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1. Introduction  

Pattern recognition based on correlation is one of the most useful techniques for many 
applications. Since the pioneer work of VanderLugt (1964), correlation filters have gained 
popularity thanks to their shift-invariance property, good mathematical basis, and easy 
implementation by means of digital, optical or hybrid optical/digital systems. However, 
conventional correlation filters are sensitive to intensity signal degradations (blurring and 
noise) as well as to geometrical distortions of an object of interest. Basically, blurring is 
owing to image formation process, and it can be produced by imperfection of capturing 
devices, relative motion between a camera and an input scene, propagation environment, 
etc. An observed input scene always contains noise produced by an imaging system (i.e. 
imperfection of imaging sensors) or by a recording medium (i.e. quantization errors) 
(Bertero & Boccacci, 1998; Perry et al., 2002). On the other hand, geometric distortions 
change the information content and, therefore, affect the accuracy of recognition techniques. 
Two types of geometric distortions are distinguished: internal and external distortions. The 
internal distortions are produced by the geometrics of a sensor; they are systematic and can 
be corrected by a calibration. External distortions affect the sensor position or the object 
shape; they are unpredictable (Starck et al., 1998).  
This chapter treats the problem of distortion-invariant pattern recognition based on 
adaptive composite correlation filters. The distinctive feature of the described methods is the 
use of an adaptive approach to the filters design (Diaz-Ramirez et al., 2006; González-Fraga 
et al., 2006). According to this concept, we are interested in a filter with good performance 
characteristics for a given observed scene, i.e., with a fixed set of patterns or a fixed 
background to be rejected, rather than in a filter with average performance parameters over 
an ensemble of images. Specifically, we treat two problems: reliable recognition of degraded 
objects embedded into a linearly degraded and noisy scene (Ramos-Michel & Kober, 2007) 
and adaptive recognition of geometrically distorted objects in blurred and noisy scenes 
(Ramos-Michel & Kober, 2008). 
The first problem concerns with the design of optimum generalized filters to improve the 
recognition of a distorted object embedded into a nonoverlapping background noise when 
the input scene is degraded with a linear system and noise. The obtained filters take into 
account explicitly information about an object to be recognized, background noise, linear 
system degradation, linear target distortion, and sensor noise. For the filter design, it is O
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assumed that this information is available or can be estimated from the nature of 
degradations. Therefore, the proposed filters establish upper bounds of patterns recognition 
quality among correlation filters with respect to the used criteria when the input scene and 
the target are degraded. The second problem is to decide on presence or absence of a 
geometrically distorted object embedded on a degraded and noisy scene. Since the 
performance of conventional correlation filters degrades rapidly with object distortions, one 
of the first attempts to overcome the problem was the introduction of synthetic discriminant 
functions (SDFs) (Casasent, 1984). However, conventional SDF filters often posses a low 
discrimination capability. New adaptive SDF filters for reliable recognition of a reference in 
a cluttered background designed on the base of optimum generalized filters are presented. 
The information about an object to be recognized, false objects, and background to be 
rejected is utilized in the proposed iterative training procedure. The designed correlation 
filter has a prespecified value of discrimination capability. The synthesis of adaptive filters 
also takes into account additive sensor noise by training with a noise realization. Therefore, 
the adaptive filters may possess a good robustness to the noise. Computer simulation results 
obtained with the proposed filters are compared with those of various correlation filters in 
terms of recognition performance.  

2. Generalized correlation filters for pattern recognition in degraded scenes 

In pattern recognition two different tasks are distinguished: detection of objects and 
estimation of their exact positions (localization) in images. Using a correlation filter, these 
tasks can be done in two steps. First, the detection is carried out by searching the highest 
correlation peak at the filter output, then, this coordinate is taken as the position estimation 
of a target in the input scene. The quality of detection and localization of a target may be 
limited by: (i) presence of additive and disjoint background noise in observed scenes, (ii) 
scene intensity degradations owing to image formation process, and (iii) geometric 
distortions of a target. Next, we design generalized optimum filters which are tolerant to 
intensity degradations of input scenes.  

