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1. Introduction 
 

Graphs are used effectively in representing model structures in a variety of 
research fields such as statistics, artificial intelligence, data mining, biological science, 
medicine, decision science, educational science, etc. We use different forms of graphs 
according to the nature of the random variables involved. For instance, arrows are used 
when the relationship is asymmetric as when it is causal or temporal, and undirected edges 
are used when the relationship is associative.  

When a random field is Markov with respect to a triangulated graph, i.e., a 
decomposable graph, which does not have a cycle of length 4 or larger, its corresponding 
probability model is expressed in a factorized form which facilitates computation over the 
probability distribution of the random field (Kemeny et al., 1976). This computational 
feasibility, among others, makes such a Markov random field a most favored random field. 
Literature is abound in regard to the properties of theMarkov randomfield which isMarkov 
with respect to a decomposable graph (see Chapter 12 of Whittaker (1990) and Lauritzen 
(1996)). We call such a random field a decomposable graphical model.  

There have been remarkable improvements in learning graphical models in the 
form of a Bayesian network (Pearl, 1986 & 1988; Heckerman et al., 1995; Friedman & 
Goldszmidt, 1998; Neil et al., 1999; Neapolitan, 2004) from data. This learning however is 
mainly instrumented by heuristic searching algorithms and the model searching is usually 
NP-hard [Chickering (1996)]. A good review is given in Cooper (1999) and Neopolitan 
(2004) on structural discovery of Bayesian or causal networks from data. Since a Bayesian 
network can be transformed into a decomposable graph [Lauritzen and Spiegelhalter 
(1988)], the method of model combination which is proposed in this paper would lead to an 
improvement in graphical modelling from data. This method would be useful when we 
don’t have data which are large enough for the number of the random variables that are 
involved in the data. In this situation, it is desirable to develop marginal models of 
manageable sizes for subsets of variables and then search for a model for the whole set of 
variables based on the marginal models. 

The main idea of the method to be proposed is similar to constraint-based learning 
as described in Neapolitan (2004) (also see Meek (1995) and Spirtes et al. (2000)) where we 
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construct a Bayesian network based on a list of constraints which are given in terms of 
conditional independence among a given set of random variables. But a noteworthy 
difference between the two is that, while the statements of conditional independencies are 
an extraction, as for the constraintbased learning, from the probability model of the whole 
set of the variables involved, the statements of conditional independencies for the method to 
be proposed are from the marginal probability models of the subsets of variables. This 
difference in how we extract the statements of conditional independence is the main source 
of the difference between the two methods.  

In deriving the method of the paper, it is imperative that we make use of the 
relationship between the joint (as against marginal) model structure and its marginal model 
structure. Kim (2006) introduced a certain type of subgraph, called Markovian subgraph, 
and investigated its properties as a subgraph of a decomposable graph. Some of the 
properties play a crucial role in the process of constructing a decomposable graph based on 
a collection of its Markovian subgraphs. We will elaborate on this in later sections. Kim 
(2004) called our attention to the relationship between a set of probability models and a set 
of model structures and proved a theorem to the effect that we may deal with model 
structures of marginal models in search of the model structure of the joint probability model 
for the whole set of variables involved in data. In 1 this respect, we will use graphs to 
represent model structures and compare the joint model with its marginal models using 
graphs.  

This paper consists of 8 sections. Section 2 introduces notations and graphical 
terminologies along with new concepts such as Markovian subgraph and Markovian 
subpath. A simple but motivational example is considered in Section 3 with some prelusive 
remarks of the method to be proposed. Sections 4 and 5 then introduces theorems and a new 
type of graph that are instrumental for the model-combination. Section 6 describes the 
model-combining process and it is illustrated in section 7. The paper is concluded in section 
8 with summarizing remarks. 

 
2. Notation and preliminaries 
 

We will consider only undirected graphs in the paper. We denote a graph by  = 
(V,E), where V is the set of the indexes of the variables involved in  and E is a collection of 
ordered pairs, each pair representing that the nodes of the pair are connected by an edge. 
Since  is undirected, that (u, v) is in E is the same as that (v, u) is in E. If (u, v) є E, we say 
that u is a neighbor node of or adjacent to v or vice versa. We say that a set of nodes of  
forms a complete subgraph of  if every pair of nodes in the set is adjacent to each other. If 
every node in A is adjacent to all the nodes in B, we will say that A is adjacent to B. A 
maximal complete subgraph is called a clique of , where the maximality is in the sense of 
set-inclusion. We denote by C( ) the set of cliques of .  

