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Image Representation Using Fuzzy 
Morphological Wavelet 

Chin-Pan Huang  
Department of computer and communication engineering,  

Ming Chuan University  

Taiwan, ROC 

1. Introduction      

Multiresolution techniques for image processing have grown very rapidly in the last few 
years (Burt & Adelson, 1983, Heijmans & Goutsias, 2000, Goutsias & Heijmans, 2000). The 
bank-of-filters implementation method, based on the discrete wavelet transform (Heijmans 
& Goutsias, 2000, Mallat, 1989), has been very significant. However, in general, such an 
implementation has limitations due to intensive computation, sequential implementation 
and lack of the geometrical information in the processing. Moreover, the theoretical 
extension from one-dimension to two-dimension is complex (Vaidyanathan, 1993). In this 
paper, we propose a technique based on fuzzy mathematical morphology (Sinha & 
Dougherty, 1992) to implement the multiresolution analysis, which is analogous to discrete 
wavelet transformation, in one- and two-dimensions. Fuzzy morphological operators, 
similar to conventional morphological operators (Sternberg, 1983, Haralick et al., 1987), are 
non-linear well suited for efficient implementation using parallel computing. Moreover, 
they have the ability to extract geometrical information in signals by appropriate 
transformations. Furthermore, our method can be easily extended to two-dimension.  
Rcently, Mallat et al. (Heijmans & Goutsias, 2000, Mallat, 1989) have developed a 
hierarchical structure to decompose and reconstruct a signal based on one-dimensional 
wavelet orthogonal bases. Haralick et al. (Haralick et al., 1989) and Heijmans (Heijmans & 
Toet, 1991) have developed a morphological sampling theory that gives a theoretical basis to 
reconstruct sampled signals. Its application is constrained by sampling conditions. Toet 
(Heijmans & Toet, 1991) has proposed morphological approach using many scales but 
identical shape as structuring function. This approach has   some computational benefits 
due to using the morphological filter instead of the linear filter. Although this method takes 
care of the geometrical information of the processing signal it uses only a single identical 
shape of structure in each scale. This decomposition structure is actually same as Burt and 
Adelsons' (Burt & Adelson, 1983) work which has the problem of 4/3 redundant for a 
sample representation (Kronander).  Cha (Cha & Chaparro, 1999) has proposed a 
morphological wavelet transform which uses conventional morphology and is suitable for 
positive signals. Our objective is to develop a representation taking the advantage of the 
methods reviewed above while overcome some problems they have. O
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In new paper, we propose a fuzzy morphological approach to represent one- and two-
dimensional signals, that extends the geometrical decomposition (Pitas & Venetsanopoulos, 
1990, Pitas, 1991, Pitas & Venetsanopoulos, 1991) of signals using multiple structuring 
functions (Song & Delp, 1990) into the fuzzy morphological frame. We will develop a fuzzy 
morphological interpolator (FMI) which along with a hierarchical pyramid-like structure 
yields a multiresolution signal representation called fuzzy morphological wavelet (FMW). 
Our algorithm is illustrated by means of experiment to one- and two-dimensional signals for 
signal and image analysis and shape recognition. 
In section 2, we briefly review fuzzy mathematical morphology. In section 3, we develop the 
one-dimensional FMW representation. A one-dimensional FMI algorithm is formulated first. 
We consider then fast pyramid implementation for the first and second order interpolators. 
In section 4, we extend our algorithm to two-dimensions. We discuss a two dimensional 
FMI. We then develop a two-dimensional FMW representation based on one-dimensional 
FMI and the two-dimensional FMI. A fast two-dimensional pyramid implementation is also 
derived. In section 5, we apply our representation to data compression and shape 
recognition, demonstrating the advantage of our representation over the commonly used 
Daubechies' wavelet and Fourier descriptor methods. Finally, concluding remarks are given 
in section 6. 

