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1. Introduction     

The vibration control is an important and rapidly developing field for lightweight flexible 
aerospace structures. Those structures may be damaged or become ineffective under the 
undesired vibrational loads they constantly experience. Hence, they require effective control 
mechanism to attenuate the vibration levels in order to preserve the structural integrity. The 
usage of smart materials, as actuators and/or sensors, has become promising research and 
application area that gives the opportunity to accomplish the reduction of vibration of 
flexible structures and proves to be an effective active control mechanism.  
 

For the last few decades there has been an extensive research about the piezoelectric 
materials because of the capability of being used both as actuators and sensors. The smart 
structure is a structure that can sense external disturbance and respond to that in real time 
to fulfil operational requirements. Smart structures consist of passive structure, highly 
distributed active devices called smart materials/elements and processor networks. The 
smart materials are primarily used as sensors and/or actuators and are either embedded or 
attached to an existing passive structure (Çalışkan, 2002). Today, the main and maybe the 
most widespread application area of piezoelectric materials is using them as collocated 
actuator and sensor pair for active vibration control purposes (Prasad, 1998). 
 

Active vibration control of a smart structure starts with an accurate mathematical model of 
the structure. Modeling smart structures may require the modeling of both passive structure 
and the active parts. Crawley and de Luis (1989), by neglecting the mass of active elements, 
presented an analytical modeling technique to show that the piezoelectric actuators can be 
used to suppress some modes of vibration of a cantilevered beam. Similar approach was 
carried out on thin plates by Dimitridis et al (1991). Although neglecting the mass and 
stiffness properties of the smart materials compared to the passive structure is generally 
acceptable, the modeling of a smart structure mainly involves the force and moment 
descriptions generated by the smart materials. Sample modeling studies are proposed by 
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several researchers such as Pota et al. (1992), Halim (2002b)  The governing differential 
equations of motion of the smart structures can then be solved by analytical methods, such 
as modal analysis, assumed-modes method, Galerkin’s method or finite element method 
(Meirovitch, 1986). 
 

Since it is not so easy to consider all non-uniformities in structural properties of a smart 
structure, the analytical modeling techniques such as finite element model, modal analysis 
or assumed modes method allow one to obtain system model including only the 
approximate information of optimal placement of piezoelectric patches, natural frequencies 
and mode shapes of the structure except damping (Çalışkan, 2002 and Halim, 2002b). In 
order to improve the model, Nalbantoğlu (1998) and Nalbantoğlu et al. (2003) showed that 
experimental system identification techniques can be applied on flexible structures and they 
may help one to identify the system more accurately. 
 

Due to having a large number of resonant modes, the high frequency characteristics of a 
flexible structure generally cause problems in identifying the system method. Since, usually 
the first few vibrational modes are taken into account in the controller design, the reduction 
of the model is often required to obtain the finite-dimensional system model (Hughes, 1981; 
Balas, 1995 and Moheimani, 1997). General approach for reducing the order of the model is 
the direct model reduction. However, removing the higher modes directly from the system 
model perturbs zeros of the system (Clark, 1997).  Minimizing the effect of model reduction 
and correcting the system model is possible by adding a feedthrough, or correction, term 
including some of the removed modes, to the truncated model (Clark, 1997; Moheimani, 
2000d and Moheimani, 2000c). Halim (2002b) proposed an optimal expression for 
feedthrough term in case of undamped and damped system models. 
 

Various control techniques have been used as active control strategy like optimal control 

(Hanagoud, 1992), LQG control (Bai, 1996) and robust control using ∞H  (Nalbantoğlu, 1998; 

Yaman, 2001 and Ülker, 2003) or 2H  control framework (Halim, 2002c). The ∞H  control 

design technique for robust control phenomena has been developed by many researchers for 
various application areas including the vibration control (Zames, 1981; Francis, 1984; Doyle, 

1989 and Lenz, 1993).  Yaman et al. (2001, 2003b) showed the effect of ∞H  based controller 

on suppressing the vibrations of a smart beam due its first two flexural modes. They also 
extended their studies to a smart plate (2002a, 2002b).  Ülker (2003) showed that, besides the 

∞H  control technique, μ-synthesis based controllers can also be used to suppress vibrations 

of smart structures. In all those works on flexible structures, the general control strategy 
focused on analyzing the vibrations at specific locations over the structure and minimizing 
them. However, that kind of pointwise controller design ignores the effect of vibration at the 
rest of the body and a successful vibration reduction over entire structure can not always be 
accounted for. 
 

Moheimani and Fu (1998c) introduced spatial 2H  norm, which is a measured performance 

over spatial domain, for spatially distributed systems in order to meet the need of spatial 

vibration control. Besides, Moheimani et al. (1997, 1998a) proposed spatial ∞H  norm 
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concept and simulation based results of spatial vibration control of a cantilevered beam 
were presented. Moheimani et al. (1998b, 1999) carried out the spatial approach on 
feedforward and feedback controller design, and presented illustrative results. They also 

showed that spatial ∞H  controllers could be obtained from standard ∞H  controller design 

techniques. Although the simulations demonstrated successful results on minimizing the 
vibrations over entire beam, implementation of that kind of controllers was not guaranteed 

on real world systems. Halim (2002b, 2002c) studied the implementation of spatial 2H  

controllers on active vibration control of a simply-supported beam experimentally and 
presented successful results. He continued to work on simply-supported beams about 

implementation of spatial ∞H  controller and obtained successful experimental results 

(Halim, 2002a). Further experimental studies were performed on active vibration control of 
a simply-supported piezoelectric laminate plate by Lee (2005).  Lee also attenuated acoustic 
noise due to structural vibration. 
 

