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1. Introduction 
 

Time-scaling is not a new concept in the theory of dynamical systems. It has been used to 
modify the time distribution along the reference paths and also to transform a system by 
changing the clock with which it evolves. The motivation to introduce time-scaling is often 
to gain useful properties for the system which evolves according to the modified time. It is 
shown in (Sampei & Furuta, 1986) that such a property to gain with time-scaling may be 
feedback linearizability. 
The notion of orbital flatness introduced by Fliess et al. (Fliess et al., 1995, 1999) involves 
also time-scaling to define an equivalence between a class of nonlinear systems and finite 
chains of integrators. The problem to check the orbital flatness of single input systems is 
addressed in (Respondek, 1998) and (Guay, 1999) together with the well known example of 
the kinematic car with constant longitudinal velocity which is shown to be orbitally flat.  
The time-scaling introduced by these concepts involves the state variables to express the 
relation between the different time scales, hence the time-scaling does not involve any new 
input or variable external to the system.  
Another concept for time-scaling is to use the tracking error in closed loop to modify the 
time-scaling of the reference path (Lévine, 2004). Such methods change the traveling time of 
the reference path according to the actual tracking error by decelerating if the motion is not 
accurate enough and by accelerating if the errors are small or vanish. 
This chapter presents a new time-scaling scheme which is not driven only by the state 
variables of the system but also by a new input, referred to as the time-scaling input. In the 
setup suggested in this chapter, the new input variable, which is not an input of the original 
physical system, is also used to drive the time-scaling of the reference in closed loop.  
The usefulness of our approach is demonstrated for the nonholonomic model of the 
kinematic car with one input. Notice that solutions to the motion planning and tracking 
algorithms are reported to the kinematic car with two inputs (Cuesta and Ollero, 2005) 
exploiting its differentially flatness property or using other methods (Dixon et al., 2001). We 
show that the kinematic car with one input, such that the longitudinal velocity does not 
vanish, can track any smooth trajectory with non-vanishing longitudinal velocity such that 
the tracking error is reduced exponentially along the path. This is achieved using time-
scaling and a dynamical feedback similar to the differentially flat case. 
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The remaining part of the chapter is organized as follows. The next section introduces our 
new time-scaling concept in details and its application in some general cases. Section 3 
addresses the particular problem of the control of a car using its kinematic model such that 
the only control input is the angle of the steered wheels. Section 4 presents the simulation 
and real measurement results obtained by the application of the controllers described in 
Section 3. The conclusion is given in Section 5. 

 
2. The time-scaling concept 
 

This section introduces in a general context our novel time-scaling scheme and shows how 
dynamical systems are transformed by its application. For this reason, consider a finite 
dimensional and time invariant dynamical system given by its state equation 
 

 ),( u
dt

d
ξ

ξ
Φ=  (1) 

 
where nR∈ξ , mRu∈  are the state vector and the input vector, respectively. This system 

evolves according to the time t  which we refer to as the real time. Let τ  denote the scaled 

time. A time-scaling law is an invertible mapping 
 

 )()( τττ ttt aa . (2) 

 
The time-scaling scheme proposed by Sampei and Furuta (Sampei & Furuta, 1986) depends 
on the state of the system 
 

 00 )()( ττξ
τ

== ts
d

dt
 (3) 

 
and the authors show that the system rewritten according to the time τ , namely  

 

 ),()( us
d

dt

dt

d

d

d
ξξ

τ
ξ

τ
ξ

Φ==  (4) 

 
may exhibit properties which were not satisfied by the system evolving according to the 
time t . Such a property studied in the paper is feedback linearizability. Let us point out that 

the time-scaling defined by (3) does not change the number of inputs of the system. Instead 
of (3) we introduce a time-scaling concept which increases the number of inputs of the 
system with a new input referred to as a time-scaling (or simply scaling) input. Hence the 
time-scaling is driven by 
 

 ),( su
d

dt
ξσ

τ
=       00 )( ττ =t . (5) 
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This time-scaling results a scaled dynamics 
 