2. Fuzzy mathematical morphology 

Recently, Sinha and Dougherty (Sinha & Dougherty, 1992) proposed to consider fuzzy set 
theory (Zadeh, 1965) instead of the classical set theory to develop mathematical 
morphology. They have in fact, obtained a new approach that considers simultaneously 
binary and multilevel morphology. The concept of “umbra” is not longer needed to develop 
the multilevel case. Morphological operations are then developed on the “fuzzy” fitting so 
that for crisp sets the fitting still remains characterized as either 0 or 1, but fuzzy or no-crisp 
sets it is possible to have a fitting characterized by a value between 0 and 1. The closer to 
unity, the better the fitting of the structuring element. As in the classical morphology, fuzzy 
morphology (Sinha & Dougherty, 1992) also consists in transforming a fuzzy set into 
another.  Such a transformation is performed by means of a fuzzy structuring set containing 
the desired geometric structure.    

If we let X  be the universe of discourse and x  be its generic element, the difference 

between crisp and fuzzy sets is the characteristic function of a crisp set C  is defined as 

}{ 1,0μC:X →  while the membership function [ ]1,0μF:X →    of a fuzzy set F is defined so 

that μF(x)  denotes the degree to which x  belongs to the set F . Among the different 

operations on fuzzy sets (Dubois & Prade, 1980), the following are important that operations 
will be used later: 
a. Complement operation: 

μF(x)1(x)μF c −=  

b. Translation of a fuzzy set F  by a vector  Xv ∈ :  

v)μF(xμT(F;v)(x) −=  

c. Reflection of a set F : 
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x)μF(F(x)μ −=−  

d. Bold union of two sets F and G : 

 [ ]μG(x)F(x),1minμFΔG(x) += μ  (1) 

e. Bold intersection GF∇ : 

 [ ]1)x(G)x(F,0max)x(GF −+=∇ μμμ  (2) 

The degree of fitting of a set A   into a set B  is measured by an inclusion grade operator 

 
[ ]

⎭
⎬
⎫

⎩
⎨
⎧ −+=

=

∈

∈

)x(A)x(Binf,0min1

)x(BAinf)B,A(I

Xx

c

Xx

μμ

Δμ

             

 (3) 

where Δ  is the bold union operator. According to the above index the degree of subsethood 

of two crisp sets B,A  is either 0 or1, while for fuzzy sets C  and  D  [ ]1,0)D,C(I ∈ . 

Moreover, if DC ⊆  then 1)D,C(I =  and in general 1)D,C(I0 ≤≤ . Using such an index 

(Sinha & Dougherty, 1992) has shown the erosion operation can be defined, and from it the 

dilation, opening and closing operators are obtained. In fact, if )n(f  is a multilevel and  

)n(k  is a structuring element with supports F and K and membership function )n(fμ  and 

)n(kμ   then we have  

Erosion:  [ ]{ })in(f)i(k1,1minmin

)f),n;k(T(I)n(kf

Ki
++−=

=

∈
μμ

Θμ
               

 (4) 

Dilation: [ ]{ }1)in(f)i(k,0maxmax

)n()kf()n(kf

Ki

cc

−−+=
−=⊕

∈
μμ

Θμμ
                  

  (5) 

Opening:                                        )n(k)kf()n(kf ⊕= Θμμ c  
 

Closing:                                         )n(k)kf()n(kf Θμμ ⊕=•  

3. Fuzzy Morphological Wavelet (FMW) representation 

This representation is analogous to the multiresolution decomposition (Heijmans & 
Goutsias, 2000, Mallat, 1989) and the morphological wavelet  transform (Cha & Chaparro, 
1999). We first introduce a fuzzy morphological interpolation (FMI) and then develop the 
FMW representation 

3.1 Fuzzy morphological   interpolation 
In (Haralick et al., 1989, Heijmans & Toet, 1991), it is  shown that under special conditions a 
morphological sampling theorem permits the reconstruction of sampled signals. We show in 
this section, that under general conditions one can develop an interpolation algorithm to 
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reconstruct sampled membership functions by adapting the fuzzy structuring functions. 
Furthermore, fast computation algorithms can be obtained.  
Let { }1Mn0|nF −≤≤=   be the domain of the given signal )n(f  and its membership 

function )n(fμ , and let { }1Nn0|nK −≤≤=  be the domain of the fuzzy structuring 

function  )n(kiμ  and the window function )n(W .  Assuming NM >>  and FK ⊂  we then 

let { }Q/)1N(n0,nQm|mS −≤≤==  be the sampling domain where Q  is the sampling rate. 