The current chapter aims to summarize the studies of modelling and spatial control of a 
cantilevered beam (Kırcalı et al. 2008, 2007, 2006a and 2006b).  

 
2. Assumed-Modes Modeling of the Smart Beam 
 

Consider the cantilevered smart beam model used in the study which is depicted in Fig.1. 
The smart beam consists of a passive aluminum beam (507mmx51mmx2mm) with eight 
symmetrically surface bonded SensorTech BM500 type PZT (Lead-Zirconate-Titanate) 
patches (25mmx20mmx0.5mm), which are used as the actuators. Note that, in this study, the 
group of PZT patches on one side of the beam is considered as if it is a single patch. The 
beginning and end locations of the PZT patches along the length of the beam away from the 

fixed end are denoted as 1r  and 2r , and the patches are assumed to be optimally placed 

(Çalışkan, 2002). The subscripts b, p and sb indicate the passive beam, PZT patches and 
smart beam respectively.  Analytical modeling of the smart beam is performed by assumed-
modes method, which represents the deflection of the beam by means of a series solution: 
 

 
1

( , ) ( ) ( )
N

i i
i

y r t r q tφ
=

= ∑  (1) 

 
where iφ  are admissible functions which satisfy the geometric boundary conditions of the 

passive beam, iq  are time-dependent generalized coordinates, r is the longitudinal axis and 

t is time. Assumed-modes method uses this solution to obtain approximate system model of 
the structure with the help of energy expressions (Mason, 1981).  The kinetic and potential 
energies of the smart beam can be determined to be (Kırcalı, 2006a): 
 

2

1
1 1 0
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( ) 2

2
ρ φφ ρ φφ

= =

⎧ ⎫
= +∑ ∑ ∫ ∫⎨ ⎬

⎩ ⎭
& &

bL rN N

sb b b i j p p i j i j
i j r

T t A dr A dr q q  (2)  
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2
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The total viscous damping force of the smart beam can similarly be obtained as (Kırcalı, 
2006a): 
 

                   
2

1
1 1 0

1
(2 ) 2 (2 )

2
ξω ρ φφ ξω ρ φφ

= =

⎧ ⎫
= +∑ ∑ ∫ ∫⎨ ⎬

⎩ ⎭
& &

bL rN N

sb i i b b i j i i p p i j i j
i j r

F A dr A dr q q         (4) 

 
where the beam’s density, Young’s modulus of elasticity, second moment of area and cross 

sectional area are defined as ρb , bE , bI , and bA  respectively. Also note that subscript i 

and j yield number of eigenvalues, ξi is the viscous damping coefficient of the ith  mode and 

ωi  represents the ith  natural frequency of the beam. 

 

 
Fig. 1. The smart beam model used in the study 

 
The PZT patches are placed in a collocated manner and the voltage is applied in order to 
create a bimorph configuration (PZT patches bonded to opposite faces of the beam have 
opposite polarity), the resulting effect on the beam becomes equivalent to that of a bending 
moment. This case is shown in Fig.2: 
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Fig. 2. Inducing bending moment by applying voltage to PZT patches  

 
Here ( , )pM t r  denotes the bending moment and ( , )aV t r  is the applied voltage. When 

the voltage is applied on a PZT patch, a piezoelectric strain pε  is introduced in the patch 

(Baz, 1988): 
 

31( , ) ( , )ε =p a

p

d
t r V t r

t
                                                                    (5) 

 
The longitudinal stress consequently generates a bending moment about the neutral axis of 
the system, as: 
 

( )( , ) ,=p p aM t r C V t r                                                                    (6) 

 
where 

pC  is a geometric constant due to bending moment, and expressed as: 

 

31 ( )= +p p p p bC E d w t t                                                                   (7) 

 

As a consequence, the transfer function, ( , )NG s r , from the input voltage to the beam 

deflection in the frequency domain, including N number of eigenfunctions, is obtained as: 
 

2 2
1

( )
( , )

2

φ
ξω ω=

= ∑
+ +

N
i i

N
i

i i i

P r
G s r

s s
                                                          (8) 
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where 
 

[ ]
{ }

2 1

3

( ) ( )φ φ
ρ
′ ′−

= p i i

i

sb

C r r
P

AL
                                                                (9) 

 
and 
 

{ }3 3 32ρ ρ ρ= +b b b p p psb
AL AL A L                                                     (10) 

 
The detailed derivation of equation (8) can be found in (Kırcalı, 2006a). In this study, the 
assumed modes (i.e. the admissible functions) of the fixed-free smart beam are taken as the 
eigenfunctions of the fixed-free passive beam: 
 

( )cos cosh
( ) cosh cos sinh sin

sin sinh

β βφ β β β β
β β

⎧ ⎫+
= − − −⎨ ⎬+⎩ ⎭

i b i b
i b i i i i

i b i b

L L
r L r r r r

L L
     (11) 

 
3. Model Correction and Spatial Identification of the Smart Beam 
 

Assumed-modes method uses admissible functions in order to model the dynamics of the 
system, but ignores the nonuniform mass and stiffness distributions. If one uses a large 
number of admissible functions, or more general if their number goes to infinity, the model 
will be exactly the same as the original one. However, using infinite number of admissible 
functions is not convenient to apply for real structures at least for huge amount of 
computing requirements. Therefore, it is generally believed that the utilization of 
sufficiently large number of admissible functions will be enough to increase the accuracy of 
the approximate system model (Hughes, 1987). 
 