 ),(),( uu
d

d
s ξξσ

τ
ξ

Φ=  (6) 

 
with the inputs u  and su . The same time-scaling can be applied for systems with more 

specific form of state equation. Considering a driftless system with the state equation 
 

 ∑
=

=
m

i
ii ug

dt

d

1

)(ξξ
 (7) 

 
the time-scaling (5) results 
 

 ∑
=

=
m

i
iis ugu

d

d

1

)(),( ξξσ
τ
ξ

 (8) 

 
The time-scaling defined by (5) can be generalized by the introduction of a chain of 
integrators evolving according to the time τ  

 

 1s
d

dt
=

τ
        2

1 s
d

ds
=

τ
    …      ),,( s

k us
d

ds
ξσ

τ
=        00 )( ττ =t  (9) 

 
with ),,,( 21 kssss K= . Let us now consider the dynamical model of a mechatronic system 

with d  degrees of freedom such that the d  generalized coordinates are the elements of the 

vector q . Such a dynamics reads 
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d

j

d

k
kjijk
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j
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= == 1 11

&&&&              di K1=  (10) 

 
where ijD  are the elements of the inertia tensor, ijkD  are the coefficients of the centripetal 

and Coriolis effects, iD  contain the gravitational forces, and iF  give the generalized 

external forces. We use the standard notations 
dt

dq
q =& ; 

2

2

dt

qd
q =&&  and  introduce 

τd

dq
q =′ ; 

2

2

τd

qd
q =′′ . Using simple derivation rules and (9) for 1=k , the relation between the time 

derivatives with respect to t  and τ  read 
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which result the following time-scaled system 
 

 
i

d

j

d
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kjijk

d

j

s

iji DsqqD
s
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1

1
3

1

12

1

),,( ξσ       di K1=  (12) 

 
subject to (9) and with the state vector ),( qq &=ξ . 

Another possibility for the generalization is to take into account in the model of the 
dynamical system the effect of some external, but measureable signals. Such signals can be 
measureable (or estimable) disturbances or one may think of them as input signals which 
are not generated by the controller but by some other means, e.g. by a human operator. We 
will denote the vector of these signals by w  which is included in the state equation and can 

be also incorporated in the time-scaling 
 

 ),,( uw
dt

d
ξ

ξ
Φ=        ),,( suw

d

dt
ξσ

τ
=        00 )( ττ =t  (13) 

 
to result a scaled dynamics similar to (6) 
 

 ),,(),,( uwuw
d

d
s ξξσ

τ
ξ

Φ=  (14) 

 
Notice that one reason for the use of the time-scaling can be the elimination of the effect of 
the external signals in the vector w . 

It is important to note that the time-scaling must not rewind the time, hence (5), (9), and (13) 
have to be chosen such that the resulting time-scaling law (2) is monotonous. 

 
3. Case study: semi-autonomous maneuvering with a passenger car 
 

The time-scaling concept described in the previous section will be applied to the design of a 
semi-autonomous maneuvering feature for a passenger car. Semi-autonomy means in this 
case that the controller does not generate all variables that influence the motion of the car, 
but only a subset of such variables. To be more specific, the driver generates the velocity of 
the car by the proper actuation of the gas, break, and clutch pedals while the control system 
determines the angle of the steering wheel. This implies that the geometry of the trajectory 
can be influenced, but not the traveling time which is needed to complete a given section of 
the trajectory. Hence the application of the time-scaling introduced in the previous section 
seems to be natural such that the control objective is to follow a path with the car as the 
controller can eliminate the geometric error between the desired and the real trajectory.  
 

3.1 Car model 

We use the simple kinematic model of the car, also referred to as the one-track or bicycle 
model in the literature. The model is illustrated in Figure 1 such that the bicycle is fitted on 
the longitudinal symmetry axis of the car. We suppose that the Ackermann steering 
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geometry assumption holds true such that all wheels turn around the same point P  which 
is on the rear axle of the car. 
The motion of the car is described by the time functions of its (rear axle midpoint) position 

),( yx  and its orientation θ . The axle-space of the car is denoted by l . Two variables 

influence the motion of the car in the horizontal plane: the longitudinal velocity, denoted by 

carv , is generated by the human driver ( carvw = ) and the steering angle ϕ  is the only 

control input. The kinematic model reads 
  

 

ϕθ

θ
θ

tan

sin

cos

l

v

vy

vx

car

car

car

=

=

=

&

&

&

 (15) 

 
It is known from the literature that this model (and its generalized version with trailers) is 

differentially flat if both carv  and ϕ  are control inputs (Fliess et al., 1995, 1999). 