2.1 Design of generalized optimum filters 
The detection ability of correlation filters can be quantitatively expressed in terms of several 
criteria, such as probability of detection errors, signal-to-noise ratio, peak sharpness, and 
discrimination capability (Vijaya-Kumar & Hassebrook, 1990). Optimization of these criteria 
leads to reducing false recognition errors. After the detection task has been solved, we still 
are faced with small errors of target position estimation that are due to distortions of the 
object by noise. The coordinate estimations lie in the vicinity of their actual values. Therefore 
the accuracy of the target location can be characterized by the variance of measurement 
errors along coordinates (Kober & Campos, 1996; Yaroslavsky, 1993). The variance 
minimization depends on a mathematical model of the input scene. Basically, two models 
are considered: overlapping and nonoverlapping models. Many correlation filters were 
proposed. For instance, if an input scene contains a reference object corrupted by additive 
noise (overlapping model), the matched spatial filter (MSF) (VanderLugt, 1964) is optimal 
with respect to the signal-to-noise ratio. Horner and Gianino (1984) suggested the phase-
only filter (POF) that maximizes the light efficiency. For the overlapping model, the optimal 
filter (OF) was proposed by minimizing the probability of anomalous errors (false alarms) 
(Yaroslavsky, 1993). If an input scene contains a reference object embedded into a disjoint 
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background (nonoverlapping model) and additive noise, the following correlation filters 
were derived: the generalized matched filter (GMF) maximizes the ratio of the expected 
value of the squared correlation peak to the average output variance (Javidi & Wang, 1994), 
the generalized phase-only filter (GPOF) maximizes the light efficiency (Kober et al., 2000), 
and the generalized optimum filter (GOF) maximizes the ratio of the expected value of the 
squared correlation peak to the average expected value of the output signal energy (POE) 
(Javidi & Wang, 1994). Other generalized filters were also introduced (Goudail & Réfrégier, 
1997; Javidi et al., 1996; Réfrégier, 1999; Réfrégier et al., 1993; Towghi & Javidi, 2001). 
Conventional filters are sensitive to intensity signal degradations. So particular cases of the 
degradations were taken into account in the filter design (Campos et al., 1994; Carnicer et al., 
1996; Navarro et al., 2004; Vargas et al., 2003). However, it appears that the problem of 
detection and localization with correlation filters has not been solved when the target and 
the input scene are degraded with linear systems. In this section, we derive generalized 
filters which are tolerant to the degradations. The POE criterion is defined as the ratio of the 
square of the expected value of the correlation peak to the expected value of the output 
signal energy (Javidi & Wang, 1994): 

 ( ){ } ( ){ }=
2 2

0 0 0POE , / ,E y x x E y x x , (1) 

where y(x,x0) is the filter output when the target is located at the position x0 in the input 
scene. E{.} denotes statistical averaging, and the overbar symbol in the denominator denotes 
statistical averaging over x. 
The second used criterion is referred to as the peak-to-average output variance (SNR). It is 
defined as the ratio of the square of the expected value of the correlation peak to the average 
output variance (Javidi & Wang, 1994): 

 ( ){ } ( ){ }=
2

0 0 0SNR , /Var ,E y x x y x x , (2) 

where Var{.} denotes the variance. The light efficiency (Horner & Gianino, 1984) is 
important in optical pattern recognition. For the nonoverlapping model of the input scene, it 
can be expressed as 

 ( ){ } ( ){ }= ∫ ∫
2 2

H 0 0η , dx/ , dxE y x x E s x x , (3) 

where s(x) represents the input scene. 
Next, we derive three generalized optimum filters by maximizing the criteria. For simplicity, 
one-dimensional notation is used. Integrals are taken between infinite limits. The same 
notation for a random process and its realization is used. 
 

A. Generalized correlation filters for object recognition in a noisy scene degraded by a 

linear system 

Let us consider the nonoverlapping signal model. The input scene s(x) is degraded by a 
linear system hLD(x) and corrupted by additive sensor noise n(x), and contains a target t(x) 
located at unknown coordinate x0 (random variable) and a spatially disjoint background 
noise b(x,x0): 

 ( ) ( ) ( ) ( ) ( )•= − + +⎡ ⎤⎣ ⎦0 0 0 LD, ,s x x t x x b x x h x n x , (4) 
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where “●” denotes the convolution operation, and ( ) =∫ LD dx 1h x . The following notations 

and assumptions are used. 
1. The nonoverlapping background signal b(x,x0) is regarded as a product of a realization 

b(x) from a stationary random process (with expected value μb) and an inverse support 
function of the target w(x) defined as zero within the target area and unity elsewhere: 

 ( ) ( ) ( )= −0 0,b x x b x w x x . (5) 

2. B0(ω) is the power spectral density of  b0(x)=b(x)-μb. 
3. n(x) is a realization from a stationary process with zero-mean and the power spectral 

density N(ω). 
4. T(ω), W(ω), and HLD(ω) are the Fourier transforms of t(x), w(x), and hLD(x), respectively. 
5. The filter output y(x) is given by y(x,x0)=s(x,x0)●h(x), where h(x) is the real impulse 

response of a filter to be designed. 
6. The stationary processes and the random target location x0 are statistically independent 

of each other. 
Next, we derive optimum correlation filters. These filters are modified versions of the 
following generalized correlation filters: the GOF (Javidi & Wang, 1994), GMF (Javidi & 
Wang, 1994), and GPOF (Kober et al., 2000). The transfer functions of the designed filters are 
referred to as GOFLD, GMFLD, and GPOFLD, which are optimal with respect to the POE, the 
SNR, and the light efficiency, respectively (Ramos-Michel & Kober, 2007).  
1. Generalized Optimum Filter (GOFLD) 
The filter GOFLD maximizes the POE given in Eq. (1). From Eq. (4) the expected value of the 
filter output E{y(x,x0)} can be expressed as 

