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Stereo Vision in Smart Camera Networks 

Stephan Hengstler 
Department of Electrical Engineering, Stanford University 

United States of America 

1. Introduction 

Stereo vision inherently comes with high computational complexity, which previously 
limited its deployment to high-performance, centralized imaging systems. But recent 
advances in embedded systems and algorithm design have paved the way for its adoption 
for and migration into smart camera networks, which notoriously suffer from limited 
processing and energy resources. Such networks consist of a collection of relatively low-cost 
smart camera motes, which—in their simplest form—integrate a microcontroller, an image 
sensor, and a radio into a single, embedded unit capable of sensing, computation, and 
wireless communication. When deployed in an in- or outdoor environment, they form ad-
hoc or mesh networks that can perform a wide range of applications. Their application areas 
range from ambient intelligence, building automation, elderly care, autonomous 
surveillance, and traffic control to smart homes. The underlying network tasks include 
object localization, target tracking, occupancy sensing, object detection and classification. 
Stereo vision can bring increased performance and robustness to several of these tasks 
possibly even at overall reductions in energy consumption and prolonged network lifetime. 
This chapter will provide a brief description of the building blocks, characteristics, 
limitations and applications of smart camera networks. We will then present a discussion of 
their requirements and constraints with respect to stereo vision paying special attention to 
differences to conventional stereo vision systems. The main issue arises from the high data 
rate, which image sensors particularly in a stereoscopic configuration generate. 
Conventional centralized computing systems can easily handle such rates. But for smart 
camera networks, their resource constraints pose a serious challenge to effective acquisition 
and processing of this high-rate data. 
Two possible approaches to address this problem have emerged in recent publications: one 
suggests the design of a custom image processor whereas the other solution proposes 
utilization of off-the-shelf, general-purpose microprocessors in conjunction with resolution-
scaled image sensors. Our discussion focuses on these two state-of-the-art stereo 
architectures. NXP's WiCa mote is the primary example deploying a dedicated image 
processor, while Stanford's MeshEye mote pioneered the idea of resolution-scaled stereo 
vision. More specifically, the WiCa mote deploys an application-specific image processor 
based on a vector single-instruction, multiple-data architecture, which is able to process the 
data streams of two VGA camera modules. In contrast, Stanford's MeshEye mote deploys a 
low-resolution stereo vision system requiring only a general-purpose 32-bit ARM7 
processor. Additionally, it hosts a VGA camera module for more detailed image acquisition. 
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The low-resolution stereo imagers can guide the focus of attention of the higher-resolution 
camera. Hence, we refer to this novel combination of hybrid-resolution image sensors as a 
hybrid vision system, which is capable of approaching the performance of a VGA stereo 
system in the context of smart camera networks.  
The primary focus of this chapter is to describe Stanford's MeshEye mote in detail. The 
description will cover its processing algorithms, hardware architecture, and power model. 
Special attention will be given to the image processing algorithms underlying the hybrid 
vision system. Their advantages, limitations, and performance will be discussed and 
compared against those of the WiCa architecture. Finally, the chapter will outline how smart 
camera motes equipped with stereo or hybrid vision can collaborate to accomplish target 
tracking tasks in a distributed fashion. 
The remainder of this chapter is organized as follows. Section 2. provides background 
information and outlines applications for stereo vision in smart camera networks. Section 3. 
identifies requirements for embedded stereo architectures and summarizes the vision 
architectures of the WiCa and MeshEye motes. In Section 4., we discuss MeshEye's 
underlying hybrid vision algorithms that perform object detection, localization and 
acquisition as building blocks for higher-level tracking algorithms. In Section 5., we describe 
the implementation of the MeshEye mote in more detail, i.e., its hardware architecture and a 
power model that facilitates lifetime predictions for battery-powered operation. Section 6. 
presents an experimental deployment of four MeshEye motes and reports on performance 
results for indoor target tracking. Section 7. concludes with a summary of the key challenges 
and solutions presented for stereo vision in smart camera networks. It also identifies areas in 
need of further work and projects promising directions for future research. 