Including large number of admissible functions leads to not only a more accurate but also a 

high order approximate system model. Since the order of an ∞H  controller depends on the 

system order , such a higher order model yields an excessive order controller which may not 
be possibly implemented. However, the controller design techniques generally focus on a 
particular bandwidth which includes only a few vibration modes of the system. In this 
respect, the reduction of the order of the model is required. 
 
One of the most popular techniques for reducing the order of the system model is the direct 
model reduction, which simplifies the system model by directly truncating the higher 
modes of frequency range of interest. However, removing the higher modes may perturb 
the zeros of the system which will affect the closed-loop performance and stability (Clark, 
1997).  One particular approach to compensate the error of the model truncation was 
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presented by Moheimani (Moheimani, 2000a) which considers adding a correction term that 

minimizes the weighted spatial 2H  norm of the truncation error. The additional correction 

term had a good improvement on low frequency dynamics of the truncated model. 
Moheimani (2000d) and Moheimani et al. (2000c) developed their corresponding approach 
to the spatial models which are obtained by different analytical methods. Moheimani 
(2006b) presented an application of the model correction technique on a simply-supported 
piezoelectric laminate beam experimentally. However, in all those studies, the damping in 
the system was neglected. Halim (2002b)  improved the model correction approach with 
damping effect in the system. This section will give a brief explanation of the model 
correction technique with damping effect based on those previous works (Moheimani, 
2000a, 2000c and 2000d) and for more detailed explanation the reader is advised to refer to 
the reference (Moheimani, 2003). 
 

Recall the transfer function of the system from system input to the beam deflection 
including N number of modes given in equation (8). The spatial system model expression 
includes N number of resonant modes assuming that N is sufficiently large. The controller 
design however interests in the first few vibration modes of the system, say M number of 
lowest modes. So the truncated model including first M number of modes can be expressed 
as: 
 

2 2
1

( )
( , )

2

φ
ξω ω=

= ∑
+ +

M
i i

M
i

i i i

P r
G s r

s s
                                                     (12) 

 
where M N<< . This truncation may cause error due to the removed modes which can be 

expressed as an error system model, ( , )E s r : 

 

                    
2 2

1

( , ) ( , ) ( , )

( )
          

2

φ
ξω ω= +

= −

= ∑
+ +

N M

N
i i

i M
i i i
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P r

s s

                                                  (13) 

 
In order to compensate the model truncation error, a correction term should be added to the 
truncated model (Halim, 2002b): 
 

( , ) ( , ) ( )= +C MG s r G s r K r                                                           (14) 

 
where ( , )CG s r  and ( )K r  are the corrected transfer function and correction term, 

respectively. 

The correction term ( )K r  involves the effects of removed modes of the system on the 

frequency range of interest, and can be expressed as: 
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1

( ) ( )φ
= +

= ∑
N

i i
i M

K r r k                                                              (15) 

 

where ik  is a constant term. The reasonable value of ik  should be determined by keeping 

the difference between ( , )NG s r  and ( , )CG s r  to be minimum, i.e. corrected system 

model should approach more to the higher ordered one given in equation (8). Moheimani 

(2000a) represents this condition by a cost function, J , which describes that the spatial 2H  

norm of the difference between ( , )NG s r  and ( , )CG s r   should be minimized: 

 

{ } 2

2( , ) ( , ) ( , )=<< − >>N CJ W s r G s r G s r                                         (16) 

 
The notation 

2

2..<< >>  represents the spatial 2H  norm of a system where spatial norm 

definitions are given in (Moheimani, 2003). ( , )W s r  is an ideal low-pass weighting 

function distributed spatially over the entire domain R  with its cut-off frequency cω  

chosen to lie within the interval ( Mω , 1Mω + ) (Moheimani, 2000a). That is: 
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elsewhere

and

                                        (17) 

 
where Mω  and 1Mω +  are the natural frequencies associated with mode number M  and 

1M + , respectively.  Halim (2002b) showed that, by taking the derivative of cost function 

J  with respect to ik  and using the orthogonality of eigenfunctions, the general optimal 

value of the correction term, so called 
opt

ik , for the spatial model of resonant systems, 

including the damping effect, can be shown to be: 
 

2 2 2

2 2 2 2

2 11 1
ln

4 1 2 1

ω ω ω ξ ω
ω ω ξ ω ω ω ξ ω

⎧ ⎫+ − +⎪ ⎪= ⎨ ⎬
− − − +⎪ ⎪⎩ ⎭

op t c c i i i

i i

c i i c c i i i

k P
                           (18) 

 
An interesting result of equation (18) is that, if damping coefficient is selected as zero for 
each mode, i.e. undamped system, the resultant correction term is equivalent to those given 
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in references (Moheimani, 2000a, 2000c and 2000d) for an undamped system. Therefore, 
equation (18) can be represented as not only the optimal but also the general expression of 
the correction term. 
 
So, following the necessary mathematical manipulations, one will obtain the corrected 
system model including the effect of out-of-range modes as: 
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     (19) 

 
Consider the cantilevered smart beam depicted in Fig.1 with the structural properties given 

at Table 1. The beginning and end locations of the PZT patches 0.0271r = m  and 

0.0772r = m  away from the fixed end, respectively. Note that, although the actual length of 

the passive beam is 507mm, the effective length, or span, reduces to 494mm due to the 
clamping in the fixture. 
 