 ( ){ } ( ) ( )[ ] ( ) ( ) ( )ω μ ω ω ω ω
π

= + −⎡ ⎤⎣ ⎦∫0 0LD
1

, exp dω.
2 bE y x x T W H H j x x  (6) 

The square of the expected value of the output peak can be written as 

 ( ){ } ( ) ( )[ ] ( ) ( )ω μ ω ω ω
π

= +∫
22

0 0 2 LD
1

, dω
4 bE y x x T W H H . (7) 

The denominator of the POE can computed as  

 ( ){ } ( ){ } ( ){ }= +⎡ ⎤⎣ ⎦
22

0 0 0, Var , ,E y x x y x x E y x x . (8) 

Here, the spatial averaging converts a nonstationary process at the filter output to a 
stationary process. It is supposed that the output-signal energy is finite (for instance, spatial 
extend of the filter output is L (Javidi & Wang, 1994)). The expressions for the average of the 

output-signal variance ( ){ }0Var ,y x x  and the average energy of the expected value of the 

filter output ( ){ } 2

0,E y x x  are given, respectively, by 

 ( ){ } ( ) ( ) ( ) ( ) ( )α ω ω ω ω ω
π π

•
⎧ ⎫⎡ ⎤= +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭∫

22 2

0 0 LD
1

Var , dω,
2 2

y x x B W H N H  (9) 
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and  

 ( ){ } ( ) ( ) ( ) ( )α ω μ ω ω ω
π

= +∫
2 22 2

0 LD
1

, dω
2 bE y x x T W H H , (10) 

where α=1/L is a normalizing constant (Kober & Campos, 1996). Substituting Eqs. (9) and 
(10) into Eq. (8), we obtain the average output energy: 

 
( ){ } ( ) ( ) ( ) ( ) ( )

( ) ( )

α ω μ ω ω ω ω
π π

ω ω

•
⎧ ⎡ ⎤= + +⎡ ⎤ ⎨⎣ ⎦ ⎢ ⎥⎣ ⎦⎩
⎫+ ⎬
⎭

∫
2 22 2

0 0

2

LD
1 1

,
2 2

dω.

bE y x x T W B W H

N H

 (11) 

Using Eqs. (7) and (11) the POE can be written as  

 
( ) ( ) ( )[ ] ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

π ω μ ω ω ω

α ω μ ω ω ω ω ω ω
π

−

•

+
=

⎧ ⎫⎡ ⎤+ + +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∫

∫

21

22 2 2

0

LD

LD

2 dω
POE

1
dω

2

b

b

T W H H

T W B W H N H

. (12) 

Applying the Schwarz inequality, we obtain the optimum filter: 

 ( )
( ) ( )[ ] ( ){ }

( ) ( ) ( ) ( ) ( ) ( )

ω μ ω ω
ω

α ω μ ω ω ω ω ω
π

•

+
=

⎡ ⎤+ + +⎢ ⎥⎣ ⎦

*

22 2

0

LD
LD

LD

GOF
1

2

b

b

T W H

T W B W H N

, (13) 

where the asterisk denotes the complex conjugate. Note that the filter takes into account 
information about a linear image degradation and additive noise by means of HLD(ω) and 
N(ω), respectively. Besides, the transfer function of the filter contains T(ω)+μbW(ω), which 
defines a new target to be detected. Therefore, the information about the target support 
function and the mean value of a background is important as well as the target signal itself. 
2. Generalized Matched Filter (GMFLD) 
This filter maximizes SNR given in Eq. (2). Using Eqs. (7) and (9), the SNR can be expressed 
as follows: 

 
( ) ( ) ( )[ ] ( ) ( )

( ) ( ) ( ) ( ) ( )

π ω μ ω ω ω

α ω ω ω ω ω
π

−

•

+
=

⎧ ⎫⎡ ⎤ +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∫

∫

21

22 2

0

LD

LD

2 dω
SNR

dω
2

bT W H H

B W H N H

. (14) 

Applying the Schwartz inequality, the optimum correlation filter is obtained: 

 ( )
( ) ( )[ ] ( ){ }

( ) ( ) ( ) ( )

ω μ ω ω
ω

α ω ω ω ω
π

•

+
=

⎡ ⎤ +⎢ ⎥⎣ ⎦

*

22

0

LD
LD

LD

GMF

2

bT W H

B W H N

. (15) 

One can observe that the filter contains information about the linear degradation system and 
additive noise. 
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3. Generalized Phase Optimum Filter (GPOFLD) 
Using Eq. (4), the light efficiency given by Eq. (3) can be expressed as 

 
( ) ( )[ ] ( ) ( )