 
A path of length n is a sequence of nodes u = v0, ··· , vn = v such that (vi, vi+1) ∈  E, i 

= 0, 1, · · · , n − 1 and u ≠ v. If u = v, the path is called an n-cycle. If u ≠ v and u and v are 
connected by a path, we write u  v. We define the connectivity component of u as 
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So, we have 
 

 

 
We say that a path, v1, · · · , vn, v1 ≠ vn, is intersected by A if A ∩ {v1,···,vn} ≠ Ø and 

neither of the end nodes of the path is in A. We say that nodes u and v are separated by A if 
all the paths from u and v are intersected by A. In the same context, we say that, for three 
disjoint sets A,B, and C, A is separated from B by C if all the paths from A to B are 

intersected by C and write . A non-empty set B is said to be intersected by A if B 
is partitioned into three sets B1, B2, and B ∩ A and B1 and B2 are separated by A in . The 
complement of a set A is denoted by Ac and the cardinality of a set A by |A|.  

For A    V , we define an induced subgraph of  confined to A as 

. We also define a graph, called a Markovian subgraph of  confined 

to A, which is formed from  by completing the boundaries in  of the connectivity 
components of the complement of A and denote it by A. In other words, 

where  

 u and v are not separated by . 
Let a path,  say, from u to v is a sequence of edges (ui, ui+1) with u0 = u and uk = v. 

Then we will say that a sequence of edges , 
is a Markovian subpath of . 

If  = (V,E), ' = (V,E'), and , then we say that ' is an edge-subgraph of 

 and write ' . A subgraph of  is either a Markovian subgraph, an induced 
subgraph, or an edge-subgraph of . If ' is a subgraph of , we call  a supergraph of 

'.  
Although decomposable graphs are well known in literature, we define them here 

for completeness. 
 
Definition 2.1. A triple (A,B,C) of disjoint, nonempty subsets of V is said to forma 

decomposition of  if   and the two conditions below both hold: 
 
(i) A and B are separated by C; 

(ii)  is complete. 
 

By recursively applying the notion of graph decomposition, we can define a 
decomposable graph. 
 
Definition 2.2.  is said to be decomposable if it is complete, or if there exists a 

decomposition (A,B,C) into decomposable subgraphs  and . 
For a decomposable graph, we can find a sequence of cliques C1, · · · ,Ck of  which satisfies 
the following condition 

[see Proposition 2.17 of Lauritzen (1996)]:  with   and  

for all i > 1, there is a j < i such that  
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By this condition for a sequence of cliques, we can see that Sj  is expressed as an 

intersection of neighboring cliques of . If we denote the collection of these Sj ¨s by x( ), 
we have, for a decomposable graph , that  
 

                                           (1) 

 
It is possible for some decomposable graph  that there are sets, a and b, in x( ) such that 

.  
The cliques are elementary graphical components and the Sj is obtained as 

intersection of neighboring cliques. So, we will call the Sj ¨s prime separators (PSs for short) 
of the decomposable graph . The PSs in a decomposable graph may be extended to 
separators of prime graphs in any undirected graph, where the prime graphs are defined as 
the maximal subgraphs without a complete separator in Cox and Wermuth (1999). 

 
3. Simple example with remarks 
 

Graph  can be represented in the same way as a graphical log-linear model is represented 
in terms of generators [Fienberg (1980)]. If  consists of cliques C1, · · · ,Cr, we will write 
 

 
 

For instance, if  is of five nodes and C1 = {1, 2}, C2 = {2, 3}, C3 = {3, 4, 5}, then  = 
[12][23][345]. In this context, the terms graph and model structure are used in the same sense. 

Suppose that we are given a pair of simple graphical models where one model is of 
random variables X1,X2,X3 with their inter-relationship that X1 is independent of X3 

conditional on X2 and the other is of X1,X2,X4 with their inter-relationship that X1 is 
independent of X4 conditional on X2. From this pair, we can imagine a model structure for 
the four variables X1, · · · ,X4. The two inter-relationships are pictured at the left end of 
Figure 1. The graph at the top of the two at the left is represented by [12][23] and the one at 
the bottom by [12][24]. X1 and X2 are shared in both models, and assuming that none of the 
four variables are marginally independent of the others, we can see that the following joint 
models have the marginals, [12][23] and [12][24]: 
 

                        (2) 

 
which are displayed in graph in Figure 1. Note that the first three of these four models are 
submodels or edge-subgraphs of the last one. 