2. Background and applications 

Smart camera networks have received increased focus in the research community over the 
past few years. The notion of spatially distributed smart camera motes, which combine 
image sensing with embedded computation and are interconnected through radio links, 
opens up a new realm of intelligent vision-enabled applications (Liu & Das, 2006). Real-time 
image processing and distributed reasoning made possible by smart cameras can not only 
enhance existing applications but also motivate new ones. Potential application areas 
(Hengstler & Aghajan, 2006a; Rahimi et al., 2005; Hampapur et al., 2005; Maleki-Tabar et al., 
2006; Qureshi & Terzopoulos, 2007) range from assisted living, smart environments, traffic 
monitoring, and habitat observation to security and surveillance in public spaces or 
corporate buildings. Critical issues deciding upon the success of smart camera deployments 
for such applications include reliable and robust operation with as little maintenance as 
possible. 
In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and 
acceleration sensors, vision sensors generate much higher bandwidth data due to the two-
dimensional nature of their pixel array. The sheer amount of raw data generated precludes 
it from human analysis in most applications. Hence distributed information fusion 
algorithms (Nakamura et al., 2007) supported by in-node image processing are required to 
successfully operate scalable networks of smart cameras. 
The majority of smart camera applications target the presence (or absence) of objects in the 
network's observation area, their spatio-temporal movement, or—in case of humans or 
animals—their gestures. Hence, the underlying tasks performed by the vision system reduce 

www.intechopen.com



Stereo Vision in Smart Camera Networks 

 

75 

to object detection, localization, tracking, and classification (Zhao & Guibas, 2004). The 
image processing common to all these tasks consists of background subtraction and 
foreground segmentation followed by additional foreground processing steps. While 
commercial deployments and most research have focused on networks of monocular 
camera motes, there has been increasing interest in exploiting stereoscopic camera motes. A 
stereo vision mote can accomplish the same underlying tasks at increased accuracy or 
reduced camera resolution in comparison to a monocular vision mote. With respect to the 
entire network, this can result in fewer required motes or prolonged network lifetime at the 
same level of accuracy. The key challenge however lies in performing these vision tasks 
efficiently, i.e., with a minimum of required complexity, processing resources and energy 
consumption, such that it fits into low-cost, battery-operated embedded systems. 

3. Embedded stereo architectures 

Requirements and constraints for stereo vision in smart camera networks differ considerably 
from conventional stereo vision systems. This section discusses how these differences lead 
to different designs of embedded stereo architectures for smart camera motes. 
Conventional, high-performance stereo vision systems (Bramberger et al., 2006) commonly 
consist of a pair of high-resolution cameras and at least one computationally powerful 
processor to extract stereoscopic information. Processing power and energy resources can 
readily be chosen to meet application requirements. They combine general-purpose 
processors with digital signal processors (DSPs) or field-programmable gate arrays (FPGAs) 
for demanding image processing tasks. Moreover, scalability and form factor are typically 
not of concern in such standalone, centralized stereo vision systems. Their stereo vision 
tasks range from multi-target tracking, depth map generation, to visual hull reconstruction, 
which generally need to be performed in real-time, i.e., at frame rates of 15 or 30 frames per 
second (fps). The information generated oftentimes consists of raw or preprocessed stereo 
image representations intended for human analysis and interpretation. 
Smart camera networks, on the other hand, almost exclusively utilize stereo vision for object 
localization and tracking as discussed in Section 2.. The information reported to the human 
operator may consist of the number of objects present, their location, trajectory, and object 
class or may even be condensed into higher levels of representation. The smart camera 
network needs to generate this information autonomously using machine vision and 
information fusion techniques. It is these application requirements that drive the design of 
stereo vision systems in smart camera networks. To cover varying extent of deployment 
areas, the network needs to be easily deployable and scalable. This translates into smart 
camera motes that have a small form factor and are cheap in volume production. Moreover, 
outdoor deployments may require battery operation in contrast to indoor deployments, 
where wired power grids are commonly available. Delay and accuracy requirements are less 
stringent in target tracking applications for smart camera networks, in which distances 
between cameras and objects are relatively large and multiple cameras track the same 
objects. Hence, the required frame rates are more in the order of about 0.5 to 5 fps; 
localization accuracy (Rahimi et al., 2006) of the embedded vision system can be well below 
those of high-performance stereo vision systems. We deem these the two single most 
important differences between conventional stereo vision and stereo vision in smart camera 
networks. For instance, it is unnecessary and prohibitive to use multiple processors with 
high power consumption in the interest of frame rate and energy dissipation, respectively. 
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Going forward, we can identify the following list of design guidelines for embedded stereo 
architectures: 