 Aluminum Passive 
Beam 

PZT 

Length = 0.494L mb  = 0.05L mp  

Width w = 0.051mb  w = 0.04mp  

Thickness t = 0.002mb  t = 0.0005mp  

Density 3ρ = 2710kg/mb  
3ρ = 7650kg/mp  

Young’s Modulus E = 69GPab  E = 64.52GPap  

Cross-sectional Area -4 2
A = 1.02 × 10 mb  

-4 2
A = 0.2 × 10 mp  

Second Moment of Area -11 4
I = 3.4 × 10 mb  

-11 4
I = 6.33 × 10 mp  

Piezoelectric charge constant - -12
d = -175 × 10 m/V31  

Table 1. Properties of the Smart Beam 
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The system model given in equation (8) includes N number of modes of the smart beam, 
where as N gets larger, the model becomes more accurate. In this study, first 50 flexural 
resonance modes are included into the model (i.e. N=50) and the resultant model is called 
the full order model: 
 

50

50 2 2
1

( )
( , )

2

φ
ξω ω=

= ∑
+ +

i i

i
i i i

P r
G s r

s s
                                                    (20) 

 
However, the control design criterion of this study is to suppress only the first two flexural 
modes of the smart beam. Hence, the full order model is directly truncated to a lower order 
model, including only the first two flexural modes, and the resultant model is called the 
truncated model:  
 

2

2 2 2
1
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2

φ
ξ ω ω=

= ∑
+ +

i i

i
i i i

P r
G s r

s s
                                                       (21) 

 
As previously explained, the direct model truncation may cause the zeros of the system to 
perturb, which consequently affect the closed-loop performance and stability of the system 
considered (Clark, 1997).  For this reason, the general correction term, given in equation (18), 
is added to the truncated model and the resultant model is called the corrected model: 
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where the cut-off frequency, based on the selection criteria given in equation (17), is taken 
as: 
 

( )2 3 / 2ω ω ω= +c
                                                                 (23) 

 
The assumed-modes method gives the first three resonant frequencies of the smart beam as 
shown in Table 2. Hence, the cut-off frequency becomes 79.539 Hz. The performance of 
model correction for various system models obtained from different measurement points 
along the beam is shown in Fig.3 and Fig.4. 
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Resonant Frequencies  Value (Hz) 

1ω  
6.680 

2ω  
41.865 

3ω  
117.214 

Table 2. First three resonant frequencies of the smart beam 

 
The error between full order model-truncated model, and the error between full order 

model-corrected model, so called the error system models F TE −  and F CE − , allow one to 

see the effect of model correction more comprehensively.   
 

( , ) ( , )− = −F T N ME G s r G s r                                                          (24) 

 
( , ) ( , )− = −F C N CE G s r G s r                                                            (25) 

 
The frequency responses of the error system models are shown in Fig.5 and Fig.6. One can 
easily notice from the aforementioned figures that, the error between the full order and 
corrected models is less than the error between the full order and truncated ones in a wide 
range of the interested frequency bandwidth. That is, the model correction minimizes error 
considerably and makes the truncated model approach close to the full order one. The error 
between the full order and corrected models is smaller at low frequencies and around 50 Hz 
it reaches a minimum value. As a result, model correction reduces the overall error due to 
model truncation, as desired.  
 
In this study, the experimental system models based on displacement measurements were 
obtained by nonparametric identification. The smart beam was excited by piezoelectric 
patches with sinusoidal chirp signal of amplitude 5V within bandwidth of 0.1-60 Hz, which 
covers the first two flexural modes of the smart beam. The response of the smart beam was 
acquired via laser displacement sensor from specified measurement points. Since the 
patches are relatively thin compared to the passive aluminum beam, the system was 
considered as 1-D single input multi output system, where all the vibration modes are 
flexural modes. The open loop experimental setup is shown in Fig.7. 
 
In order to have more accurate information about spatial characteristics of the smart beam, 
17 different measurement points, shown in Fig.8, were specified. They are defined at 0.03m 
intervals from tip to the root of the smart beam.  
 
The smart beam was actuated by applying voltage to the piezoelectric patches and the 
transverse displacements were measured at those locations. Since the smart beam is a 
spatially distributed system, that analysis resulted in 17 different single input single output 
system models where all the models were supposed to share the same poles. That kind of 
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analysis yields to determine uncertainty of resonance frequencies due to experimental 
approach. Besides, comparison of the analytical and experimental system models obtained 
for each measurement points was used to determine modal damping ratios and the 
uncertainties on them. That is the reason why measurement from multiple locations was 
employed. The rest of this section presents the comparison of the analytical and 
experimental system models to determine modal damping ratios and clarify the 
uncertainties on natural frequencies and modal damping ratios. 
 

Consider the experimental frequency response of the smart beam at point br = 0.99L . 

Because experimental frequency analysis is based upon the exact dynamics of the smart 
beam, the values of the resonance frequencies determined from experimental identification 
were treated as being more accurate than the ones obtained analytically, where the 
analytical values are presented in Table 2. The first two resonance frequencies were 
extracted as 6.728 Hz and 41.433 Hz from experimental system model. Since the analytical 
and experimental models should share the same resonance frequencies in order to coincide 

in the frequency domain, the analytical model for the location br = 0.99L  was coerced to 

have the same resonance frequencies given above. Notice that, the corresponding 
measurement point  can be selected from any of the measurement locations shown in Fig.8. 
Also note that, the analytical system model is the corrected model of the form given in 
equation (22). The resultant frequency responses are shown in Fig.9. 
 