It is important to note that some variable(s) are independent of the others, 
conditional on X2 in the pair of marginals, and in all the models in (2). That conditional 
independence takes place conditional on the same variable in the marginal models and also 
in the joint models underlies the main theme of the method to be proposed in the paper. 
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In addressing the issue of combining graphical model structures, we can not help using 
independence graphs and related theories to derive desired results with more clarity and 
refinement. The conditional independence embedded in a distribution can be expressed to 
some level of satisfaction by a graph in the form of graph-separateness [see, for example, the 
separation theorem in p. 67, Whittaker (1990)]. We instrument the notion of conditional 
independence with some particular sets of random variables in a model, where the sets form 
a basis of the model structure so that the Markov property among the variables of the model 
may be preserved between the joint model and its marginals. The sets are 
 

 
Fig. 1. Two marginal models on the left and the four joint models on the right 

 
prime separators. In the simple example, X2 forms the basis. Without the variable, X2, the 
conditional independence disappears.  

It is shown that if we are given a graphical model with its independence graph, , 
and some of its marginal models, then under the decomposability assumption of the model 
we can find a graph, say , which is not smaller than  and in which the graph-
separateness in the given marginal models is preserved (Theorem 4.3). This graph-
separateness is substantiated by the prime separators which are found in the graphs of the 
marginal models. In combining marginal models into , we see to it that these prime 
separators appear as the only prime separators in . This is reflected in the model-
combining procedure described in Section 6.  

 
4. Theorems useful for model-combination 
 

Let  = (V,E) be the graph of a decomposable model and let V1, V2, · · · , Vm be subsets of V. 
The m Markovian subgraphs, v1 , v2 , · · · , vm, may be regarded as the structures of m 
marginal models of the decomposable model, .  For simplicity, we write i = vi . 
 
Definition 4.1. Suppose there are m Markovian subgraphs, 1, · · · , m. Then we say that graph 

 of a set of variables V is a combined model structure (CMS) corresponding to 1, · · · , m, if 
the following conditions hold: 
 

(ii) . 

(ii) Vi = i, for i = 1, · · · ,m. That is, i are Markovian subgraphs of . 
 

We will call  a maximal CMS corresponding to 1, · · · , m if adding any edge to  
invalidates condition (ii) for at least one i = 1, · · · ,m. Since  depends on 1, · · · , m, we denote 
the collection of the maximal CMSs by Ω( 1, · · · , m). 

According to this definition, a CMS is a Markovian supergraph of each i, i = 1, · · 
· ,m. There may be many CMSs that are obtained from a collection of Markovian subgraphs 
as we saw in (2). 
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In the theorem below,  is the collection of the cliques which include nodes of 

A in the graph . The proof is intuitive. The symbol, , follows Pearl (1988), and for 

three disjoint sets, A,B, and C, means that A is separated from B by C in . 

Theorem 4.2. Let  be a Markovian subgraph of  and suppose that, for three disjoint 

subsets A,B,C of  V´, ´ . Then 
 

(i) ; 

(ii) For  and , . 
 
Proof. Since 
 

                                                              (3) 

 
there is no path in  between A and C that bypasses B. If (i) does not hold, it is obvious that 
(3) does not hold either. Now suppose that result (ii) does not hold. Then there must be a 
path from a node in A to a node in C bypassing B. This implies negation of the condition (3) 
by the definition of the Markovian subgraph. Therefore, result (ii) must hold. 

Recall that if i, i = 1, 2, · · · ,m, are Markovian subgraphs of , then  is a CMS. 
For a given set S of Markovian subgraphs, there may be many maximal CMSs, and they are 
related with S through PSs as in the theorem below. 
 
Theorem 4.3. Let there be Markovian subgraphs i, i = 1, 2, · · · ,m, of a decomposable 
graph . Then 
 

(i)                                                              ; 
 

(ii) for any maximal CMS ,                . 

 
Proof. See Kim (2006). 
 