• Usage of low-complexity algorithms: The single most important guideline is to use 
algorithms of low complexity. This is especially true for vision processing, which deals 
with large image arrays directly. The complexity of such algorithms drives hardware 
requirements as well as energy consumption. 

• Avoidance of high processing clock frequencies: Power consumption grows 
quadratically with clock frequency but processing duration only reduces linearly with 
frequency. Hence, it is advantageous to perform vision processing at clock frequencies 
slow enough to still meet frame rate requirements. 

• Utilization of intermediate memory: It is more energy costly to recompute intermediate 
results than to compute them once and store them in memory for later use. Hence, 
enough memory should be available to hold all intermediate results that are used more 
than once. 

• Reduction of component count: The number of components, especially processing 
elements, should be minimized. This improves both mote cost and energy 
consumption. Parallel computations can be transformed into sequential computations at 
the expense of frame rate but at the benefit of fewer processing elements. 

• Usage of commercial off-the-shelf components: Compared to custom-designed (semi-
conductor) components, commercial off-the-shelf (COTS) components benefit from 
mass production and pricing and hence the overall mote cost is minimized. 

• Selection of low-power components: Low-power components should be chosen 
wherever applicable. As these may be more expensive, an appropriate trade-off 
between mote cost and power consumption needs to be established. 

• Implementation of power management: To reduce power consumption further, the 
mote should make use of power saving modes, which only turn on the components 
required to carry out its current operation. For example, the cameras should only be 
active during image acquisition and be put into sleep or power-down otherwise. This 
also includes clock scaling according to the current processing load. 

Two stereo vision architectures for smart camera motes have been proposed recently, which 
strive to satisfy these design guidelines in different ways. The two vision architectures are 
embedded in NXP's WiCa and Stanford's MeshEye smart camera motes. 

3.1 Parallel processing architecture 
In 2006, NXP (formerly part of Philips Electronics) introduced WiCa (Kleihorst et al., 2006): a 
smart camera mote with a high-performance vision system. Its vision system consists of two 
VGA camera modules (640×480 pixel, 24-bit color), which feed video to IC3D, a remarkable 
dedicated parallel processor based on a vector single-instruction multiple-data (SIMD) 
architecture. IC3D alternately acquires and processes frames from the left and right VGA 
camera. It exchanges image processing results with an 8051-based Atmel AT89C51 host 
processor, which runs at 24 MHz, through a 128 Kbytes dual-port RAM. 
IC3D's parallel architecture running at 80 MHz (scalable) is capable of processing an entire 
image row in only a few clock cycles at frame rates up to 30 fps. Processing operations 
include, for example, two-dimensional filtering (with kernel sizes up to 64×64 pixel), edge 
detection, histogram generation, and template or stereo correlations. Higher level processing 
steps like object localization and tracking need to be carried out by the host processor. 

www.intechopen.com



Stereo Vision in Smart Camera Networks 

 

77 

The key advantage of WiCa's vision system (Kleihorst et al., 2007) lies in its ability to 
perform complex image processing in real time (in a conventional stereo vision sense) at 
moderate clock rates. Its reported low power consumption makes it attractive for smart 
camera networks although its performance exceeds their typical requirements. Its main 
disadvantage leading to increased mote cost is the use of a custom-designed parallel 
processor in addition to a general-purpose host processor. Furthermore, dual-port RAM 
devices have a rather large power consumption, typically in the order of 300 mW. 