The analytical frequency response was obtained by considering the system as undamped. 

The point br = 0.99L  was selected as measurement point because of the fact that the free end 

displacement is significant enough for the laser displacement sensor measurements to be 
more reliable. After obtaining both experimental and analytical system models, the modal 
damping ratios were tuned until the magnitude of both frequency responses coincide at 
resonance frequencies, i.e.: 
 

( , ) ( , )
ω ω

λ
=

− <
i

E CG s r G s r                                                      (26) 

 
where ( , )EG s r  is the experimental transfer function and λ  is a very small constant term. 

Similar approach can be employed by minimizing the 2-norm of the differences of the 
displacements by using least square estimates (Reinelt, 2002). 
 
Fig.10 shows the effect of tuning modal damping ratios on matching both system models in 

frequency domain where λ  is taken as 10-6. Note that each modal damping ratio can be 
tuned independently. 
 

Consequently, the first two modal damping ratios were obtained as 0.0284 and 0.008, 
respectively. As the resonance frequencies and damping ratios are independent of the 
location of the measurement point, they were used to obtain the analytical system models of 
the smart beam for all measurement points. Afterwards, experimental system identification 
was again performed for each point and both system models were again compared in 
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frequency domain. The experimentally identified flexural resonance frequencies and modal 
damping ratios were determined by tuning for each point and finally a set of resonance 
frequencies and modal damping ratios were obtained. The amount of uncertainty on 
resonance frequencies and modal damping ratios can also be determined by spatial system 
identification. There are different methods which can be applied to determine the 

uncertainty and improve the values of the parameters ω  and ξ  such as boot-strapping 

(Reinelt, 2002). However, in this study the uncertainty is considered as the standard 
deviation of the parameters and the mean values are accepted as the final values, which are 
presented at Table 3. 
 

 
1ω  (Hz) 2ω  (Hz) 1ξ  2ξ  

Mean 6.742 41.308 0.027 0.008 

Standard Deviation 0.010 0.166 0.002 0.001 

Table 3. Mean and standard deviation of the first two resonance frequencies and modal 
damping ratios 

 
For more details about spatial system identification one may refer to (Kırcalı, 2006a). 
The estimated and analytical first two mode shapes of the smart beam are given in Fig.11 
and Fig.12, respectively (Kırcalı, 2006a). 
 

 
Fig. 3. Frequency response of the smart beam at r = 0.14Lb 
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Fig. 4. Frequency response of the smart beam at r = 0.99Lb 

 

Fig. 5. Frequency responses of the error system models at r = 0.14Lb 
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Fig. 6. Frequency responses of the error system models at r = 0.99Lb 

 

Fig. 7. Experimental setup for the spatial system identification of the smart beam 
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Fig. 8. The locations of the measurement points 
 

 
Fig. 9. Analytical and experimental frequency responses of the smart beam at r=0.99 Lb 
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Fig. 10. Experimental and tuned analytical frequency responses at r=0.99 Lb 

 

 
Fig. 11. First mode shape of the smart beam 
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Fig. 12. Second mode shape of the smart beam 

 
4. Spatial H∞ Control Technique 
 

Obtaining an accurate system model lets one to understand the system dynamics more 
clearly and gives him the opportunity to design a consistent controller. Various control 

design techniques have been developed for active vibration control like ∞H  or 2H  methods 

(Francis, 1984 and Doyle, 1989).   

The effectiveness of ∞H  controller on suppressing the vibrations of a smart beam due to its 

first two flexural modes was studied by Yaman et al. (2001) and the experimental 

implementation of the controller was presented (2003). By means of ∞H  theory, an additive 

uncertainty weight was included to account for the effects of truncated high frequency 
modes as the model correction. Similar work has been done for suppressing the in-vacuo 
vibrations due to the first two modes of a smart fin (Yaman, 2002a, 2002b) and the 

effectiveness of the ∞H  control technique in the modeling of uncertainties was also shown. 

However, ∞H  theory does not take into account the multiple sources of uncertainties, 

which yield unstructured uncertainty and increase controller conservativeness, at different 
locations of the plant. That problem can be handled by using the μ-synthesis control design 
method (Nalbantoğlu, 1998; Ülker, 2003 and Yaman, 2003). 
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Whichever the controller design technique is employed, the major objective of vibration 
control of a flexible structure is to suppress the vibrations of the first few modes on well-
defined specific locations over the structure. As the flexible structures are distributed 
parameter systems, the vibration at a specific point is actually related to the vibration over 
the rest of the structure. As a remedy, minimizing the vibration over entire structure rather 
than at specific points should be the controller design criterion. The cost functions 

minimized as design criteria in standard 2H  or ∞H  control methodologies do not contain 

any information about the spatial nature of the system. In order to handle this absence, 

Moheimani and Fu (1998c), and Moheimani et al. (1997, 1998a) redefined 2H  and ∞H  norm 

concepts. They introduced spatial 2H  and spatial ∞H  norms of both signals and systems to 

be used as performance measures.  
 

The concept of spatial control has been developed since the last decade. Moheimani et al. 