For a given set of Markovian subgraphs, we can readily obtain the set of PSs under 

the decomposability assumption. By (1), we can find for any decomposable graph  
simply by taking all the intersections of the cliques of the graph. An apparent feature of a 
maximal CMS in contrast to a CMS is stated in Theorem 4.3. Note that, in this theorem,  is 
a CMS of i, i = 1, 2, · · · ,m. 

Another important merit of a PS is that if a set of nodes is a PS in a Markovian 
subgraph, then it is not intersected in any other Markovian subgraphs. 
 
Theorem 4.4. Let  be a decomposable graph and 1 and 2 beMarkovian subgraphs of . 

Suppose that a set  and that . Then C is not intersected in 2 by any other 
subset of V2. 
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Proof. Suppose that there are two nodes u and v in C that are separated in 2 by a set S. 

Then, by Theorem 4.2, we have . Since  and 1 is decomposable, C is 
an intersection of some neighboring cliques of 1 by equation (1). So, S can not be a subset 
of V1 but a proper subset of S can be. This means that there are at least one pair of nodes, v1 
and v2, in 1 such that all the paths between the two nodes are intersected by C in 1, with 
v1 appearing in one of the neighboring cliques and v2 in another. 

Since v1 and v2 are in neighboring cliques, each node in C is on a path from v1 to v2 

in 1. From , it follows that there is an l-cycle (l ≥ 4) that passes through the 
nodes u, v, v1, and v2 in . This contradicts the assumption that  is decomposable. 
Therefore, there can not be such a separator S in 2. 

Among the above three theorems, Theorem 4.3 plays a key role in the method of 
model-combination and the other two are employed in adding and removing edges during 
the combining process. 

 
5. Graph of prime separators 
 

In this section, we will introduce a graph of PSs which consists of PSs and edges 
connecting them. The graph is the same as the undirected graphs that are considered so far 
in this paper, the nodes being replaced with PSs. Given a decomposable graph , the graph 
of the PSs of  is defined as follows: 

 

Let . Then the graph of the prime separators (GOPS for short) of  
is obtained from A by replacing every PS and all the edges between every pair of 
neighboring PSs in A with a node and an edge, respectively. 
 
For example, there are three PSs, {3, 4}, {3, 5}, and {4, 8}, in graph 1 in Figure 8. 

Then none of the PSs is conditionally independent of any other among the three PSs. We 
represent this phenomenon with the graph at the top-left corner in Figure 9, where the 
GOPS’s are the graphs of the line (as against dotted) ovals only. The xGOPS’s (short for 
“expanded GOPS”) as appearing in the figure are defined in Section 6 and used in model 
combining. 

We can see conditional independence among the PSs, {13, 14}, {10, 13}, {10, 19}, and 
{10, 21}, in graph 3 in Figure 8. This conditional independence is depicted in GOPS3 in 
Figure 9. As connoted in GOPS1 in Figure 9, a GOPS may contain a clique of more than 2 
PSs, but it cannot contain a cycle of length 4 or larger if the PSs are from a decomposable 
graph. 

Let ' be a Markovian subgraph of  and suppose that, for three PSs, A,B, and C, 
of ', A \ C and B \ C are separated by C in '. Then, by Theorem 4.2, the same is true in 

. 
For three sets, A,B, and C, of PSs of a graph , if A and B are separated by C, then 

we have that 
 

                                          (4) 
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When A,B, and C are all singletons of PSs, the set-inclusion is expressed as 
 

                                                               (5) 

 
This is analogous to the set-inclusion relationship among cliques in a junction tree 

of a decomposable graph (Lauritzen (1996)). A junction tree is a tree-like graph of cliques 
and intersection of them, where the intersection of neighboring cliques lies on the path 
which connects the neighboring cliques. As for a junction tree, the sets in (5) are either 
cliques or intersection of cliques. In the context of a junction tree, the property as expressed 
in (5) is called the junction property. We will call the property expressed in (4) PS junction 
property, where ‘PS’ is from ‘prime separator.’ 