3.2 Hybrid vision architecture 
In Stanford's hybrid vision architecture, introduced in 2006 (Hengstler & Aghajan, 2006b), 
two low-resolution imagers (30×30 pixel, 6-bit grayscale) in stereo configuration guide the 
focus of attention of a higher-resolution VGA camera module (640×480 pixel, 24-bit color). 
Thus, hybrid vision can utilize its low-resolution stereo vision to localize foreground objects, 
which makes it well suited for tracking tasks in smart camera networks. Most of all, hybrid 
vision enables foreground segmentation without having to process the background in high 
resolution. As we will discuss in the following, this leads to significantly simplified vision 
processing, which can be handled by a general-purpose, sequential microcontroller at 
moderate clock frequency. The main drawback of the hybrid vision architecture is that its 
low-resolution stereo system has reduced bearing and ranging resolution compared to the 
parallel processing architecture. 
The configuration of the hybrid vision system is illustrated in Fig. 1. All three pixel arrays 
are parallel facing the same direction. The camera module is centered between the two low-
resolution imagers, which—owing to their total pixel count—are referred to as kilopixel 
imagers. The three image sensors are focused to infinity and their field of view (FoV) angles 
should be approximately the same although ideally the kilopixel imagers should have a 
slightly larger FoV angle. Hence the three imagers have an overlapping FoV only offset by 
their baseline, that is, the distance separating them. 
 

 

Fig. 1. Hybrid vision system. 
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In the simplest operation of the hybrid vision system, one of the kilopixel imagers is used to 
continuously poll for moving objects entering its FoV. Once one or possibly more objects 
have been detected, position and size within a kilopixel image can be determined for each 
object. Stereo vision of the two kilopixel imagers yields bearing and distance to the object. 
This information allows us to calculate the region of interest (RoI) containing the object 
within the VGA camera's image plane. Subsequently, the microcontroller triggers the VGA 
camera module to capture a high-resolution grayscale or color RoI including only the 
detected object. After optional additional low-level processing, the object's RoI will then be 
handed over to intermediate-level processing functions. 

4. Hybrid vision algorithms 

The image processing algorithms behind the hybrid vision system, which were first 
described in (Hengstler et al., 2007), are designed to detect and localize objects entering its 
FoV. Since a generic 32-bit RISC architecture without dedicated DSP engines needs to 
execute these algorithms, they are intentionally kept at low computational complexity. 
The overall vision processing flow is shown in the flowchart of Fig. 2. Both low-resolution 
(LR) imagers continue updating their background image and estimate of temporal pixel 
noise when no objects are present. Upon detection of a moving object in the left kilopixel 
image, the vision system determines the bounding box and stores the object's RoI. This RoI 
serves as a template to locate the object's position within the FoV of the right kilopixel 
imager. If this stereo matching cannot establish a positive match to the template, the left LR 
imager will continue polling for moving objects. This case occurs for example when the 
object lies outside the overlapping FoV of the two kilopixel imagers. Knowing the object's 
position within both LR image arrays and its size, the vision system triggers the VGA 
camera module to acquire a high-resolution (HR) snapshot of the object. The left kilopixel 
imager can continue tracking the object until it leaves its FoV and initiate additional HR RoI 
acquisitions of the object as required by the application. Note that the following discussion 
is limited to one object inside the FoV, but it can be easily extended to multiple foreground 
objects. 
 

 

Fig. 2. Flowchart of the vision processing algorithm. 
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To model the low-resolution stereo system observing a moving object at location x, we apply 

the planar pinhole camera observation model shown in Fig. 3. The intrinsic camera 

parameters are pixel array half-width D, camera resolution R, focal length f, half-width FoV 

angle Ψ, and baseline B. These parameters relate the quantities of interest, object bearing θ 
and range r, to the measurements of the vision system, bearing projection dleft and disparity d 

= |dleft − dright| through 

 
(1) 

and 

 
(2) 

respectively. 
 

 

Fig. 3. Planar pinhole camera observation model. 