(1998a) studied the application of spatial LQG and ∞H  control technique for active 

vibration control of a cantilevered piezoelectric laminate beam. They presented simulation 
based results in their various works (1998a, 1998b, 1999). Experimental implementation of 

the spatial 2H  and ∞H  controllers were first achieved by Halim (2002a, 2002b, 2002c). 

These studies proved that the implementation of the spatial controllers on real systems is 
possible and that kind of controllers show considerable superiority compared to pointwise 
controllers on suppressing the vibration over entire structure. However, these works 
examined only simply-supported piezoelectric laminate beam. The contribution to the need 
of implementing spatial control technique on different systems was done by Lee (2005). 
Beside vibration suppression, he studied attenuation of acoustic noise due to structural 
vibration on a simply-supported piezoelectric laminate plate.  
 

This section gives a brief explanation of the spatial ∞H  control technique based on the 

complete theory presented in reference (Moheimani, 2003). For more detailed explanation 
the reader is advised to refer to the references (Moheimani, 2003 and Halim, 2002b).  
 

Consider the state space representation of a spatially distributed linear time-invariant (LTI) 
system: 
 

1 2

1 1 2

2 3 4

( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= + +
= + +

= + +

&x t Ax t B w t B u t

z t r C r x t D r w t D r u t

y t C x t D w t D u t

                               (27) 

 
where r is the spatial coordinate, x is the state vector, w is the disturbance input, u is the 
control input, z is the performance output and y is the measured output. The state space 

representation variables are as follows: A  is the state matrix, 1B  and 2B  are the input 

matrices from disturbance and control actuators, respectively, 1C  is the output matrix of 

www.intechopen.com



396                                                                     New Developments in Robotics, Automation and Control 

error signals, 2C  is the output matrix of sensor signals, 1D , 2D , 3D  and 4D  are the 

correction terms from disturbance actuator to error signal, control actuator to error signal, 
disturbance actuator to feedback sensor and control actuator to feedback sensor, 
respectively.  

The spatial ∞H  control problem is to design a controller which is: 

 

( ) ( ) ( )

( ) ( ) ( )

= +
= +

&
k k k k

k k k

x t A x t B y t

u t C x t D y t
                                                              (28) 

 
such that the closed loop system satisfies: 
 

[ )2

2

0,
inf  sup  γ∈ ∞∈ ∞ <K U w L

J                                                               (29) 

 
where U is the set of all stabilizing controllers and γ  is a constant. The spatial cost function 

to be minimized as the design criterion of spatial ∞H  control design technique is: 

 

0

0

( , ) ( ) ( , )

( ) ( )

∞

∞ ∞

∫ ∫
=

∫

T

R

T

z t r Q r z t r drdt

J

w t w t dt

                                                    (30) 

 
where ( )Q r  is a spatial weighting function that designates the region over which the effect 

of the disturbance is to be reduced. Since the numerator is the weighted spatial 2H  norm of 

the performance signal ( , )z t r  , J∞  can be considered as the ratio of the spatial energy of 

the system output to that of the disturbance signal (Moheimani, 2003). The control problem 
is depicted in Fig.13: 
 

 
Fig. 13. Spatial ∞H  control problem 
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Spatial ∞H  control problem can be solved by the equivalent ordinary ∞H  problem 

(Moheimani, 2003) by taking: 
 

0 0

( , ) ( ) ( , ) ( ) ( )
∞ ∞

=∫ ∫ ∫ % %T T

R

z t r Q r z t r drdt z t z t dt                                     (31) 

 

so, the spatial cost function becomes: 
 

              
0

0

( ) ( )

( ) ( )

∞

∞ ∞

∫
=

∫

% %T

T

z t z t d t

J

w t w t d t
                                                (32) 

 
So the spatial ∞H  control problem is reduced to a standard ∞H  control problem for the 

following system: 
 

1 2

1 2

2 3 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= + +
= Π +Θ +Θ
= + +

&
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z t x t w t u t

y t C x t D w t D u t

                                           (33) 

 
However, in order to limit the controller gain and avoid actuator saturation problem, a 
control weight should be added to the system. 
 

1 2

1 2

2 3 4
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= + +
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= + +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= + +

&

%

x t Ax t B w t B u t

z t x t w t u t

y t C x t D w t D u t

                             (34) 

 
where κ  is the control weight and it designates the level of vibration suppression. Control 
weight prevents the controller having excessive gain and smaller κ   results in higher level 
of vibration suppression. However, optimal value of κ  should be determined in order not 
to destabilize or neutrally stabilize the system. 
 

Application of the above theory to our problem is as follows: Consider the closed loop 
system of the smart beam shown in Fig.14. The aim of the controller, K, is to reduce the 
effect of disturbance signal over the entire beam by the help of the PZT actuators. 
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Fig. 14. The closed loop system of the smart beam 

 
The state space representation of the system above can be shown to be (Kırcalı, 2008 and 
2006a): 
 

1 2

1 1 2

2 3 4

( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

= + +
= + +
= + +

&

L

x t Ax t B w t B u t

y t r C r x t D r w t D r u t

y t r C x t D w t D u t

                          (35) 

 
where all the state space parameters were defined at Section 2.4, except the performance 

output and the measured output which are now denoted as ( , )y t r  and ( , )Ly t r , 

respectively. The performance output represents the displacement of the smart beam along 
its entire body, and the measured output represents the displacement of the smart beam at a 

specific location, i.e. Lr r= . The disturbance ( )w t  is accepted to enter to the system 

through the actuator channels, hence, 1 2B B= , 1 2( ) ( )D r D r=  and 3 4D D= . 
 