The GOPS and the junction tree are different in the following two senses: First, the 
basic elements are PSs in the GOPS while they are cliques in the junction tree; secondly, the 
GOPS is an undirected graph of PSs while the junction tree is a tree-like graph of cliques. 
Some PSs may form a clique in an undirected graph as in graphs 1 and 4 in Figure 8. 
This is why GOPS may not necessarily be tree-like graphs. So, two PSs may be separated by 
a set of PSs. But, since all the PSs in a decomposable graph  are obtained from the 
intersections of neighboring cliques in , the GOPS of  is the same as the junction tree of 

 with the clique-nodes removed from the junction tree. Whether  is decomposable or 
not, expression (4) holds in general. 

 
6. Description of model-combining procedure 
 

We will call a node a PS node if it is contained in a PS, and a non-PS node otherwise. 
Theorem 4.4 implies that if, for a given Markovian subgraph ´, s is the set of the PSs each 
of which is a neighbor to a PS node v in ´, then s will also be the set of the neighboring PSs 
of any PS, say a, such that v   a, in the Markovian subgraph which is obtained by adding 
the PS, a, to ´. This is useful in locating PSs for model-combination since PS nodes of a PS 
always form a complete subgraph. 

Other useful nodes in model-combination are the non-PS nodes that are shared by 
multiple Markovian subgraphs. A simple illustration of the usefulness is given in expression 
(2). The Markovian subgraphs in Figure 1 share node 1, which determines the meeting 
points of the subgraphs when they are combined into the maximal CMS, [12][234]. Whether 
they are PS nodes or not, a set of nodes which are shared by a pair of Markovian subgraphs 
become meeting points of the subgraphs in the combining process. The shared nodes restrict 
the possible locations of the PS nodes that are not shared by both of the subgraphs. We will 
call by xGOPS a GOPS which is expanded with the nodes that are shared with other 
subgraphs. However we will not distinguish the two and use the terminology “GOPS” 
when confusion is not likely. 

A rule of thumb of model-combination is that we connect two nodes each from 

different Markovian subgraphs in a given set, say , of Markovian subgraphs if the two 

nodes are not separated by any other nodes in . We will formally describe this condition 
below: 
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[Separateness condition ] Let  be a set of Markovian subgraphs of  and  a maximal 

CMS of . If two nodes are in a graph in  and they are not adjacent in the graph, then 
neither are they in . Otherwise, adjacency of the nodes in  is determined by checking 

separateness of the nodes in . 
Suppose thatMconsists of m Markovian subgraphs, 1, · · · , m, of  and we 

denote by ai a PS of i. We can then combine the models of  as follows. 

Step 1. We arrange the subgraphs into  such that 

. For convenience, let  ij = j, j = 1, 2, · · · ,m. 
We set η1 = { 1}. 
 
Step 2a. We first put an edge between every pair of PSs, a1 and a2, if  
 

, 

 
in such a way that the separateness condition is satisfied with regard to . We denote the 
resulting GOPS by H. 
 
Step 2b. Once the node-sharing PSs are all considered in Step 2a, we need to consider all the 
PSs a1 and a2 such that 
 

                          (6) 

 
and put edges between ai, i = 1, 2, and every PS in 3−i that is acceptable under the 
separateness condition, in addition to the GOPS which is obtained in Step 2a. For example, 
for each a1 satisfying (6), we add edges to  between the a1 and every possible PS in 2 
under the separateness condition, and similarly for each of a2 that satisfy (6). We denote the 
result of the combination by η2. 
 

 
Fig. 2. A graphic display of part of Step 2a corresponding to that the PS of GOPS5, {28, 30}, 
and the PS of GOPS6, {30, 32}, share node 30 and that {28, 30} is adjacent to {29, 31, 32, 34} 
and separated from {35, 36, 37, 38} by {29, 31, 32, 34}. The non-adjacent connectedness is 
expressed by dashed lines. 
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Fig. 3. Step 2a in progress from Figure 2 as for the PS pairs, {28, 29, 30} and {30, 32} and {34, 
36} and {36, 38}. 

 
Step 3. Let ηi be the GOPS obtained from the preceding step. Note that ηi can be a set of 

GOPS’s. For each GOPS  in ηi , we combine  with i+1 as in Step 2, where we 
replace 1 and 2 with  and i+1, respectively. We repeat this combination 
with i+1 for all the graphs  in ηi, which results in the set, ηi+1, of newly 
combined graphs. 

Step 4. If i + 1 = m, then stop the process. Otherwise, repeat Step 3. 
 