4.1 Object detection 
Prior to any further processing, the raw image arrays from both kilopixel imagers are 
normalized to each frame's average pixel value. This mitigates changes in brightness and 
exposure time. We found this normalization especially effective in coping with oscillations 
of the digital shutter control loop inside the kilopixel imagers. 
The kilopixel imager performs object detection through background subtraction (Radke et 
al., 2005) on a frame-by-frame basis. That is, it calculates the frame difference between the 

current frame at time t,  and the latest background  

as 

 (3) 
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All pixels, whose frame difference  exceed a preset multiple k of the temporal 

noise standard deviation σn, are set in a binary motion mask  as potential 

candidates of motion, 

 
(4) 

In MeshEye's vision system, σn is estimated on background frames and it typically ranges 

around 1.75; k is set to around 6. To eliminate objects smaller than 2×2 pixel, we low-pass 

filter the binary motion mask according to 

 
(5) 

where conv2 denotes two-dimensional convolution. 

In the final processing step of object detection, a blob search algorithm identifies all regions 

as moving objects, which consist of four-connected groups of unity pixels within the binary 

mask  that contain at least one unity pixel of the filtered mask  It is 

then straightforward to determine the bounding box of each object through extraction of the 

object's difference RoI  as a subset of the current frame difference . 

The object's bearing projection  follows as the mean of the object's intensity distribution, 

which is  projected onto the horizontal axis of the pixel array. 

4.2 Stereo matching 
The objective of the stereo matching algorithm lies in locating the object's RoI within the 

right kilopixel image array. Since the pixel arrays of both LR imagers are aligned in parallel, 

the object will appear as a shifted version in the right kilopixel array if it is located within 

their joint FoV. This satisfies the requirements for template matching based on cross-

correlation. Therefore, the vision system computes the cross-correlation of the object's array 

 along the epipolar lines (for an introduction to epipolar geometry, refer to 

(Foresti et al., 2005) for example) of the right kilopixel difference array , 

 (6) 

where xcor2 denotes two-dimensional unbiased cross-correlation without boundary padding 

such that u, v = 1, 2, . . . , 30. 

Lastly, the (u, v) coordinate with the largest cross-correlation value—or the average (u, v) 

coordinate in case of multiple largest cross-correlation values—is assumed as the object's 

position within the right LR image array. However, to qualify a positive match and remove 

objects outside the joint FoV, the maximum cross-correlation value has to be sufficiently 

close to the center autocorrelation value of the object's RoI, which may be expressed as 

 
(7) 

 denotes the unbiased autocorrelation of the object's difference array 
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 (8) 

If this condition is not met, no positive match can be established and the object is discarded. 

Otherwise, the object's bearing projection t

right
d  is computed as the horizontal value of the 

mean of the object's cross-correlation distribution  

4.3 Object acquisition 
The hybrid vision system can finally determine the object's position within the HR pixel 
array using the object's extent and positions  and  within the LR arrays. With this 

information, a high-resolution snapshot containing only the moving object can be efficiently 
acquired by using the camera's built-in windowing function. As mentioned before, the HR 
background is not analyzed and not even acquired with the hybrid vision system. The HR 
snapshot of the object is stored for further processing or exchange with neighboring smart 
cameras. Such processing can include object classification or even distributed, multi-camera 
view identification based on its shape, orientation, aspect ratio, or color histogram for 
instance. Two examples captured with Stanford's MeshEye smart camera mote are shown in 
Fig. 4. It contains an indoor (Fig. 4a) and an outdoor (Fig. 4b) snapshot of a moving person. 
Notice that the LR views have a non-ideal smaller FoV than the HR view. 
 

 
                                (a) Indoor Snapshot                          (b) Outdoor Snapshot 

Fig. 4. Hybrid vision system performing person localization: indoor (a) and outdoor (b) 
snapshots. Bounding boxes mark the person's locations in the LR and HR views. 