The state space form of the controller design, given in equation (28), can now be represented 
as: 
 

( ) ( ) ( , )

( ) ( ) ( , )

= +
= +

&
k k k k L

k k k L

x t A x t B y t r

u t C x t D y t r
                                                     (36) 

 
Hence, the spatial ∞H  control problem can be represented as a block diagram which is 

given in Fig.15: 
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Fig. 15. The Spatial ∞H  control problem of the smart beam 

 
As stated above, the spatial ∞H  control problem can be reduced to a standard ∞H  control 

problem. The state space representation given in equation (35) can be adapted for the smart 

beam model for a standard ∞H  control design as: 
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                                     (37) 

 
The state space variables given in equations (35) and (37) can be obtained from the transfer 
function of equation (22) as: 
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[ ] [ ]1 1 2 2 1 2( ) ( ) 0 0 , ( ) ( ) 0 0φ φ φ φ= = L LC r r C r r                   (40) 

 
50 50

1 2 3 4
3 3

( ) , ( )φ φ
= =

= = = =∑ ∑opt opt

i i i L i
i i

D D r k D D r k                             (41) 

 
The detailed derivation of the above parameters can be found in (Kırcalı, 2006a). 
 

One should note that, in the absence of the control weight, κ , the major problem of 

designing an ∞H  controller for the system is that, such a design will result in a controller 

with an infinitely large gain (Moheimani, 1999). As previously described, in order to 
overcome this problem, an appropriate control weight, which is determined by the designer, 
is added to the system. Since the smaller κ  will result in higher vibration suppression but 
larger controller gain, it should be determined optimally such that not only the gain of the 
controller does not cause implementation difficulties but also the suppression of the 
vibration levels are satisfactory. In this study, κ  was taken as 7.87x10-7.. The simulation of 
the effect of the controller is shown in Fig.16 as a bode plot. The frequency domain 
simulation was done by Matlab v6.5. 
 

 
Fig. 16. Bode plots of the open loop and closed loop systems under the effect of spatial ∞H  

controller 
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The vibration attenuation levels at the first two flexural resonance frequencies were found to 
be 27.2 dB and 23.1 dB, respectively. The simulated results show that the designed controller 
is effective on the suppression of undesired vibration levels. 
 

4.1 Implementation of the Spatial Controller 

This section presents the implementation of the spatial ∞H  controller for suppressing the 

free and forced vibrations of the smart beam. The closed loop experimental setup is shown 
in Fig.17. The displacement of the smart beam at a specific location was measured by using a 
Keyence Laser Displacement Sensor (LDS) and converted to a voltage output that was sent 
to the SensorTech SS10 controller unit via the connector block. The controller output was 
converted to the analog signal and amplified 30 times by SensorTech SA10 high voltage 
power amplifier before being applied to the piezoelectric patches. The controller unit is 
hosted by a Linux machine on which a shared disk drive is present to store the 
input/output data and the C programming language based executable code that is used for 
real-time signal processing. 
 

For the free vibration control, the smart beam was given an initial 5 cm tip deflection and 
the open loop and closed loop time responses of the smart beam were measured. The results 
are presented in Fig.18 which shows that the controlled time response of the smart beam 
settles nearly in 1.7 seconds. Hence, the designed controller proves to be very effective on 
suppressing the free vibration of the smart beam. 
 

 

Fig. 17. The closed loop experimental setup 
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Fig. 18. Open and closed loop time responses of the smart beam under the effect of spatial 

H∞  controller 

 
The forced vibration control of the smart beam was analyzed in two different 
configurations. In the first one, the smart beam was excited for 180 seconds with a shaker 
located very close to the root of the smart beam, on which a sinusoidal chirp signal of 
amplitude 4.5V was applied. The excitation bandwidth was taken first 5 to 8 Hz and later 40 
to 44 Hz to include the first two flexural resonance frequencies separately. The open loop 
and closed loop time and frequency responses of the smart beam under respective 
excitations are shown in Fig.19-a, Fig.19-b, Fig.20. Note that the Nyquist plot of the nominal 

system loop gain under the effect of spatial ∞H  controller given in Fig. 21 shows that the 

nominal system is stable. 
 

The experimental attenuation of vibration levels at first two resonance frequencies were 
determined from the Bode magnitude plots of the frequency responses of the smart beam 
and shown in Fig.20-a  and Fig.20-b. The resultant attenuation levels were found as 19.8 dB 
and 14.2 dB, respectively. Hence, the experimental results show that the controller is 
effective on suppression of the vibration levels. The reason why experimental attenuation 
levels are less than the simulated ones is that, the excitation power of the shaker was not 
enough to make the smart beam to reach the larger deflections which in turn causes a 
smaller magnitude of the open loop time response. The hardware constraints prevent one to 
apply higher voltages to the shaker. On the other hand, the magnitude of the experimental 
and simulated closed loop frequency responses at resonance frequencies being close to each 
other makes one to realize that, the controller works exactly according to the design criteria. 
Additionally, one should note that the attenuation levels were obtained from the decibel 
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magnitudes of the frequency responses. Hence, a simple mathematical manipulation can 
give the absolute attenuation levels as a ratio of the maximum time responses of the open 
and closed loop systems at the specified resonance frequencies.  
 