( ) ( )[ ] ( )

ω μ ω ω ω ω

ω μ ω ω ω

+
=

+

∫
∫

2 2

H 2

LD

LD

d
η

d

b

b

T W H H

T W H
. (16) 

Thus, the optimum correlation filter is given by  

 ( )
( ) ( )[ ]
( ) ( )

( )
ω μ ω

ω θ ω
ω μ ω
+ ⎡ ⎤= −⎣ ⎦+ LD

*

LDGPOF expb

b

H

T W
j

T W
, (17) 

where ( )θ ω
LDH  is the phase distribution of the linear degradation. It can be seen that the 

GPOFLD does not take into account the degradation by additive noise. Therefore, it is 
expected that this filter will be sensitive to the noise. 
 

B. Generalized correlation filters for recognition of a linearly degraded object in a noisy 

scene degraded by a linear system 

The input scene contains a linearly degraded target located at unknown coordinate x0 and a 
spatially disjoint background b(x,x0). The scene is additionally degraded with a linear 
system and corrupted by additive noise n(x): 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )• •= − + − +⎡ ⎤⎣ ⎦0 0 0TD TD LD,s x x t x x h x b x w x x h x n x , (18) 

where hTD(x) is a real impulse response of target degradation, ( ) =∫ TD dx 1h x , 

( ) ( ) ( )•− = − −0 0TD T TD1 hw x x w x x x , wT(x) is a support function of the target (with unity 

within the target area and zero elsewhere). It is assumed that linear degradations of the 
target and the scene do not affect each other. In a similar manner, three generalized 
correlation filters are derived. The transfer functions of these filters are referred to as 
GOFLD_TD, GMFLD_TD, and GPOFLD_TD. They maximize the POE, the SNR, and the light 
efficiency, respectively (Ramos-Michel & Kober, 2007).  
1. Generalized Optimum Filter (GOFLD_TD) 
From the model of the input scene given in Eq. (18), the expected value of the filter output is  

 ( ){ } ( ) ( ) ( ) ( ) ( ) ( )ω ω μ ω ω ω ω
π

= ⎡ + ⎤ ⎡ − ⎤⎣ ⎦ ⎣ ⎦∫0 0TD TD LD
1

, exp dω,
2 bE y x x T H W H H j x x  (19) 

where HTD(ω) and WTD(ω) are the Fourier transforms of hTD(ω) and wTD(ω), respectively. The 
intensity correlation peak can be computed as follows: 

 ( ){ } ( ) ( ) ( ) ( ) ( )ω ω μ ω ω ω
π

= +⎡ ⎤⎣ ⎦∫
22

0 0 2 TD TD LD
1

, dω .
4 bE y x x T H W H H  (20) 

( ){ }0Var ,y x x  and ( ){ } 2

0,E y x x can be obtained, respectively, as 

 ( ){ } ( ) ( ) ( ) ( ) ( )α ω ω ω ω ω
π π

•
⎧ ⎫⎡ ⎤= +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭∫

2 2 2

0 0 TD LD
1

Var , dω,
2 2

y x x B W H N H  (21) 
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and  

 ( ){ } ( ) ( ) ( ) ( ) ( )α ω ω μ ω ω ω
π

= +∫
2 2 2 2

0 TD TD LD
1

, dω
2 bE y x x T H W H H . (22) 

With the help of Eqs. (1), (8), and (20)-(22), the POE is given by 

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

π ω ω μ ω ω ω

α ω ω μ ω ω ω ω ω ω
π

−

•

+⎡ ⎤⎣ ⎦
=

⎧ ⎫⎡ ⎤+ + +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∫

∫

21

2 2 2 2

0

TD TD LD

TD TD TD LD

2 dω
POE .

1
dω

2

b

b

T H W H H

T H W B W H N H

 (23) 

Applying the Schwarz inequality, a generalized optimum filter is derived: 

 ( )
( ) ( ) ( )[ ] ( ){ }

( ) ( ) ( ) ( ) ( ) ( ) ( )

ω ω μ ω ω
ω

α ω ω μ ω ω ω ω ω
π

•

+
=

⎡ ⎤+ + +⎢ ⎥⎣ ⎦

*

2 2 2

0

TD TD LD
LD_TD

TD TD LD

GOF .
1

2

b

b

T H W H

T H W B W H N

(24) 

2. Generalized Matched Filter (GMFLD_TD) 
From Eqs. (2), (20), and (21), the SNR can be expressed as 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

π ω ω μ ω ω ω

α ω ω ω ω ω
π

−

•

+⎡ ⎤⎣ ⎦
=

⎧ ⎫⎡ ⎤ +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∫

∫

21

2 2 2

0

TD TD LD

TD LD

2 dω
SNR

dω
2

bT H W H H

B W H N H

. (25) 