4.4 Computational efficiency 
To conclude this section, let us consider the computational savings that the hybrid vision 
system achieves over the WiCa smart camera mote. WiCa's dual high-resolution camera 
system combined with the IC3D SIMD dedicated image processor establishes a fair basis of 
comparison among published embedded stereo vision systems to carry out moving object 
localization and RoI extraction. 

www.intechopen.com



 Stereo Vision 

 

82 

For simplicity, this consideration of computational efficiency is limited to one moving object 
within the vision system's FoV. The MeshEye vision system carries out the algorithms 
described in the previous subsections. For the dual-camera SIMD system, our calculation 
assumes that it performs the same computations on its two HR cameras rather than two LR 
imagers, which result in a moving object's pixel array and estimated bearing and range. 
Whenever possible, the computations utilize IC3D's line-parallel processor architecture, 
which executes an instruction across an entire line of pixel data within one instruction cycle. 
Of course, an alternative approach would be to downsize incoming frames from VGA to 
kilopixel resolution prior to object detection and extraction. This however would 
underutilize the line-parallel processor and not take full advantage of its 640-pixel wide line 
buffers. 
The computational efficiency of MeshEye's vision system relative to the WiCA vision system 
is shown in Fig. 5. More specifically, it graphs the ratio of number of computations of the 
dual-camera SIMD system over the hybrid vision system as a function of object size in high 
resolution when both systems perform object detection, localization and RoI extraction. 
Hybrid vision achieves a fivefold reduction in the number of computations for small object 
sizes, but the gains in efficiency diminish down to 0.7 as object sizes increase. Smaller objects 
require fewer computations and hence hybrid-resolution processing outperforms the 
parallel processing system. Large objects cause a heavier processing load and hence the 
SIMD processor excels over hybrid vision. 
For objects sized around 132,800 high-resolution pixel2, which amounts to rather large 
objects of for example 364×364 pixel—or about 40% of the VGA frame, both vision systems 
have equal computational efficiency. Note that it is for these significant reductions in the 
number of computations for moderately sized objects that makes hybrid vision well suited 
for smart camera embedded vision without the need for a dedicated, high-performance DSP 
engine. 
 

 

Fig. 5. Computational efficiency of the hybrid vision system over the dual-camera SIMD 
system. 
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5. Hybrid vision implementation 

This section briefly describes the architecture of Stanford's MeshEyeTM mote as a hardware 
implementation of the hybrid vision system. Its design targets the provision of sufficient 
processing power for hybrid vision while minimizing component count and power 
consumption. 

5.1 Hardware architecture 
The block-level architecture of the MeshEye smart camera mote is shown in Fig. 6. The 
architecture is centered around an Atmel AT91SAM7S family microcontroller (Atmel, 2006), 
which contains up to 256 KBytes of flash memory and 64 KBytes of SRAM. Its leading 
power-efficient ARM7TDMI architecture can be clocked up to 55 MHz. The mote features a 
USB 2.0 full-speed port and a serial interface for wired connection. Furthermore, the mote 
can host up to eight kilopixel imagers and one VGA camera module, for which we chose 
Agilent Technologies' ADNS-3060 high-performance optical mouse sensor (Agilent, 2004) 
(30×30 pixel, 6-bit grayscale) and Agilent Technologies' ADCM-2700 landscape VGA 
resolution CMOS camera module (Agilent, 2005) (640×480 pixel programmable, grayscale or 
24-bit color), respectively. An MMC/SD flash memory card provides sufficient and scalable 
non-volatile memory for temporary frame buffering or even image archival. Wireless 
connection to other motes in the network can be established through a Texas Instruments 
CC2420 2.4 GHz IEEE 802.15.4/ZigBee-ready RF transceiver (Texas, 2006), which supports 
data transmission at 250 Kbits per second according to the IEEE 802.15.4 standard with a 
maximum transmit power of 1 mW in the unlicensed 2.4 GHz ISM band. The mote can 
either be powered by a stationary power supply if available or battery-operated for mobile 
applications or ease of deployment. 
 

 

Fig. 6. Block diagram of the MeshEyeTM architecture. 