 

 
 
Fig. 1. Bicycle model of a car moving in the horizontal plane 

 
It is also known that for 1=carv  the same model with one input is orbitally flat (Guay, 1999 

and Respondek, 1998). Orbital flatness implies the equivalence of the system (15) to a chain 
of integrators using a transformation which involves dynamic state feedback, coordinate 
transformation, and time-scaling such that this transformation leaves the number of inputs 
unchanged.  
Using the time-scaling scheme introduced in the previous section we explicitly show how to 

stabilize a given trajectory for an arbitrary non-vanishing velocity profile carv . 

 
3.2 Model transformation using time-scaling 

Since we use a purely kinematic model of the car, the introduction of a time-scaling similar 
to  (13)  is  sufficient.  Moreover,  the  state  variables  are   not  necessary   to   be  included in    
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the expression which reads in our case (Kiss and Szádezcky-Kardoss, 2007) 
 

 
car

s

v

u

d

dt
=

τ
 (16) 

 
assuming that carv  does not vanish during the trajectory. If carv  and su  are both positive 

(respectively negative) than the resulting time-scaling law does not rewind the time. The 
dynamics after the application of the time-scaling is given by  
 

 

ϕθ

θ
θ

tan

sin

cos

l

u

uy

ux

s

s

s

=′

=′
=′

 (17) 

 
This dynamics, which evolves according to the time τ , has two inputs ( su and ϕ ) and it is 

known to be differentially flat which implies that it is feedback linearizable by dynamic state 

feedback such that the flat output contains two variables, namely the ),( yx  position of the 

car. 

 
3.3 Asymptotic stabilization of the reference trajectory (according to the time τ ) 

Suppose that a reference trajectory ),( refref yx  is given for the position of the car. A feedback 

law should be found such that the reference trajectory is asymptotically (or eventually 
exponentially) tracked. Since the human driver generates the longitudinal velocity of the 
car, the reference trajectory cannot be designed according to the real time t  but only 

according to some “virtual” time τ .  

To understand this fact, consider a reference path with a length of 100 meters and suppose 

that the time functions ( )(.)(.), refref yx  are determined such that the desired travelling time 

along the trajectory should be 10 seconds which is a 10 m/s average speed along the path. If 
the driver generates a constant longitudinal velocity which equals to 20 m/s than the real 
traveling time (supposing that the tracking is perfect) will be 5 seconds. Similarly, if the 
driver generates a constant longitudinal velocity which equals to 5 m/s than the real 
traveling time (supposing again perfect tracking of the geometry of the path) will be 20 
seconds. Moreover, the velocity profile for a given maneuver is not know in advance so the 
time-scaling must use the current velocity value generated by the driver and eventually its 
time derivatives. 
It follows that one cannot design a controller which ensures a desired travelling time, 
according to the real time t , but it is possible with respect to the “virtual” time τ . So we 

will suppose that the reference ( ))(),( ττ refref yx  is given according to τ  and the designed 

controller is able to ensure the asymptotic stabilization according to the same virtual time τ . 

The reference is given by the mapping 
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{ }
{ }refrefrefref

refrefrefref

yyyy

xxxx

′′′′′′

′′′′′′

,,,

,,,

a

a

τ

τ
 (18) 

 
for ],0[ T∈τ  where  T  is the desired traveling time along the trajectory according to the 

time τ . The control loop is depicted in Figure 2.  

