a training manifold of class j by 

dj
 = Eq － XjbjE2 using the optimal weights obtained with Eq. (4). Let X1 ∈ Rd× 1n

 be the set of 

codebooks belonging to the same class as q. In contrast, let X2 ∈ Rd× 2n  be the set of 

codebooks belonging to the nearest different class from q. Let us consider the relative 
distance difference μ(q) defined as follows: 

 
(39)

where d1 and d2 represent distances from q to X1b1 and X2b2, respectively. The above μ(q) 
satisfies －1 < μ(q) < 1. If μ(q) is negative, q is classified correctly; otherwise, q is misclassified. 
For improving accuracy, we should minimize the following cost function: 

 
(40)

where N is the total number of labelled samples for training, and f ( μ) is a monotonically 
increasing function. To minimize S, a steepest descent method with a small positive constant 

ε (0 < ε < 1) is adopted to each Xj : 

 
(41)

Now ∂S/∂Xj is derived as 

 

(42)

Consequently, the learning rule can be written as follows: 

 (43)
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where 
 
If we use  as the distance, 

the learning rule becomes 

 
(44)

Similarly, we can apply a learning rule to 2S-MM. Suppose that a labelled manifold for 
training is given by the set of m vectors Q = (q1|q2|…|qm) (not a test manifold). Given this 
Q, a distance between Q and Xj is measured as  

using the optimal weights obtained with Eq. (11) and Eq. (12). Let X1 be the set of codebooks 
belonging to the same class as Q. In contrast, let X2 be the set of codebooks belonging to the 
nearest different class from Q. By applying the same manner mentioned above to 2S-MM, 
the learning rule can be derive as follows: 

 
(45)

 
In the above learning rules, we change dj/(d1 + d2)2 into dj/(d1 + d2) for setting ε easily. 

However, this change dose not affect the convergence condition (Sato & Yamada, 1995). As 

the monotonically increasing function, a sigmoid function f (μ, t) = 1/(1 － e－μt) is often used in 

experiments, where t is learning time. Hence, we use f (μ, t){1－f (μ, t)} as ∂f/∂μ in practice. 
 

 

Table 1. Summary of classifiers used in experiments 

In this case, ∂f/∂μ has a single peak at μ = 0, and the peak width becomes narrower as t 
increases. After the above training, q and Q are classified by the classification rules Eq. (8) 
and Eq. (15) respectively using trained codebooks. In the learning rule of Eq. (43), if the all 
elements of bj are equal to 1/  this rule is equivalent to GLVQ. Hence, Eq. (43) can be 

regarded as a natural extension of GLVQ. In addition, if Xj is defined by k-closest training 
samples to q, the rule can be regarded as a learning rule for LSC (Hotta, 2008b). 

5. Experiments 

For comparison, experimental results on handwritten digit datasets MNIST (LeCun et al., 
1998) and USPS (LeCun et al., 1989) are shown in this section. The MNIST dataset consists of 
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60,000 training and 10,000 test images. In experiments, the intensity of each 28 × 28 pixels 
image was reversed to represent the background of images with black. The USPS dataset 
consists of 7,291 training and 2,007 test images. The size of images of USPS is 16 × 16 pixels. 
The number of training samples of USPS is fewer than that of MNIST, so this dataset is more 
difficult to recognize than MNIST. In experiments, intensities of images were directly used 
for classification. 
The classifiers used in experiments and their parameters are summarized in Table 1. In 
1SMM, a training manifold of each class was formed by its centroid and r’ eigenvectors 
corresponding to the r’ largest eigenvalues obtained with PCA. In LSC, k-closest training 
samples to a test sample were selected from each class, and they were used as Xj . In 2S-MM, 
a test manifold was spanned by an original test image (mq) and its seven tangent vectors 

( X j) such as shown in Fig. 7. In contrast, a training manifold of each class was formed by 
using PCA. In K1S-MM, kernel PCA with TDK (cf. Eq. 34) was used for representing 

training manifolds in F. All methods were implemented with MATLAB on a standard PC 

that has Pentium 1.86GHz CPU and 2GB RAM. In implementation, program performance 
optimization techniques such as mex files were not used. For SVM, the SVM package called 
LIBSVM (Chang & Lin, 2001) was used for experiments. 