The objectives guiding the electrical design of the MeshEye architecture have been the 
integration of low-power, COTS components, use of standard interfaces, and most of all 
minimization of total component count. The main motivation in keeping the component 
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count small lies in reduced power consumption and mote cost. The use of standard 
interfaces manifests itself in that a single SPI interface connects flash memory card, kilopixel 
imagers, and radio to the microcontroller. A TWI interface controls the camera module 
while its CCIR video is read out through general-purpose I/O pins. Note that this CCIR 
read-out method is not common but avoids additional interface components at the expense 
of a reduced frame rate of about 3 frames per second. Most other solutions interface CCIR 
image sensors to microcontrollers through a combination of an FPGA or CPLD and static 
memory for frame buffering. While such solutions may enable video streaming, they 
oftentimes add significantly to mote cost and the power budget. 
Fig. 7 pictures the first prototype of the MeshEye smart camera mote. It consists of a base 
board and a sensor board. The base board hosts the voltage regulators, microcontroller, 
radio, MMC/SD flash card (not visible) and external interface connectors. Power can be 
supplied through an external source, the Mini-USB port, or pairs of AA batteries. The sensor 
board, which sits on top of the base board, contains two kilopixel imagers, the VGA camera 
module, and two white LEDs for short-range illumination. 
 

 

Fig. 7. Photograph of the first MeshEyeTM smart camera mote. 

The kilopixel imagers use plastic aspheric lenses with a 4.6 mm focal length f and have a 57 
mm baseline B. This allows for a maximum perceived depth of 8.74 m in theory, which we 
deem adequate for indoor and limited outdoor usage. At fixed resolution of the image 
sensors, one may increase the focal length to increase the depth limit at the expense of 
narrower FoV angles. 

5.2 Power model 
An important performance metric for battery-operated motes is their lifetime during 
deployment. For this reason, generating a power model for the MeshEye smart camera mote 
is a crucial step in analyzing its energy consumption and predicting its lifetime during 
object localization operation. 
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The power model assumes that the MeshEye mote is powered by two non-rechargeable AA 
batteries (capacity 2850 mAh) at a conversion efficiency of 90%. It accounts for current 
consumption of the following main mote components: Atmel AT91SAM7S64 
microcontroller running at a processor clock of 47.92 MHz, PQI 256 MB MultiMediaCard 
flash memory, two Agilent ADNS-3060 kilopixel imagers, Agilent ADCM-2700 VGA camera 
module, and Texas Instruments CC2420 IEEE 802.15.4 transceiver. Table 1 summarizes the 
components' typical current and runtime values. Estimated runtimes and current draw 
values quoted in each component's datasheet are shown in regular font style. Italicized 
values have actually been measured on the mote prototype. For the most part, the datasheet 
estimates are in good agreement with the measurements although the estimated active 
currents for the flash card and the image sensors turn out to be rather conservative. The 
power model uses measured values whenever possible. The two runtime states Poll and 
Event occur when an object is absent or present, respectively, in the mote's FoV. In the Event 
state, the mote localizes the object and captures its HR region of interest. Subsequently, the 
object's location is wirelessly exchanged with neighboring motes for localization refinement 
and object tracking purposes. 
 

 
a) Event assumes an average object region of interest size of 64×64 pixel. 

Table 1. Estimated (regular) and measured (italicized) component current and runtime values 
used in the power model. 

For the basic object localization and tracking application considered here, the power model 
predicts an asymptotic, i.e., no events occur, lifetime of 22 days at a moderately fast poll 
period of 1 second. At a 0.5 second poll period, the asymptotic lifetime shortens to 11 days. 
Of course, the lifetime gradually reduces with the frequency of events, that is, more frequent 
appearance of moving objects in the mote's FoV. 
This power model also enables us to compare the hybrid vision system with the parallel 
processing system in terms of energy consumption. In particular, the MeshEye mote 
consumes 121 mJ, while the WiCa mote only spends 106 mJ to localize and acquire an object 
of 64×64 pixel in size. Hence, compared to dual-camera parallel processing, hybrid vision is 
not as efficient with respect to energy consumption as it is in terms of computational 
efficiency. Equal energy consumption occurs at a number of computations ratio of 4.3. 

6. Experimental deployment 

To evaluate functionality and performance of the stereo system within hybrid vision, an 

indoor network of four MeshEye smart camera motes was put in place. The topology of the 
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network is shown in Fig. 8: the four motes are located on the corners of a rectangle with 

their camera axes oriented towards the rectangle's center. Each mote records the kilopixel 

images to an MMC flash memory card at 10 fps over a one minute duration. During this 

time, a person follows the ground truth path drawn in Fig. 8, which was marked on the 

room's floor as an inner and outer rectangle. More specifically, the target first walks twice 

along the inner and then twice along the outer rectangle. 
 