Let us define the tracking error as refx xxe −=  and refy yye −= . The closed loop system 

must guaranty the exponential decay of the tracking errors according to the time τ  so the 

following equations 
 

 
0

0

2,1,0,

2,1,0,

=′′′+′′+′+

=′′′+′′+′+

yyyyyyy

xxxxxxx

eekekek

eekekek
 (19) 

 
must be satisfied such that the coefficients iak ,  ( 2,1,0},,{ =∈ iyxa ) are design parameters 

and have to be chosen such that the characteristic polynomials of (19) are Hurwitz.  
 

( )x y,

θ

ϕ

car

driver

tracking
controller

time
scaling

vcar

ref
in t

ref

in τ

us

ϕ

x y, ,θ

motion
planning

 
Fig. 2. Scheme of the control loop including the tracking controller and the time-scaling 

 
The following calculations are based on the differential flatness property of (17) which 
implies that the model can be linearized by a dynamic state feedback. 
In order to satisfy (19) we first add some integrators in front of both inputs of (17). These 

integrators are realized in the controller and the new inputs of the integrator chains are 1v  

and 2v . 

 

 

1

312

2321

ζ
ζϕζ

ζζζ

=
=′′==′
=′′==′

s

s

s

u

uv

vu

 (20) 
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Note that one could add more integrators and the minimal number of integrators such that 

the calculations that follow can be carried out is one preceding the su  input. The chains of 

integrators are illustrated in Figure 3.  

Using the states of (17) and the states of the dynamic extension (20), the derivatives x′ , 

yyyxx ′′′′′′′′′′′ ,,,,  can be determined. 

 

 θζ cos1=′x  (21) 

 

 
l

x 3
2

1
2

tansin
cos

ζθζ
θζ −=′′  (22) 

 

 
2

3

2
12

2

3
1

2
3

2

3
1

3

321
1

)(cos

sincos

)(cos

cos

cos

sinsin3
cos

ζ
θζθζ

ζ
θζ

ζ
ζθζζ

θ
l

v

lll
vx −+−−=′′′  (23) 
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usv1

v2 ϕ

 
Fig. 3. Integrators (dynamic extension) in the controller 

 
The inputs of the integrator chains of Figure 3 ( 1v  and 2v ) appear in the expressions of x ′′′   

(23) and y ′′′  (26). This implies that one can calculate them such that the linear differential 

equations for the tracking errors (19) are satisfied. To achieve this, isolate first x ′′′  and y ′′′  

from (19) to obtain 
 

 
yyyyyyyref

xxxxxxxref

ekekekyy

ekekekxx

ω

ω

=′′−′−−′′′=′′′

=′′−′−−′′′=′′′

2,1,0,

2,1,0,
 (27) 

 
Combining (23) and (26) with (27) on gets 

www.intechopen.com



Time-scaling in the control of mechatronic systems 

 

419 

 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

B

A

v

v

l

l

y

x

ω
ω

ζ
θζθ

ζ
θζθ

2

1

2
3

2
1

2
3

2
1

)(cos

cos
sin

)(cos

sin
cos

 (28) 

 
with  
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Finally, the inputs 1v  and 2v  are obtained by the inversion of the coefficient matrix in (28) 
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The coefficient matrix is singular if 01 == suζ  which occurs at zero longitudinal velocity. 

Another singularity occurs if o903 ±==ϕζ . Singularities coincide with the loss of 

controllability of the model. 
Based on the previous calculations, the reference trajectory (18), the states of the kinematic 

car (17) and the states of the dynamic extension (20) allow determining the inputs 1v  and 2v   

of the system extended by the integrators and thus to obtain the time-scaling input su  and 

the steering angle ϕ  which results the exponential stabilization of the reference trajectory. 
 

3.4 Time-scaling of time functions 

Expressions (21)-(26) hold true if the variables on the left hand sides are functions of τ . 