We will call this processMarkovian combination of model structures orMCMoSt for 
short. The process is summarized in flowcharts in Figures 5 and 6; the former is of the main 
body of the process and the latter is of checking for the separateness condition. For a brief 
illustration of the MCMoSt, we will consider the two marginal graphs, 5 and 6 in Figure 
8. This example has only two graphs, so we may skip Step 1. 

 
Figure 9 shows the GOPSs of two marginal graphs 5 and 6. As for 5, the set of 

PSs in GOPS1 is {{28, 30}, {28, 29, 30}, {29, 34}, {34, 36}} and it is {{30, 32}, {36, 38}, {37, 38}} for 

6. The PS of GOPS5, {28, 30}, and the PS of GOPS6, {30, 32}, share node 30. So we put an 
edge between the two PS’s. In 5, {28, 30} is adjacent to {29, 31, 32, 34} and is separated from 
{35, 36, 37, 38} by {29, 31, 32, 34}. This separateness must be preserved, by Theorem 4.2, in 
the combined model of 5 and 6. We represent this non-adjacent connectedness by 
dashed lines in Figure 2. 

 
The other PSs that share nodes between 5 and 6 are the pair of {28, 29, 30} and 

{30, 32} and the pair of {34, 36} and {36, 38}. We put edges between the PSs in each of these 
pairs and then check the separateness condition. In 5, {37, 38} is separated from {28, 29, 30} 
by {31, 32, 34, 35, 36}, which is satisfied in the graph in Figure 3. This is the result of Step 2a. 

 
In Step 2b, we can see that the PS, {37, 38}, of 6 is disjoint with all the PS’s of 5. 

In 5, we see that {34, 36} separates {37, 38} from the remaining six nodes in G5. Thus we 
put an edge between {34, 36} and {37, 38} only. This ends up with the combined GOPS in 
Figure 4. 

 
In combining a pair of graphs, 1 and 2 say, suppose that an edge is added between a PS, 
a1, in 1 and another PS, a2, in 2 and let Ni , i = 1, 2, be the set of the PSs which are 
adjacent to ai in i. Then, under the decomposability assumption and the separateness 

condition, further edge-additions are possible between the PSs in the only. 
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An example of this is given in Section 7. 
 

 
Fig. 4. Step 2b as continued from Figure 3. 

 

 
Fig. 5. A flowchart of the model-combining process, MCMoSt. In this chart, S is a sequence 
of marginal models to be combined; UnionGOPS just puts the two graphs to be combined 
together; CheckRelation checks if the separateness condition is satisfied between nodes 
and/or PSs; CrossCheck checks if the combined graph preserves the PSs of the two graphs. 
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Fig. 6. A flowchart of the process CheckRelation which is a main part of MCMoSt. In this 
chart, we assume combining two graphs, 1 and 2 say. FindAllPath(A, B, C) finds paths 
between A and B that are blocked by C; Selecting and Removing the edges means that, for each 
of the paths which are found in FindAllPath, the edges to be removed are selected and 
removed. 
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6.1 Time complexity of the procedure 

Let  = {V1, V2, · · · , Vm}. For a given set of A’s, A  , we denote by Es ( ) the set of 

the pairs, u and v, for which there is at least one A such that {u, v} A and they are not 

adjacent in A, denote by Ea ( ) the set of the pairs, u and v, for which there is at least one 

A such that {u, v} A and they are adjacent in A, and let 

. For example, in the graph below, 

V = {1, 2, · · · , 7}, A = {1, 2, 3}, B = {3, 4, 5}, C = {5, 6, 7},  = {A,B,C}, Es ( ) = {{1, 3}, {3, 5}, {5, 

7}}, Ea ( ) = {{i, i + 1}, i = 1, 2 · · · , 6} 

and . 
 

 

 
The computing time of MCMoSt depends upon the sizes of the sets such as Ea and Erem of 

the graphs in . A main part of the algorithm is designed for searching for all the possible 

edges between nodes under the condition that the pairs of nodes in Es are separated. We use 

the depth-first search method (Tarjan, 1972) in Step 2 of the combination process to check 
the separateness between nodes. Suppose we combine 1 and 2 into a graph  and 

obtain Es, Ea and Erem from 1 and 2. Then we search for all the possible edges between 

nodes in such a way that, if there is a path, , in 1 or 2 which contains u and v on itself 

and there is a path, , in  which also contains u and v on itself, then  is a Markovian 
subpath of . 
 