Choosing the sampling rate Q  and the window length N  appropriately, NQ < , we then  

define the positive integer Q/)1N( −=θ  as the  order of the interpolator.  

Assuming there is no a-priori information about the geometrical structure of the 
membership function, a set of fuzzy structuring functions based on ordered normalized 
orthogonal polynomials (e.g., the NDLO (Neuman & Schonbach, 1974)) can be used for the 
interpolation. 
For a windowed   membership function Kn),n(z ∈  μ , the sampled membership function in 

a window is defined as 

 
⎩
⎨
⎧

∩∈
∩∈

=
SKnundefined

SKn)n(z
)n(|z s

μ
μ  (6) 

Thus, )n(|z sμ   is equal to )n(zμ  every Q  sample but is undefined at other samples in the 

window. The sampled membership function with 0 for SKn ∩∈ , denoted as 

Kn),n(|z 0
s ∈ μ  is defined as  

 
⎩
⎨
⎧

∩∈
∩∈

=
SKn0

SKn)n(z
)n(|z s

μ
μ  (7) 

The function  )n(|z 0
sμ   is equal to )n(zμ  every Q  sample but is 0 at other samples in the 

window. 
Just as in (Haralick et al., 1989) we can obtain a minimum approximation (fitting from 

below), denoted as )n(fmin
νμ , and a maximum approximation (fitting from above), denoted 

as )n(fmax
νμ , in a window [ ]1N,0 −  by considering the approximation of the signal 

membership function Kn),n(z0 ∈ 
νμ . 

3.2 General interpolation algorithm 

The following algorithm provides a way to interpolate the given samples of a signal 
membership function in a window. It basically obtains an adaptive approximation of the 
windowed membership function in a recursive way. This geometric decomposition permit 
us, just as in the fuzzy morphological polynomial representation(Huang & Chaparro, 1995), 
to obtain the adaptation coefficients as well as minimum and maximum reconstructions of 
the membership function. Our fuzzy morphological interpolation algorithm in a window  ν  

is as follows:  
1. Frame definition: 

)Nn(W)n(|f)n(|x ss0 νμμν −×=  
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2. Membership function selection (min and/or max approximation) 

. and/or    )n(|x1)n(|x)n(|z)n(|x)n(|z s0s
c
0s0s0s0

ννννν μμμμμ −===  

3. Adaptation: 

 

)n(ka)n(f
~

)n(|ka)n(|ka|z

iii

siisiisi

μμ

μμ

ν

ν

=

=   c
 (8) 

4. Residual calculation: 

   )n(|f
~

)n(|z)n(|z sisis1i
ννν μμμ −=+  (9) 

5. Termination criterion: For frame ν   if θ=i  stop and consider next frame; otherwise 

increment i and go to step 3. If all frames are done then stop. Consider both the 

minimum (i.e., when )n(|x)n(|z s0s0
νν μμ = ) and the maximum (i.e., when 

)n(|x1)n(|z s0s0
νν μμ −= ) interpolations. 

In the above, c  stands for fuzzy morphological opening, and si |yμ  is a sampled 

membership function. The minimum and maximum reconstruction interpolated 
membership functions in a frame, are found to be equal  

 ∑ ∑==
= =

θ θνν μμμ
0i 0i

iiimin )n(ka)n(f
~

)n(f   (10) 

 ∑ ∑==
= =

θ θνν μμμ
0i 0i

iii
c

max )n(ka)n(f
~

)n(f  (11) 

 )n(f1)n(f c
maxmax

νν μμ −=  (12) 

Whether to choose a minimum or a maximum reconstruction in the thν  frame is determined 

by comparing the corresponding error. The error of the minimum interpolations at the given 
sampled pixel is defined as  

 )n(|f)n(|x)n(e 0
smin

0
s0min

ννν μμμ −=  (13) 

The error of the maximum interpolations at the given sampled pixel is defined as  

 )n(|f)n(|x)n(e 0
smax

0
s0max

ννν μμμ −=  (14) 

where )n(x0
νμ  is the given membership function, )n(fmin

νμ  and )n(fmax
νμ  are the 

minimum and maximum interpolation  membership functions, respectively. The 

reconstruction error for the minimum ( tmieνμ ) and maximum ( tmaeνμ ) interpolation in a 

window is defined as 
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 ∑ −=
−

=

1N

0n
min0tmi )n(f)n(xe ννν μμμ  (15) 

 ∑ −=
−

=

1N

0n
max0tma )n(f)n(xe ννν μμμ  (16) 

where the )n(x0
νμ  is the given membership function, )n(fmin

νμ  and )n(fmax
νμ  are the 

minimum and maximum interpolation  membership functions, respectively. 