Notice however that the measured states of the car evolve with the real time t  so the time 

derivatives with respect to τ  cannot be directly determined. Therefore one needs the 

transformation which allows mapping a time function of t  and its derivatives to a time 

function of τ  and to its derivatives using the time-scaling law specified by (16). Consider a 

variable α . We wish to obtain the mapping 

 

 { } { }KK&&& ,,),(,,),( ααταααα ′′′↔t  (31) 

 
The time-scaling law (2) can be obtained by the integration of (16) and reads in our case 
 

www.intechopen.com



New Developments in Robotics, Automation and Control 

 

420 

 ∫=
t

s

car d
u

v
t

0

)( ϑτ          0)0()0( == tτ  (32) 

 
which allows expressing the transformation (31) as 
 

 ))(()( tt ταα =  (33) 

 

 τταα && ))(()( tt ′=  (34) 

 

 ττατταα &&&&& ))(())(()( 2 ttt ′+′′=  (35) 

 

 ττατττατταα &&&&&&&&&& ))(())((3))(()( 3 tttt ′+′′+′′′=  (36) 

 
The successive time derivatives ( τττ &&&&&& ,, ) of the time-scaling law (32) can be also obtained 

using the time derivatives of carv  and the time derivatives of su .  

 

 scar uv τ&=  (37) 

 

 sscar uuv ′+= 2ττ &&&  (38) 

 

 ssscar uuuv ′′+′+= 33 ττττ &&&&&&&&&  (39) 

 
We suppose that the time derivatives of carv  can be measured or estimated. The time 

derivatives of su  are the states of the dynamic extension (20). 

 
3.5 Stabilization using linearized error dynamics 

The method presented in the previous subsection required the time derivatives of carv  but 

their measurement or estimation may present difficulties. We propose therefore an 
alternative stabilization technique which overcomes this difficulty. The price to pay is that 
the stability will be only locally achieved since the feedback is based on the linearized error 
dynamics. The method is derived from the results presented in (Dixon et al., 2001). 

We suppose that the reference time functions of all variables ( refrefsrefrefref uyx ϕθ ,,,, , ) are 

given such that they satisfy the model (17).  

Let us define the error variables refx xxe −= , refy yye −= , refe θθθ −=  and the error 

transformation 
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which can be used to express the error dynamics as 
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with the inputs 1w  and 2w  obtained as 
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The expressions (42)-(43) also show how to calculate su , τ& , and ϕ  from  1w  and 2w . The 

error dynamics (41) can be linearized around zero error and zero inputs (which implies that 

0=θ&  in (41)) and a state-feedback (pole-placement) 
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can be used to stabilize the system around the reference trajectory. 

 
4. Simulation and measurement results 
 

Both stabilizing feedback laws presented in Section 3 are implemented in Matlab-
Simulink©1 environment. The controller described in Subsection 3.3 is also implemented in 
a Ford Focus type passenger car using the rapid control prototyping environment 
comprising Matlab-Simulink, the Real-Time Workshop together with DSpace©2 Autobox 
hardware connected to the CAN bus of the car. The vehicle is equipped with a special 
prototype of an Electronic Power Assist Steering (EPAS) System developed by our industrial 
partner. This EPAS can receive and precisely track a reference for the steering angle 
(denoted by ϕ  in our model) sent via the CAN bus of the vehicle. 
 

4.1 Simulation results 

For the simulation we use the simple kinematic model of the car as given by Equation (15) 

with 1=l m. A lane-changing-like maneuver is the reference such that the lane-change 

                                                 
1 http://www.mathworks.com  
2 http://www.dspace.de  
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represents a 3.5 meters shift to the lateral direction while advancing 10 meters. The motion 
planning was carried out with a default velocity profile which is referred to as the reference 
driver with a travelling time of 9 seconds. To demonstrate the time-scaling in simulation, we 
generated two additional velocity profiles such that the first is quicker and the second is 
slower than the reference driver. These three velocity profiles are depicted in Figure 4-a. The 
figure also shows the different traveling times necessary to complete the lane-changing 
maneuver for each velocity profile. 
To check the asymptotic tracking property of the controller presented in Subsection 3.3 we 
set an initial position and orientation which is different from the ones used for motion 

planning such that the initial tracking errors are 5.1−=xe m, 2=ye m, and 4/πθ =e rad. 