 

Fig. 8. Topology and observations of experimental network deployment. 

The recorded image sequences were then post-processed with the hybrid vision algorithms 

to determine each mote's target localization over time. These location observations are 

overlaid onto the network topology in Fig. 8 using different markers. The associated 

measurements of target bearing angle and range are shown in the two plots to the right. In 

the final step, a sequential Bayesian tracking algorithm (Hengstler & Aghajan, 2007) fuses 

the individual location observations to reconstruct the target's track. Fig. 9 shows the 

resulting track when the motes apply either monocular or stereo vision. Under mono vision, 

the smart camera motes utilize only the left of the two kilopixel imagers. Note that the 

target's track is drawn separately for the inner and outer rectangle. 

For evaluation purposes, we computed the variance of the tracking error, which is the 

difference between estimated and ground truth location, as a metric of tracking 

performance. For the inner rectangle, mono vision achieves an error variance of 0.16 m2 and 

stereo vision a variance of 0.11 m2—a 30% improvement. Generally speaking, mono vision 

exhibits high localization uncertainty when the axes of the observing cameras are close to 

parallel. Obviously, this occurs primarily in proximity to the corners of the rectangular 
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track. The outer rectangle shows this ill-posed estimation problem even more frequently. 

The stereo vision's ranging ability mitigates this problem and we would expect stereo vision 

to perform even better for the outer rectangle. Indeed, stereo vision outperforms mono 

vision by 60%; the error variances are 0.28m2 and 0.7m2, respectively. This difference in 

tracking performance is not as obvious from the figure when considering error variances. 

When comparing the bias of the tracking error, the improvement is not as considerable: 0.59 

m with mono vision versus 0.44 m under stereo vision. Finally, the estimated track under 

low-resolution stereo vision reveals its limited ranging resolution as it is not able to reliably 

dinstiguish between locations on the inner and outer rectangle. 
 

 

Fig. 9. Tracking performance of experimental network deployment: smart camera motes 
applying mono (left) and stereo vision (right). 

7. Conclusion and future work 

This chapter identified requirements and presented solutions for the adoption of stereo 

vision into resource-constraint smart camera networks. Stereo vision's main benefit lies in 

improving accuracy in target tracking applications. The two state-of-the-art embedded 

stereo vision architectures were discussed. Both architectures solve the problem of 

acquisition and processing of the high-rate image data at moderate clock frequencies. NXP's 

WiCa mote combines a custom parallel image processor with a dual camera system. 

Stanford's MeshEye mote requires only a common sequential 32-bit microcontroller to 

process the data from its hybrid vision system. Both vision systems are able to detect, 

localize, and capture high-resolution snapshots of foreground objects. Hybrid vision is 
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computationally more efficient and consumes less energy for smaller objects within its field 

of view. This makes it well suited for a variety of applications in smart camera networks 

despite its low-resolution ranging capability. The experimental network deployment of four 

MeshEye motes resulted in a 30% reduction in target tracking error over smart camera 

motes utilizing solely monocular vision. 

The availability of embedded stereo vision motes is the necessary step in their adoption for 

applications in smart camera networks. While this chapter covered their vision processing 

and hardware implementation, the challenge of vision calibration has not been addressed. 

Variations in the optical system and in alignment of the image sensors cause systematic 

errors in object localization. Calibration techniques, which can be easily and cheaply 

accomplished in volume production, need to be developed to measure and compensate 

these variations.  

In conclusion, we expect to see more research contributions in the near future that analyze 

the performance of stereo vision in distributed camera networks with more rigor. This 

includes studying their merit over mono vision for different network tasks with respect to 

tracking accuracy, network lifetime, cost of deployment, and number of required camera 

motes. (Hengstler & Aghajan, 2007), for example, presents an early study of performance 

trade-offs for target tracking between mono and stereo vision in smart camera networks. Its 

simulation results encouragingly indicate that (i) stereo vision outperforms mono vision by 

factors of 2 to 5 in tracking accuracy and (ii) doubling the camera resolution can result in one 

third the tracking error variance. 
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