For two graphs, 1 and 2, let |Vi| = ni with i = 1, 2, |V1 ∩ V2| = n12 and ñi = ni − n12. It is 
well known that the time complexity of the depth-first search method for a graph  = (V,E) 
is of order O(|V|+|E|). So the time complexity for the combination is of order ñ21      

 where  is the number of edges in the induced 
subgraph of i on Vi \ V3−i. As a matter of fact, when we use GOPS’s instead of graphs of 
nodes, the time complexity reduces by a considerable amount. For instance, we can see in 
Figure 9 that the six GOPS’s are composed of 3, 3, 5, 5, 6, 3 PS’s, respectively, while the 
marginal graphs are of ten nodes each. MCMoSt uses PS’s and the nodes that are shared 
between graphs rather than nodes only. 

 
7. Ilustration 
 

In this section, we suppose that we are given six marginal models as in Figure 8 each of 
which is Markovian subgraphs of the graph in Figure 7. As a matter of fact the six marginal 
models were obtained through a statistical analysis. We first generated data from the model 
in Figure 7 assuming that all the 40 variables are binary. We then chose six subsets of 
variables in such a way that the variables are more highly associated within subsets than 
between them. The six marginal models in Figure 8 were obtained through a statistical 
analysis of contingency table data. A detailed description of this is given in Kim (2005). 
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Since our interest is in the model-combining method, we will refrain from any further 
discussion on this statistical issue. 
For notational convenience, we will denote a PS by c(·). For instance, c(1, 2) denotes a PS 

consisting of nodes 1 and 2. From 1, we have = {c(3, 4), c(4, 8), c(3, 5)}. If we regard 
the three PSs as random variables, these PSs are associated. In the same context, we can 
represent the conditional independence relationship among the PSs via an independence 
graph based on the corresponding marginal models i. The GOPS’s are displayed for each 
marginal model in Figure 9 along with the nodes which are shared among the marginal 
models. We will call a variable whose corresponding node is a PS-node a PS variable and 
similarly for a non-PS variable. Since every non-PS variable is 
 

 
Fig. 7. A model of the 40 variables that are used for illustration 
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Fig. 8. Six marginal models of the model in Figure 7. PSs are represented by thick lines. See 
Figure 9 for the PSs of the six marginal models. 
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Fig. 9. The GOPS’s and xGOPS’s of the six marginal models in Figure 8. GOPSi’s are the 
graphs of the line ovals only. xGOPSi is the independence graph of the PSs of i and the 
nodes which are shared by i with other marginal models. The oval nested in another oval 
in xGOPS5 means that the PS, c(28, 30), is a subset of the PS, c(28, 29, 30). c(28, 30) is a 
neighbor of node 31 in the graph. Dotted ovals mean that the corresponding set of nodes is a 
PS in some other marginal models. 

 

 
Fig. 10. The graph obtained by linking non-PS variables (bullets) to the PS’s of G3 in Figure 
8. 

 
Separated from other variables by its neighbor PSs, we can represent i by linking 

each non-PS variable to its neighbor PSs. For example, the graph in Figure 10, which is 
obtained by adding non-PS variables of 3 to the graph, GOPS3, of the PSs of 3. Since 
every non-PS node has a unique set of neighboring PSs, a graph such as that in Figure 10 is 
determined uniquely. 

According to Theorem 4.3 (i), all the PSs that appear in a marginal model of  are 

found in . This means that we must make sure that all the PSs of the marginal models 
appear as PSs in . This fact is instrumental to constructing the independence graph of the 
PSs of the marginal models. 
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In section 3, we considered a simple problem of model combination. Although the 
example is very simple, we can see therein that the shared variables, X1 and X2, are like road 
signs in constructing a model structure of the variables that are involved in the variable-
sharing marginal models. As more variables are shared between a pair of marginal models, 
the possible locations of each variable are more limited and thus model construction for the 
variables that are involved in either of the two marginal models becomes easier. The 
variable-sharing between Vi  and Vi+1, i = 1, 2, · · · , 5, is as follows: 
|V1 ∩ V2| = 3, |V2 ∩ V3| = 3, |V3 ∩ V4| = 4, |V4 ∩ V5| = 3, |V5 ∩ V6| = 7.  
|Vi ∩ Vj | = 0 when |i − j| > 1. So, it is desirable that we begin combining marginal models 
from the pair of 5 and 6, 
 