3.3 Properties  
The following propositions will give insight on how the FMI works and how to calculate the 

adaptive coefficients  { }ia . Here, we work on a frame signal only, and thus the superscript 

ν  can be omitted.  

Proposition 1.  Given )n(k),n(z ii
νν μμ   , [ ]1,0a,SKn i ∈∩∈    then  

 [ ]    , SKn1)n(ka,0max)n(ka|z ciiiii ∩∈−+= μμμν c  (17) 

where [ ]{ }    , SK)(ka)(zmin,0min1 iiic ∩∈−+= ```` μμμ  

Proposition 2. If )n(k),n(z ii
νν μμ   ,    ,SKn ∩∈  then there exists an optimum [ ]1,0ai ∈   

such that  for  , ,SKn)n(ka)n(ka|z iiiii ∩∈= μμν c  if and only if the following optimum 

condition is satisfied 

 [ ]   0)(ka)(zmin ciii
SK

=−
∩∈

μμμ ``
`

 (18) 

Proposition 3. If optimum condition is met then: 

i. 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

=
≠

∩∈ )(k

)(z
mina

i

i

0)(k
SK

i

i

`
`

`
` μ

μ

μ

  

ii. [ ])(zmina 0
SK

0 `
`

μ
∩∈

=  

iii. 1)(zmina0 i
SK

i ≤≤≤
∩∈

`
`

μ  

iv. SK,1)(z)(z0 i1i ∩∈≤≤≤ + ```    μμ  

According to the above properties, ia  can be computed uniquely. When using orthogonal 

polynomials to generate the structuring functions, we need to consider the shifted and 

normalized orthogonal polynomials )n(giμ   and their complements )n(g c
iμ . To determine 

either )n(giμ or )n(g c
iμ  is to be chosen as )n(kiμ  in the representation, we calculate the 

corresponding reconstruction errors using equation (15) or (16) and choose the one that 
gives the smaller error. 

3.4 First and second orderinterpolation 

The first-order or linear interpolator ( 2Q,3N,1 ===     θ ) keeps the sampled points and 

provides interpolated values in between using either the minimum or maximum 
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interpolation. The second-order or quadratic interpolator ( 2Q,5N,2 ===     θ ) performs 

similarly with an additional condition on convexity. Convexity is tested by simply checking 

that the middle sample of the membership function is greater than or equal to the average of 

the other two points. For both interpolators it is possible to develop a closed form formula 

for calculating the interpolated points. The following propositions provide theoretical basis 

for the fast computation algorithms to be discussed later. Proofs are easily obtained by 

following the above interpolation algorithm.  

Proposition 4. For a first order interpolator the windowed sampled membership function is  

{ })2(f),*,0(f)n(|x s0 μμμ = . 

Using either minimum or maximum reconstruction the interpolation results is  

[ ]{ })2(f,)2(f)0(f5.0),0(f)n(f μμμμμ += . 

Proposition 5. For a second order interpolator the windowed sampled membership function is 

{ })4(f),*,2(f),*,0(f)n(|x s0 μμμμ = . 

Using the minimum interpolation under convexity conditions or the maximum 
interpolation under concavity condition the interpolation result is 

 { })4(f),3(f
~

),2(f),1(f
~

),0(f)n(f μμμμμμ =   (19) 

where )4(f125.0)2(f75.0)0(f375.0)1(f
~

μμμμ −+= and 

)4(f375.0)2(f75.0)0(f125.0)3(f
~

μμμμ ++−= . 