5.1 Test error rate, classification time, and memory size 
In the first experiment, test error rates, classification time per test sample, and a memory 
size of each classifier were evaluated. Here, a memory size means the size of a matrix for 
storing training samples (manifolds) for classification. The parameters of individual 
classifiers were tuned on a separate validation set (50000 training samples and 10000 
validation samples for MNIST; meanwhile, 5000 training samples and 2000 validation 
samples for USPS). 
Table 2 and Table 3 show results on MNIST and USPS, respectively. Due to out of memory, 
the results of SVM and K1S-MM in MNIST were not obtained with my PC. Hence, the result 
of SVM was referred to (Decoste & Schölkopf, 2002). As shown in Table 2, 2S-MM 
outperformed 1S-MM but the error rate of it was higher than those of other manifold 
matching such as LSC. However, classification cost of the classifiers other than 1S-MM and 
2S-MM was very high. Similar results can be found in the results of USPS. However, the 
error rate of 2S-MM was lower than that of SVM in USPS. In addition, manifold matching 
using accuracy improvement described in section 3 outperformed other classifiers. 
However, classification cost and memory requirement of them were very high. 
 

 

Table 2. Test error rates, classification time per test sample, and memory size on MNIST. 
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Table 3. Test error rates, classification time per test sample, and memory size on USPS. 

5.2 Effectiveness of learning 
Next, the effectiveness of learning for manifold matching was evaluated by experiments. In 
general, handwritten patterns include various geometric transformations such as rotation, 
so it is difficult to reduce memory sizes without accuracy deterioration. In this section, 
learning for 1S-MM using Eq. (44) is called learning 1S-MM (L1S-MM). The initial training 
manifolds were formed by PCA as shown in the left side of Fig. 8. Similarly, learning for 2S-
MM using Eq. (45) is called learning 2S-MM (L2S-MM). The initial training manifolds were 
also determined by PCA. In contrast, a manifold for training and a test manifold were 
spanned by an original image and its seven tangent vectors. The numbers of dimension for 
training manifolds of L1S-MM and L2S-MM were the same as those of 1S-MM and 2S-MM 
in the previous experiments, respectively. Hence, their classification time and memory size 

did not change. Learning rate ε was set to ε = 10－7 empirically. Batch type learning was 

applied to L1S-MM and L2S-MM to remove the effect of the order which training vectors or 
manifolds were presented to them. The right side of Fig. 8 shows the trained bases of each 
class using MNIST. As shown in this, learning enhanced the difference of patterns between 
similar classes. 
 

 

Table 4. Test error rates, training time, and memory size for training on MNIST. 

 

Table 5. Test error rate and training time on USPS. 

Figure 9 shows training error rates of L1S-MM and L2S-MM in MNIST with respect to the 
number of iteration. As shown in this figure, the training error rates decreased with time. 
This means that the learning rules described in this chapter converge stably based on the 
convergence property of GLVQ. Also 50 iteration was enough for learning, so the maximum 
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number of iteration was fixed to 50 for experiments. Table 4 and Table 5 show test error 
rates, training time, and memory size for training on MNIST and USPS, respectively. For 
comparison, the results obtained with GLVQ were also shown. As shown in these tables, 
accuracy of 1S-MM and 2S-MM was improved satisfactorily by learning without increasing 
of classification time and memory sizes. The right side of Fig. 8 shows the bases obtained 
with L2S-MM on MNIST. As shown in this, the learning rule enhanced the difference of 
patterns between similar classes. It can be considered that this phenomenon helped to 
improve accuracy. However, training cost for manifold matching was very high by 
comparison to those of GLVQ and SVM. 
 

 

Fig. 8. Left: Origins (mj ) and orthonormal bases Xj of individual classes obtained with PCA 
(initial components for training manifolds). Right: Origins and bases obtained with L2S-MM 
(components for training manifolds obtained with learning). 

6. Conclusion 

In this chapter manifold matching for high-dimensional pattern classification was described. 
The topics described in this chapter were summarized as follows: 
- The meaning and effectiveness of manifold matching 
- The similarity between various classifiers from the point of view of manifold matching 
- Accuracy improvement for manifold matching 
- Learning rules for manifold matching 
Experimental results on handwritten digit datasets showed that manifold matching 
achieved lower error rates than other classifiers such as SVM. In addition, learning 
improved accuracy and reduced memory requirement of manifold-based classifiers. 

www.intechopen.com



Manifold Matching for High-Dimensional Pattern Recognition 

 

325 

 

Fig. 9. Training error rates with respect to the number of iteration. 

The advantages of manifold matching are summarized as follows: 
- Wide range of application (e.g., movie classification) 
- Small memory requirement 
- We can adjust memory size easily (impossible for SVM) 
- Suitable for multi-class classification (not a binary classifier) 
However, training cost for manifold matching is high. Future work will be dedicated to 
speed up a training phase and improve accuracy using prior knowledge. 
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