Applying the Schwartz inequality, the optimum correlation filter is given by 

 ( )
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

ω ω μ ω ω
ω

α ω ω ω ω
π

•

+⎡ ⎤⎣ ⎦=
⎡ ⎤ +⎢ ⎥⎣ ⎦

*

2 2

0

TD TD LD
LD_TD

TD LD

GMF

2

bT H W H

B W H N

. (26) 

We see that the filter contains information about the linear system and additive noise. 
3. Generalized Phase Optimum Filter (GPOFLD_TD) 
By maximizing the light efficiency given in Eq. (3), the transfer function of the GPOF can be 
written as 

 ( )
( ) ( ) ( )
( ) ( ) ( )

( )
ω ω μ ω

ω θ ω
ω ω μ ω

+⎡ ⎤⎣ ⎦ ⎡ ⎤= −⎣ ⎦+ LD

*

TD TD
LD_TD

TD TD

GPOF expb

b

H

T H W
j

T H W
. (27) 

The filter does not take into account the degradation by additive noise. Therefore, it is 
expected that this filter will be sensitive to the noise. 

2.2 Performance of optimum generalized filters 
In this section the performance of the MSF (VanderLugt, 1964), the POF (Horner & Gianino, 
1984), the OF (Yaroslavsky, 1993), the GMF (Javidi & Wang, 1994), the GOF (Javidi & Wang, 
1994), the GPOF (Kober et al., 2000) and the proposed generalized filters is presented. The 
recognition of either a target or a moving object embedded into degraded test scenes is 
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evaluated in terms of discrimination capability (DC) and location accuracy. The DC is 
defined as the ability of a filter to distinguish a target from other different objects. If a target 
is embedded into a background that contains false objects, the DC can be expressed as  

 
( )

( )
= −

2

2

0
DC 1

0

B

T

C

C
, (28) 

where ⎢CB ⎢is the maximum in the correlation plane over the background area to be rejected, 
and ⎢CT ⎢is the maximum in the correlation plane over the area of target position. The area of 
the actual position is determined in the close vicinity of the actual target location. The 
background area is complementary to the area of target position. In our computer 
simulations the area of target position is chosen as the target area. Negative values of the DC 
indicate that a tested filter fails to recognize the target. The location accuracy can be 
characterized by means of the location errors (LE) defined as 

 ( ) ( )= − + −# #2 2
LE T T T Tx x y y , (29) 

where ( ),T Tx y  and y ( )# #,T Tx y  are the coordinates of the target exact position and the 

coordinates of the correlation peak taken as a target position estimation, respectively. 
 

 
Fig. 1. (a) Test input scene, (b) objects used in experiments. 

All correlation filters were implemented with the fast Fourier transform. To guarantee 
statistically correct results, 30 statistical trials of each experiment for different positions of a 
target and 20 realizations of random processes were carried out. The size of images used in 
experiments is 256×256. The signal range is [0-1]. Figure 1(a) shows a test input scene. The 
scene contains two objects with a similar shape and size (approximately 44×28 pixels) but 
with different gray-level contents. The target (upper butterfly) and the false object are 
shown in Fig. 1(b). The mean value and the standard deviation over the target area are 0.42 
and 0.2, respectively. The spatially inhomogeneous background has a mean value and a 
standard deviation of 0.37 and 0.19, respectively. 
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Two scenarios of the object recognition are considered: (a) detection of a target in linearly 
degraded and noisy scenes, and (b) detection of a moving target in linearly degraded and 
noisy scenes.  
 

A. Recognition of a target in linearly degraded and noisy scenes 

First, the test input scene is homogenously degraded with a linear system. An example of 
the linear degradation is a uniform image defocusing by a camera.  
 

 
Fig. 2. Test scenes corrupted by additive noise with σn=0.12 and defocused with: (a) D=7, 
and (b) D=23 pixels. 
 

 
Fig. 3. Performance of correlation filters when the input scene is defocused with different 
values of D: (a) DC versus D, (b) LE versus D. 
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Assume that the impulse response of the blurring is an impulse disk with a diameter D. The 
values of D used in the experiments are 3, 7, 11, 15, 19, 23, and 31 pixels. Since additive 
sensor noise is always present, the test scene is additionally corrupted by additive zero-
mean white Gaussian noise with the standard deviation σn. The values of σn are equal to 
0.02, 0.04, 0.08, 0.12, 0.16, and 0.17. Figures 2(a) and 2(b) show examples of the test scene 
linearly degraded with D=7 and 23 pixels, respectively, and corrupted by overlapping noise 
with σn=0.12. Figures 3(a) and 3(b) show the performance of the tested correlation filters 
with respect to the DC and the LE when the input is defocused with different values of D. It 
can be seen that the proposed filters GOFLD and GMFLD are always able to detect and 
localize exactly the target, whereas the GPOFLD is sensitive to the linear degradation. The 
performance of the other filters decreases as a function of D. The conventional GOF is able 
to detect the target; however, it yields large location errors. The MSF filter fails to recognize 
the target.  