3.5 Higher order interpolation 
When the order is greater than two, we do not have the assurance that the sampled points 
are kept, which as we will see is very important for the FMW representation. As a solution,   
we use the following algorithm to select the minimum or maximum interpolation and to 
correct the sampled points whenever necessary. In the case when the errors 

0)n(e,0)n(e maxmin == νν μμ   (see equations (13) and (14) then the interpolated membership 

function of the thν  frame be   

 )n(f)n(f min
νν μμ =  (20) 

 )n(f)n(f max
νν μμ =  (21) 

In this case the given sample points are preserved. Otherwise we would have that either be 

)n(e)n(e maxmin
νν μμ ≤  in which case the interpolated membership function at the thν frame 

is given by  

 )n(|f)n(|x)n(f s
0min

0
s0

ννν μμμ +=  (22) 

or  
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 )n(|f)n(|x)n(f s
0max

0
s0

ννν μμμ +=  (23) 

when  )n(e)n(e maxmin
νν μμ >  and where )n(|x s

0
νμ  is defined as  

⎩
⎨
⎧

∩∈
∩∈

=−=
SKn)n(x

SKn0
)n(|x)n(x)n(|x 0

s
s
0 ν

ννν

μ
μμμ  

where the set S   is a complement of set S . This will guarantee that the given samples 
remain unchanged and the other values are interpolated. Knowing which of these situations 
occurred will allow us to proceed accordingly in the synthesis. In the case third or higher 
order interpolation both minimum and maximum interpolation need to be done 

simultaneously and the comparing the errors )n(emin
νμ  and  )n(emax

νμ  and decide which 

of (20) to (23) to use. This algorithm guarantees perfect reconstruction. 

4. Fuzzy morphological wavelet implementation 

The wavelet representation (Heijmans & Goutsias, 2000, Mallat, 1989) has received a great deal 
of attention in image processing. Its implementation is done with a bank of filters. In this 
section, we show a realization of the basic idea behind the wavelet representation using the FMI 
algorithm presented before. Our implementation involves no phase in the output and allows 
perfect reconstruction. We first present the FMW representation using the first and second 
order interpolation and then present the representation using higher order interpolators.  

Let )n(f)n(f0 =  be the input signal and )n(f i  be the thi  level signal. Let )n(di  be the thi  

error signal corresponding to the difference between the ith level signal and its fuzzy 
morphological interpolated signal. Let L be the linear fuzzifier and D be the linear 
defuzzifier described before. Let H be the interpolator described in the last section. Let 
↓,↑correspond to decimation and expansion, respectively. 

4.1 Fast implementation case  
In Figs. 1, 2, we display the analysis and synthesis procedures based on the first and second 
order interpolation. In the analysis, the signal )n(fi   is sampled and then linearly fuzzified 

to get its membership function )n(|f siμ , fuzzy morphological  interpolation give us  

)n(f iμ  which is then linearly defuzzified to get its interpolated signal )n(f i . Decimation is 

then used  to get the next level signal )n(f 1i+  which has the sampled points of the original 

signal, while )n(di  ↓ has the error of the interpolated values. If we denote the  linear 

fuzzifier (L), the membership interpolator (H) and linear defuzzifier (D) as fΠ  (i.e., 

( ) ( )[ ]{ } )n(f)n(|f)n(|f isisif == LHDΠ ) then  ( ).)n(|f)n(f sif1i Π=+ ↓ where .,2,1,0i A=  The 

)n(di  is the error signal of the interpolation  i.e., ( ))n(|f)n(f)n(d sifii Π−=    

In the synthesis, we proceed in an inverse fashion. The signal )n(f 1i+  is expanded and 

linearly fuzzified to get )n(f 1i ↑+μ , then interpolated to get )n(f 1i ↑+μ ,  and finally linear 

defuzzified to get the interpolated signal ( ) )n(f)n(f i1if =↑+  Π . The synthesis signal is 

( ) )n(f)n(d)n(f)n(f̂ ii1ifi =+= +  ↑Π indicating perfect reconstruction. 
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Fig.1. First and second order fuzzy morphological wavelet analysis 
 

 

Fig. 2. First and second order fuzzy morphological wavelet synthesis 

 

 
                                         (a)                                                                          (b) 

Fig. 3. FMW pyramid implementation for first-order interpolator (a) analysis (b) synthesis. 