In the second configuration, instead of using a sinusoidal chirp signal, constant excitation 
was applied for 20 seconds at the resonance frequencies with a mechanical shaker. The open 
loop and closed loop time responses of the smart beam were measured and shown in Fig.21 
and Fig.22. Although, it is hard to control such a resonant excitation, the time responses 
show that the designed controller is still very effective on suppressing the vibration levels. 
Recall that the ratio of the maximum time responses of the open and closed loop systems 
can be considered as absolute attenuation levels; hence, for this case, the attenuation levels 
at each resonance frequency were calculated approximately as 10.4 and 4.17, respectively.  
 

The robustness analysis of the designed controller was performed by Matlab v6.5 μ-
synthesis toolbox. The results are presented in Fig. 23. The theoretical background of μ-
synthesis is detailed in the References (Zhou, 1998 and Ülker, 2003). One should know that 
the μ values should be less than unity to accept the controllers to be robust. The Fig.23 

shows that the spatial ∞H  controller is robust to the perturbations.  
 

The efficiency of spatial controller in minimizing the overall vibration over the smart beam 
was compared by a pointwise controller that is designed to minimize the vibrations only at 

point br = 0.99L . For a more detailed description of the pointwise controller design, the 

interested reader may refer to the reference (Kırcalı, 2006a and 2006b). However, in order to 
give the idea of the previous studies, the comparative effects of the spatial and pointwise 

∞H  controllers on suppressing the first two flexural vibrations of the smart beam are briefly 

presented in Table 4: 
 
 Spatial ∞H  controller Pointwise ∞H  controller 

Modes 1st mode 2nd mode 1st mode 2nd mode 

Simulated attenuation levels 
(dB) 

27.2 23.1 23.5 24.4 

Experimentally obtained 
attenuation levels (dB) 

19.8 14.2 21.02 21.66 

Absolute attenuation levels 
under constant resonant 
excitation (max. OL time 
response/ max. CL time 
response) 

10.4 4.17 5.75 4.37 

Table 4. The comparison of attenuation levels under the effect of spatial and pointwise ∞H  

controllers in forced vibrations 
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The simulations show that both controllers work efficiently on suppressing the vibration 
levels. The forced vibration control experiments of first configuration show that the 
attenuation levels of pointwise controller are slightly higher than those of the spatial one. 
Although the difference is not significant especially for the first flexural mode, better 
attenuation of pointwise controller would not be a surprise since the respective design 
criterion of a pointwise controller is to suppress the undesired vibration level at the specific 
measurement point. Additionally, absolute attenuation levels show that under constant 

resonant excitation at the first flexural mode, the spatial ∞H  controller has better 

performance than the pointwise one. This is because the design criterion of spatial controller 
is to suppress the vibration over entire beam; hence, the negative effect of the vibration at 
any point over the beam on the rest of the other points is prevented by spatial means. So, the 

spatial ∞H  controller resists more robustly to the constant resonant excitation than the 

pointwise one. 
The implementations of the controllers showed that both controllers reduced the vibration 
levels of the smart beam due to its first two flexural modes in comparable efficiency (Kırcalı, 
2006a and 2006b).  The effect of both controllers on suppressing the first two flexural 

vibrations of the smart beam over entire structure can be analyzed by considering the ∞H  

norm of the entire beam. Fig.24 shows the ∞H  norm plots of the smart beam as a function of 

r under the effect of both controllers. 

  
5. General Conclusions 
 

This study presented a different approach in active vibration control of a cantilevered smart 
beam.  
 
The required mathematical modeling of the smart beam was conducted by using the 
assumed-modes method. This inevitably resulted in a higher order model including a large 
number of resonant modes of the beam. This higher order model was truncated to a lower 
model by including only the first two flexural vibrational modes of the smart beam.  The 
possible error due to that model truncation was compensated by employing a model 
correction technique which considered the addition of a correction term that consequently 

minimized the weighted spatial 2H  norm of the truncation error. Hence, the effect of out-of-

range modes on the dynamics of the system was included by the correction term. During the 
modeling phase the effect of piezoelectric patches was also conveniently included in the 
model to increase the accuracy of the system model. However, the assumed-modes 
modeling alone does not provide any information about the damping of the system. It was 
shown that experimental system identification, when used in collaboration with the 
analytical model, helps one to obtain more accurate spatial characteristics of the structure. 
Since the smart beam is a spatially distributed structure, experimental system identification 
based on several measurement locations along the beam results in a number of system 
models providing the spatial nature of the beam. Comparison of each experimental and 
analytical system models in the frequency domain yields a significant improvement on the 
determination of the natural frequencies and helps one to identify the uncertainty on them. 
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Also, tuning the modal damping ratios until the magnitude of both frequency responses 
coincide at resonance frequencies gives valid damping values and the corresponding 
uncertainty for each modal damping ratio. 
 

This study also presented the active vibration control of the smart beam. A spatial ∞H  

controller was designed for suppressing the first two flexural vibrations of the smart beam. 
The efficiency of the controller was demonstrated both by simulations and experimental 
implementation. The effectiveness of spatial controller on suppressing the vibrations of the 
smart beam over its entire body was also compared with a pointwise one. 
 

 
a) Within excitation of 5-8 Hz 

 
b) Within excitation of 40-44 Hz 

Fig. 19. Time responses of the smart beam 
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Fig. 20. Open and closed loop frequency 
responses of the smart beam 

Fig. 21. Nyquist plot 

 
Fig. 21. Open and closed loop time responses 
at first resonance frequency 

 
Fig. 22. Open and closed loop time 
responses at second resonance frequency 
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