 
Fig. 4. Tolerance to noise of correlation filters for pattern recognition in blurred scenes: (a) 
DC versus σn with D=7, (b) LE versus σn with D=7, (c) DC versus σn with D=11, (d) LE 
versus σn with D=11. 
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Now we illustrate robustness of the filters to additive noise. Figure 4 shows the performance 
of the filters for pattern recognition in blurred (with D=7 and D=11) and noisy test scenes 
when the standard deviation of additive noise is varied. One can observe that the proposed 
filters GOFLD and GMFLD are always able to detect and to localize the object with small 
location errors, whereas the performance of the rest of the filters worsens rapidly as a 
function of D and σn. 95% confidence intervals in the performance of the GOFLD are shown 
in Figs. 4 (c) and 4(d).  
 

B. Recognition of a moving target in linearly degraded and noisy scenes 

Let us consider a uniform target motion across a fixed background. For clarity and 
simplicity, we assume that the object moves from left to right with a constant velocity V 
during a time capture interval of [0, T]. The impulse response of the target degradation can 
be expressed as follows (Biemond et al., 1990): 

 ( )
≤ ≤ =⎧

= ⎨
⎩

TM

1 , if 0

0, otherwise

M x M VT
h x . (30) 

 

 
Fig. 5. Illustration of a linear degradation by a uniform target motion in 3 pixels from left to 
right. 

The target motion leads to a partial (inhomogeneous) blur of the input scene. Figure 5, 
illustrates this degradation when a target and a background are one-dimensional discrete 
signals (t1,…,t6) and (b1,…,b9), respectively, and the target moves in 3 pixels from left to 
right. The input signal s(r) is formed as the average of intermediate sequences s’(r). In 
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experiments, a uniform target motion from left to right on M pixels in test scenes is 
considered. The values of M used in our experiments are 3, 5, 7, 9, 11, and 15 pixels. The test 
 

 
Fig. 6. Test scene shown in Fig. 1(a) corrupted by: (a) target motion (M=9) and scene 
degradation (D=7), (b) target motion (M=9), scene degradation (D=7), and additive noise 
(σn=0.12). 

 
Fig. 7. Performance of correlation filters for recognition of a moving target: (a) DC versus M, 
(b) LE versus M for the scene. 

scene containing the moving target may be homogeneously degraded by a linear system 
with the parameter D. The values of D used in our experiments are 3, 7, 9, 15, 19, and 23 
pixels. Fig. 6(a) shows the test scene degraded with M=9 and D=7. Fig. 6(b) shows the 
degraded scene with M=9 and D=7, which is additionally corrupted by overlapping noise 
with σn=0.12.  
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Let us analyze the performance of the tested filters for recognition of a moving object in the 
still undistorted background. In this case, generalized optimum filters referred to as GMFTD, 
GOFTD, and GPOFTD can be obtained from Eqs. (24), (26), and (27), respectively, by 
substituting into these equations HLD(ω)=1. Figures 7(a) and 7(b) show the performance of 
the correlation filters with respect to the DC and the LE when the input scene in Fig. 1(a) 
contains a moving target with different values of M. 
 

 
Fig. 8. Recognition of a moving object in defocused with D=7 and noisy test scene: (a) DC 
versus σn with M=7, (b) LE versus σn with M=7, (c) DC versus σn with M=11, (b) LE versus 
σn with M=11. 

Note that the proposed filters the GOFTD, the GMFTD, and the GPOFTD are able to detect the 
target without location errors. On the other hand, one can see that the performance of the 
rest of the filters rapidly deteriorates in terms of the DC and the LE when the target 
displacement increases. 
Next, the filters are tested for recognition of a moving object in defocused and noisy test 
scenes. The performance of the filters for M=7, 11, and D=7 in terms of the DC and the LE as 
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a function of the standard deviation of additive noise is shown in Fig. 8. Under these 
degradation conditions, the OF, the MSF, and the POF yield a poor performance. The 
GMFLD_TD is always able to detect and to localize the moving object for any tested values of 
M, D, and σn. However, it yields low values of the DC. The GOFLD_TD provides the best 
performance in terms of the DC and the LE when the scene is corrupted by additive noise 
with σn≤0.12 and the target moves by M≤15 pixels.  