 

 
                                     (a)                                                                             (b) 

Fig. 4. FMW pyramid implementation for second-order interpolator (a) analysis (b) 
synthesis. 

www.intechopen.com



 Pattern Recognition Techniques, Technology and Applications 

 

152 

A pyramid implementation for FMW representation using first order and second order 
interpolators in a window is shown in Figs. 3, 4, respectively. The FMW representation can 
be implemented very fast. 
We further derive close formulas to get the smooth and detail signal of any level from the 
original signal when using first- and second-order interpolator. The usefulness of these 
properties will be clear when the representation is applied to the shape recognition. 
Proposition 6. The pyramidal components of the FMW representation using a first-order 

interpolator has the following properties for .,1,0i;,1,0n AA ==  

i. );n2(f)n(f i
0i =  

ii. ;
2

))1n(2(f)n2(f
))1n2(2(f)n(d

1i
0

1i
0i

0i

++
−+=

++

 

Proposition 7.  The pyramidal components of the FMW representation using a second-order 

interpolator has the following properties for .,1,0i;,1,0n AA ==  

i. );n2(f)n(f i
0i =  

ii. ));2n2(2(f125.0))1n2(2(f75.0)n22(f375.0))1n4(2(f)n2(d 1i
0

1i
0

1i
0

i
0i +++−−+= +++   

));2n2(2(f375.0))1n2(2(f75.0)n22(f125.0))3n4(2(f)1n2(d 1i
0

1i
0

1i
0

i
0i +−+−++=+ +++  

These propositions show that our  smooth and detail signal of each level for the FMW 
representation can be obtained from the original signals and the number of pixels in the 
high  level is smaller than that of the lower level. Notice that the first point of the smooth 
signal in every level is same as the first point in the original signal i.e. .i),0(f)0(f 0i ∀=  
 

 

Fig. 5. Fuzzy morphological wavelet analysis (general) 

 

Fig. 6. Fuzzy morphological wavelet synthesis (general) 
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4.2 A general implementation case  

When the order θ   is three or more, the FMW analysis and synthesis blocks are shown in 

Fig. 5, 6, respectively.  Perfect reconstruction is still possible as indicated before. 

 The interpolations are done using both minimum and maximum reconstruction, denoted 

as maxH and minH , respectively. The block denoted as S/C is a selection and correction box, 

which is designed for choosing the maximum or minimum reconstruction as our 

interpolation output and correcting the error at sampled points. (see equation (20)-(23)). 

5. Two-dimensional fuzzy morphological wavelet representation 

The practical advantage of FMW becomes more evident in two-dimensions. The wavelet 

representation theory is much more complex in two-dimension than in one due to the 

difficulty of defining bivariate wavelets. Besides, the multirate methods in two-dimensions 

are more complex than in one-dimension to choose the sampling, decimation/expansion 

procedures. Although one-dimensional procedures can be applied when using separable 

two-dimensional filters, more appropriate non-separable filters make the procedure much 

more complex. The two-dimensional fuzzy morphological implementation is much simpler 

as it will be shown in the section. 

5.1 Two-dimensional FMI  
Unlike the one-dimensional case, there is no unique way to sample in two-dimension 

(Vaidyanathan, 1993). For simplicity, we consider two commonly used procedures: 

row/column sampling and quincunx sampling. Let { }1Nn0,1Mm0|)n,m(F −≤≤−≤≤=   

be domain of the given signal )n,m(f  and [ ] [ ]{ }T
21

T
2121 n,nVm,m|)m,m(S ==   be the 

sampling domain, where V   is a sampling matrix in lattice transform (Vaidyanathan, 1993) 

and [ ]T⋅  is transpose operator.  For a given image F)n,m(),n,m(f ∈   the sampling signal 

)n,m(|f s  is defined as   

 
⎩
⎨
⎧

∩∈
∩∈

=
SF)n,m(undefined

SF)n,m()n,m(f
)n,m(|f s  (24) 

where the set S  is a complement of set  S . In lattice transform, the row sampling matrix 

(Vaidyanathan, 1993) is defined as  

 ⎥
⎦

⎤
⎢
⎣

⎡
=

20

01
Vr  (25) 

So that for a given image )n,m(f ,  the row sampling )n,m(|f s  yields  
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where * corresponds to  undefined  samples. Similarly, for the column sampling matrix. The 
quincunx sampling matrix (Vaidyanathan, 1993) is defined as   

 ⎥
⎦

⎤
⎢
⎣

⎡ −
=

11

11
Vq  (26) 

The quincunx sampling  )n,m(|f s  for the given image )n,m(f   is  
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where * stands for undefined  samples. 
 