Due to time-scaling, the geometries of the trajectories in both cases (quick and slow drivers) 
are the same in the horizontal plane as shown in Figure 4-b. All trajectories converge to the 
reference despite the relatively large initial errors. 
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Fig. 4. a) Velocity profiles; b) Reference and real trajectories (same for all velocity profiles) 

 
The time-scaling is shown in Figure 5. It can be seen that the same amount of “virtual” time 
τ  (9 seconds) is needed to complete the maneuver but in terms of real time, the driver with 

quick velocity profile required around 7 seconds and the driver with slow velocity profile 
required more than 20 seconds completing the same trajectory.  
Figure 5-b shows when the reference in τ  was decelerated or accelerated with respect to the 

real time t . It is interesting to see that the reference was decelerated even for the quick 

driver while the tracking error was large enough. 
The steering angles produced by the controller are shown in Figure 6. 
 

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

time t

ti
m

e
 

Time scaling functions (t)

slow driver
quick driver
without scaling

τ

τ

     
0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time t

Derivative of (t)

slow driver

quick driver

without scaling

acceleration of the reference

deceleration of the reference

τ

 
 a) b) 

Fig. 5. Time-scaling for the different velocity profiles; a) function )(tτ ; b) function )(tτ&  
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Fig 6. Steering angles during the maneuvers 

 
We carried out similar simulation studies for the controller based on the linearized error 
dynamics described in Subsection 3.5. The controller locally stabilizes the reference 

trajectory so the initial errors were chosen to be smaller as in the previous case: 5.0−=xe m, 

75.0=ye m, and 4/πθ =e rad.  

The velocity profiles and the geometry of the path are depicted in Figure 7. The time-scaling 

function )(tτ  and its derivative are shown in Figure 8. Notice again that the time is 

decelerated first due to the relatively large tracking error. 
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Fig. 7. Performance of the controller designed for the linearized error dynamics; a) velocity 
profiles; b) Real and reference trajectories in the horizontal plane 
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Fig. 8. Time-scaling function and its derivative. 
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4.2 Measurement results 

The controller is implemented in a real passenger car with 10ms sampling time. Figure 9 
shows the Ford Focus type test vehicle with the Autobox. The position and orientation of the 
car is estimated using the ABS wheel sensors the signals of which are available on the CAN 
bus of the vehicle. The description of the estimation algorithm is beyond the scope of this 
chapter, for similar algorithms the reader may refer to (Kochen at al., 2002).  
The controller is applied here to track trajectories in parking scenarios. Two examples are 
studied. The first is the case of a parallel parking maneuver in backward direction where an 
initial position error was introduced as shown in Figure 10-a. The velocity profile generated 
by the driver (as measured on the CAN bus of the vehicle) and the steering wheel angle 
generated by the controller (in degrees) are depicted in Figure 10-b. Notice that the special 
EPAS which is built in the vehicle receives the steering wheel angle and not directly the 
angle denoted by ϕ . 

The second example is a backward direction perpendicular parking maneuver (see Figure 
11-a) with an initial error in position and orientation which is so large that the steering input 
is saturated during the motion as shown is Figure 11-b. Despite the saturation of the input, 
the reference trajectory is joined by the vehicle and the initial error is eliminated. 
 

    
 a) b) 
Fig. 9. The Ford Focus test vehicle; a) the DSpace Autobox in the carrier, connected to the 
CAN bus; b) a possible reference trajectory for a parking maneuver 
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Fig. 10. Backward direction parallel parking maneuver with the Ford Focus; a) Trajectory in 
the horizontal plane; b) Driver’s velocity profile and the steering wheel angle generated by 
the controller 
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5. Conclusion 
 

This chapter presented a new time-scaling scheme applicable to the control of dynamical 
systems. The novelty resides in the fact that, in addition to the state variables, the time-
scaling is influenced by a new variable which becomes an additional input of the time-
scaled system. No general result is formulated at the time being concerning the properties of 
this time-scaling scheme but it turns out to be useful for a particular application, namely in 
the semi-autonomous control of a passenger car such that the velocity is generated by the 
driver but the steering action is determined by the controller. 
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Fig. 11. Backward direction perpendicular parking maneuver with the Ford Focus; a) 
Trajectory in the horizontal plane; b) Driver’s velocity profile and the steering wheel angle 
generated by the controller 
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