3. Adaptive composite filters for recognition of geometrically distorted 
objects 

3.1 Design of adaptive composite filters 
In this section, we consider the task of recognition of geometrically distorted targets in input 
scenes degraded with a linear system and corrupted by noise. Various composite optimum 
correlation filters for recognition of geometrically distorted objects embedded in a 
nonoverlapping background have been proposed (Chan et al., 2000; Sjöberg & Noharet, 
1998). However, there are no correlation-based methods for detection and localization of 
geometrically distorted objects in blurred and noisy scenes. We use a priori information 
about an object to be recognized, false objects, background noise, linear degradations of the 
input scene and target, geometrical distortions of the target, and additive sensor noise. 
An attractive approach to geometrical distortion-invariant pattern recognition is based on 
SDF filters (Casasent, 1984; Mahalanobis et al., 1987; Vijaya-Kumar, 1986). Basically, a 
conventional SDF filter uses a set of training images to generate a filter that yields 
prespecified central correlation outputs in the response to training images. It is able to 
control only one point at the correlation plane for each training image. This is why SDF 
filters often have a low discrimination capability. We are interested in a filter which is able 
to recognize geometrically distorted objects in a set of observed degraded scenes, i.e., with a 
fixed set of patterns and backgrounds to be rejected (Ramos-Michel & Kober, 2008), rather 
than in a filter with average performance parameters over an ensemble of images (Chan et 
al., 2000). The impulse response of the obtained filter is a linear combination of correlation 
filters optimized with respect to the peak-to-output energy and common matched filters. 
The optimum generalized filters are derived from a set of training images, whereas the 
matched filters are designed from the background to be rejected. With the help of an 
iterative training procedure, an adaptive composite filter is generated. The filter ensures 
high correlation peaks corresponding to versions of the target while suppressing possible 
false peaks. The proposed algorithm of the filter design requires knowledge of the 
background image. The background can be described either deterministically (typical 
picture) or stochastically (realization of a stochastic process). 
Suppose that an input scene is homogenously degraded by a linear system and corrupted by 
additive noise. It contains geometrically distorted targets. For each object to be recognized, a 
generalized optimum filter (GOFLD) is designed [see Eq. (13)]. Each filter takes into account a 

priori information about the corresponding reference, background noise, linear degradation 
of the input scene, geometrical target distortions, and additive sensor noise. Let {ti(x), 
i=1,2,…,N} be a set of target images (linearly independent), each with d pixels. This set is 
called the true class of objects. The set includes geometrically distorted versions of the 
references. For the i’th image the transfer function of the GOFLD filter is given by  
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, (31) 

where Ti(ω) and Wi(ω) are the Fourier transforms of the i’th training object ti(x) and its 
inverse support function wi(x), respectively. We use the same notation and assumptions as 

in Section 2. Let ( )G
ih x  be the inverse Fourier transform of the complex-conjugate frequency 

response of the generalized optimum filter for the i’th pattern. A linear combination of 

{ ( )G
ih x , i=1,2,…,N} can form a SDF filter for intraclass distortion-invariant pattern 

recognition. In this case the coefficients of a linear combination must satisfy a set of 
constraints on the filter output requiring a prespecified value for each training pattern. 
Assume that there are various classes of objects to be rejected. For simplicity, a two-class 
recognition problem is considered. Thus, we are looking for a filter to recognize training 
images from one class and to reject images from another class, called the false class. Suppose 
that there are M training images from the false class {pi(x), i=1,2,…,M}. Let us denote a set of 
training images formed from the input patterns as S={t1(x),…, tN(x),p1(x),…, pM(x)}, and a 

new combined set of training images is defined as SN={ 1 ( )Gh x ,…, ( )G
Nh x , p1(x),…, pM(x)}. 

According to the SDF approach (Casasent, 1984), the composite image is computed as a 
linear combination of training images belonging to SN, i.e., 

 ( ) ( ) ( )
+

= = +

= +∑ ∑
1 1

SDF

N M N

i i N

G
i i i ih x a x a p xh . (32) 

Let R denote a matrix with N+M columns and d rows, whose i’th column is given by the 
vector version of the i’th element of SN. Using vector-matrix notation, Eq. (32) can be 
rewritten as 

 =SDFh Ra , (33) 

where a represents the column vector of weighting coefficients {ai, i=1,…,M+N}. We can set 
the filter output {ui=1, i=1,…,N} for the true class objects and {ui=0, i=N+1, N+2,…,N+M} for 
the false class objects, i.e. u=[1 1 1 ··· 0 0 ··· 0]T. Here superscript T denotes the transpose. Let 
Q be a matrix with N+M columns and d rows, whose i’th column is the vector version of the 
i’th element of S. The weighting coefficients are chosen to satisfy the following condition: 

 += SDFu Q h , (34) 

where superscript + means conjugate transpose. From Eqs. (33) and (34) we obtain  

 
−+= ⎡ ⎤⎣ ⎦

1

SDFh R Q R u . (35) 

Using the filter given in Eq. (35), we expect that the central correlation peaks will be close to 
unity for all targets and it will be close to zero for false objects. It is important to note that 
this procedure lacks control over the full correlation output, because we are able to control 
only the output at the location of cross-correlation peaks. Therefore, other sidelobes may 
appear everywhere on the correlation plane. To achieve a good recognition, a modified  
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iterative algorithm (Diaz-Ramirez et al., 2006; González-Fraga et al., 2006) is proposed. At 
each iteration, the algorithm suppresses the highest sidelobe peak, and therefore the value 
of discrimination capability monotonically increases until a prespecified value is reached. 
 