 

Fig. 7. FMW analysis block diagram for two-dimensional signals 

 

Fig. 8. FMW synthesis block diagram for two-dimensional signals 
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The interpolation in the row/column sampling can be done using the one-dimensional FMI 
discussed before. In the quincunx sampling case we extend the one-dimensional FMI 
algorithm using bivariate structuring functions. The structuring functions are generated as 
the product of one-dimensional ones. The structuring index ordering method in (Huang  
1996) may be used to order these functions in two-dimensional space. 

5.2 Two-dimensional FMW implementation 
Figs. 7, 8 show the analysis and synthesis steps of the FMW representation using the 

row/column sampling. If the one-dimensional interpolator xΠ   is first order we obtain the 

following relationship among the components for the analysis  
 

 

Fig. 9. TDFMW analysis block diagram with quincunx sampling 

 

Fig. 10. TDFMW synthesis block diagram with quincunx sampling 
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Notice that if we use column/row instead of row/column sampling the signals )n,m(ff 1i+  

and )n,m(dd 1i+  remain the same while  )n,m(fd 1i+  and )n,m(df 1i+   are interchanged. 

When the quincunx sampling is used, theΠ is a TDFMI. The image is processed block by 
block. The structures of the analysis and synthesis are shown in Fig. 9, 10, respectively. 
 

 

Table 1. Compression ratio for two-dimensional signal 

 

(a) (b) 

 

(c) (d) 

 

Fig. 11. Two-dimensional FMW and WT representation for artificial image: (a) original 
image, (b) TDFMW using quincunx sampling, (c) TDFMW using row/column sampling, (d) 
WT using row/column sampling. 
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6. Applications 

To illustrate our representation, we show how it can be applied to data compression and 

shape recognition. We compare the data compression results with those using Daubechies' 

wavelet transform (Daubechies, 1988) and the shape recognition results with Fourier 

descriptor method (Gonzales & Woods, 2002, Persoon & Fu, 1977). 

6.1 Data compression 
The application of FMW representation for data compression is achieved by encoding the 

lowest resolution smoothed image and the detailed image. The performance of our 

representation is evaluated by the entropy-based compression ratio (ECR) defined as  

 
TT

1N-
0i ii

M

M

`
`∑= =ECR  (27) 

 

(a) (b) 

 

(c) (d) 

Fig. 12 Two-dimensional FMW and WT representation for pepper image 
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where N  is the number of subblock signals, iM  is the number of samples of the subblock i , 

i`  is the bits/sample required to code subblock i , T`  is the bits/sample required for the 

original signal, TM  is the total number of samples of the original signal. The average 

bits/sample i`  required to code a subblock signal is defined by entropy as:  

 ∑−=
−

=

1G

0j
j2ji plogp`  (28) 

where pj is a probability of a sample with amplitude j, G is the greatest amplitude of the 
signal. 
The TDFMW representation is used to process the artificial (piles) and real (pepper) 

images. The TDFMW pyramid representations for piles image in Fig. 11 (a) are shown in 

Fig. 11 (b) and (c) using quincunx and row/column sampling with frame size of 33× , 

respectively. For comparison, the result of WT using Daubechies' wavelet of length 8 is 

shown in Fig. 11 (d) using row/column sampling. The TDFMW pyramid representation 

for pepper image in Fig. 12 (a) are shown in  Fig. 12 (b) and (c) using qucunx and 

row/column sampling with window size of 33× , respectively. For comparison, the WT 

using Daubechies' wavelet of length 8 and row/column sampling method is shown in Fig. 

12 (d). The data compression results for FMW and WT are shown in Table 1 for three 

stages. 

(a) (b) 

 

Fig. 13. Signature extraction:  (a) shape sampling (b) signature 

6.2 Aircraft shape recognition 
In this section, we apply our FMW representation to aircraft shape recognition. The  shapes 

are  nonoverlapping,  simply   connected and closed planar contours, each represented by a 

set of boundary coordinates { }.1N,,2,1,0n)),n(y),n(x( −= A  Due to closeness of the contour, 

the resulting observations are periodic i.e., )Nn(x)n(x +=  and )Nn(y)n(y += . We 

compute the centroid, sample the boundary at equidistant points to calculate corresponding 

radii { }1M,,2,1,0n),n(r −= A where M is usually less than N (Fig. 13(a)). These radii  

[ ]{ }1M,0n),n(r −∈  form a one-dimensional signature (Fig. 13(b)) of the two-dimensional 

contour, which is invariant to translation, but it does depend on rotation and scaling [26]. 
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In order to use the signature signal for shape recognition we need to overcome this 

dependence. When applying the FMW representations of the template and the test shapes, 

the linear fuzzification obviates the scaling dependence. The rotation of the object 

generates a signature that is shifted in a periodic way with respect to the template 

signature. To find a reference point we will then apply proposition 6 or 7 to do so. 

Basically these propositions establish that { }i),0(f)0(f i0 ∀= , that is that at every stage in 

the FMW the first point is the same for every stage in the representation. By working from 

the lowest to highest resolution of the FMW representation, we then try to match the 

template signature with the test signature. The matchness is determined by the nearest-

neighbor rule (Schalkoff, 1992) using the Euclidean distance between template and test 

signatures. This can be done by initiating the lowest resolution template signature with a 

known maximum and then sequentially shifting the lowest resolution test signature until 

either a match or a mismatch situation is encountered. If a match is obtained then we 

verify that it is a good match and stop, or consider the next higher resolution and repeat 

this process. The verification uses the detail signals of the FMW of the template and test 

signature.  

60 test shapes used in the experiment are obtained by scaling, rotating the template shapes 

in Fig. 14, 10 scales from 1.0 with  0.15 increase in each step and 10 rotations from 0 with 15 

degree increase in each step and then sample them to get the test signatures. As an example 

of the resulting test shapes is shown in Fig. 15. The shapes are all discriminated at the 6th 

level which contains 4 pixels. These results verify that using our FMW representation can 

effectively solve the scaling and rotation variant problem. 
 

 

Fig. 14. Template aircraft shapes 

For comparison purpose, the Fourier descriptor is used to do the same experiment. The 

nearest-neighbor rule is used to classify the shapes by Euclidean distance between the 

Fourier coefficients of the template and test shape. The results are that only the shapes 

without scaling and rotation is correctly classified surely when coefficients is greater than 4. 

The correctly classified shapes when using 16 coefficients are only 17 out of 60 (28 percent). 

The discrimination performance can be improved to recognize around 90 percent by the 

Fourier descriptor using optimal matching algorithm, however, the computation complexity 

will increase up to 94 times as described in (Persoon & Fu, 1977). These results show that 

our recognition method has better performance over the Fourier descriptor in recognizing 

the aircraft shapes. 
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Fig. 15. Test aircraft shapes example     

7. Conclusion 

A novel image representation using fuzzy morphological approach has been presented in 
this paper. Using the fuzzy morphological operators and the minimum and maximum 
reconstruction we develop the fuzzy morphological interpolation (FMI) algorithm. Based 
on FMI and the hierarchical pyramid structure, we formulate  the analysis and synthesis 
procedure, similar to those given by wavelet transform. Through using the fuzzy 
morphological approach, a signal can be efficiently represented with several additional 
advantages, such as lower computation complexity and easily extend to two dimensions. 
Furthermore, our representation can be implemented very fast by parallel. We 
successfully use the fuzzy mathematical morphology approach to extend the work of the 
Pitas and Venetsanopoulos  and of Song and Delp on morphological signal 
representation. We have applied our representation to image analysis and shape 
recognition, the experimental results have shown the advantage of using our FMW 
representation as compare with the WT (Daubechies, 1988)  and Fourier descriptor 
(Persoon & Fu, 1977) methods. 
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