 
 

Fig. 9. Block diagram of the iterative algorithm for the filter design. 

The first step of the iterative algorithm is to carry out a correlation between a background 
(deterministic or stochastic) and the SDF filter given in Eq. (35). This filter is initially trained 
only with available versions of targets and known false objects. Next, the maximum of the 
filter output is set as the origin, and around the origin we form a new object to be rejected 
from the background. This object has a region of support equal to the union of those of all 
targets. The created object is added to the false class of objects. Now, the two-class 
recognition problem is utilized to design a new SDF filter. The described iterative procedure 
is repeated till a specified value of the DC is obtained. A block diagram of the procedure is 
shown in Fig. 9. The proposed algorithm consists of the following steps: 
1. Design a basic SDF filter using available distorted versions of targets and known false 

objects [see Eq. (35)]. 
2. Carry out the correlation between a background and the filter, and calculate the DC 

using Eq. (28). 
3. If the value of the DC is greater or equal to a desired value, then the filter design 

procedure is finished, else go to the next step. 
4. Create a new object to be rejected from the background. The origin of the object is at the 

highest sidelobe position in the correlation plane. The region of support of the object is 
the union of the region of supports of all targets. The created object is added to the false 
class of objects. 

5. Design a new SDF filter using Eq. (35) with the same true class and the extended false 
class of objects. Go to step 2. 

As a result of this procedure, the adaptive composite filter is synthesized. The performance 
of this filter in the recognition process is expected to be close to that in the synthesis process.  
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3.2 Performance of adaptive composite filters 
Now, we analyze the performance of the generalized optimum filter for pattern recognition 
in a linearly distorted scene (GOFLD) [given by Eq. (13)], the adaptive SDF filter (AMSF) 
(González-Fraga et al., 2006), the distortion-invariant minimum-mean-squared-error 
(MMSE) filter (Chan et al., 2000), and the proposed adaptive filter (AGOF) in terms of 
discrimination capability and location accuracy. 
 

 
Fig. 10. Test scene (degraded by motion blur with M=5 and additive noise with σn=0.08) 
contains the target: (a) rotated by 5 degree and scaled by factor of 0.8, (b) rotated by 10 
degree and scaled by factor of 1.2. 

We carried out experiments for recognition of scaled and rotated targets in blurred and 
noisy scenes. It is assumed that a camera moves from right to left on M=5 pixels. So, the 
input scene is degraded by the uniform motion blur given in Eq. (30). The scene also 
contains sensor noise with σn=0.08. Figures 10(a) and 10(b) show two examples of input 
scenes used in the experiment. To guarantee statistically correct results, 30 statistical trials 
for different positions of a target and 20 realizations of random processes were performed. 
For the filter design of the tested composite filters (AGOF, AMSF and MMSE) we used the 
same set of training images. The set contains versions of the target scaled by factors 0.8, 
0.85, 0.9, 1.1, and rotated by 0, 3, 6, and 9 degrees (see Fig. 11). Besides, for the synthesis of 
the adaptive filters we used the background shown in Fig. 1(a) degraded with M=5 and 
σn=0.08.  
Figure 12 shows the performance of the filters with respect to the DC and the LE when the 
target is scaled and rotated by 5 and 10 degrees. One can see that the proposed filter AGOF 
possesses the best average performance in terms of both criteria. The AMSF fails to 
recognize the distorted object when the target is scaled by a factor lower than 1.2. It is 
important to say that the number of iterations during the design process of the AGOF 
depends on a background and true and false objects. In our case, after 9 iterations in the 
design process the filter yields DC=0.93. 
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Fig. 11. Versions of the target distorted by rotation and scaling. 

 

 
Fig. 12. Performance of correlation filters for recognition of rotated and scaled objects. 
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4. Conclusion 

In this chapter we treated the problem of distortion-invariant pattern recognition based on 
adaptive composite correlation filters. First, we proposed optimum generalized filters to 
improve recognition of a linearly distorted object embedded into a nonoverlapping 
background noise when the input scene is degraded with a linear system and noise. The 
obtained filters take into account explicitly information about an object to be recognized, 
disjoint background noise, linear system degradation, linear target distortion and sensor 
noise. For the filter design, it is assumed that this information is available or can be 
estimated from the nature of degradations. Next, adaptive composite correlation filters for 
recognition of geometrically distorted objects embedded into degraded input scenes were 
proposed. The filters are a linear combination of generalized optimum filters and matched 
spatial filters. The information about an object to be recognized, false objects, and a 
background to be rejected is utilized in iterative training procedure to design a correlation 
filter with a prespecified value of discrimination capability. Computer simulation results 
obtained with the proposed filters are compared with those of various correlation filters in 
terms of recognition performance.  
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