 
Fig. 11. A model-combining process of marginal models i. (A) denotes a maximal 
independence graph of the PSs of i. i є A. The small numbers at the bottom-right of the 
ovals are the marginal model labels to which the corresponding PSs belong.  (2, 3, 4, 5, 6) 
is of three xGOPS’s which are determined by three different groups of edges that are 
labelled by a, b, and c at the bottom-left corner. Line edges are used when they are newly 
added; dotted edges for existing edges; and X-marked dotted edges for the existing edges to 
be removed. 
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and then keep combining marginal models in the order of 4, 3, 2, 1. 
 

Figure 11 shows part of the model-combining process of the xGOPS’s. The graph in 
the top-right is the result of combining 5 and 6, which is the same as the graph in Figure 
3. 

For a given collection of the GOPSs of i, i є A, there can be more than one 
maximal independence graph of the PSs, and we will denote the set of maximal 
independence graphs by (A). When | (A)| = 1, the independence graph itself will be 
represented by (A). 

For notational convenience, we will use the symbol  to denote an outcome of 
model-combination. For example, we write   ´ to express the outcome of combining 
the two graphs,  and ´. Since (5, 6) is a single graph, we may express the next 
combination by (5, 6)  xGOPS4. By applying the same method for the combination, we 
also obtain a unique graph as in the top-left corner of Figure 11, and denote it by (4, 5, 6). 
Note that the PS, c(29, 34), is shared by both of (5, 6) and xGOPS4. Since c(20, 28) and c(20, 
29) share nodes with c(28, 29, 30), we put edges between each of the former two PSs and the 
last PS. This edge addition conflicts with the separateness of c(29, 24) from c(20, 28). 
Considering that node 28 is shared by c(20, 28) and c(28, 29, 30) only (since c(28, 30) is 
contained in c(28, 29, 30), it is ignored here), we can see that the edge between c(29, 34) and 
c(28, 29, 30) must be deleted. Note that the three PSs, c(29, 34), c(20, 29), and c(28, 29, 30) are 
on a path and satisfy the PS junction property (4). 

(4, 5, 6)  xGOPS3 =  (3, 4, 5, 6) is also a single graph as in Figure 11. Since 
neither of c(10, 21) ∩ c(21, 22) and c(10, 13) ∩ c(13, 20) is empty, line edges are put between 
the node-sharing PSs. Then the separateness condition is violated since c(10, 21) and c(10, 13) 
are no longer separated by c(10, 19), and the three PSs, c(10, 13), c(10, 19), and c(10, 21), share 
node 10. Thus the edge between c(21, 22) and c(13, 20) is deleted. After this, we check if there 
are any PSs pertaining to Stage 2 of section 6, which end up with the addition of edges 
between c(10, 19) and c(21, 22) and between c(10, 19) and c(13, 20). 

So far the combination process has produced single graphs. But (3, 4, 5, 6)  
xGOPS2 is a set of three graphs. c(14, 16) and c(13, 14) share node 14, and so we put a line 
edge between them. c(8, 10) shares node 10 with  

 

c(10, 13), c(10, 19), and c(10, 21),                                                (7)  

 
so we can put two line edges, between c(8, 10) and each of the first two of the PSs in (7), and 
another set of two line edges, between c(8, 10) and each of the last two of the PSs in (7). Note 
that any of these edge additions violates the separateness of c(13, 14) from c(10, 19) and c(10, 
21). So the edges between c(8, 10) and c(14, 16) and between c(8, 10) and c(15, 16) are deleted. 
Implementing Stage 2 then ends up with the addition of edges between c(15, 16) and c(13, 
14) and possibly between c(8, 10) and c(13, 14), where the latter edge can be added along 
with the edge between c(8, 10) and c(10, 13) out of the three edges between c(8, 10) and each 
of the PSs in (7). In other words, c(8, 10) can form a clique with c(10, 13) and c(13, 14), with 
c(10, 13), c(13, 20), and c(10, 19), or with c(10, 19), c(10, 21), and c(21, 22) in an xGOPS in (3, 
4, 5, 6)  xGOPS2. This is depicted at the bottom-left corner of Figure 11. 

However, the set c(8, 10)  c(13, 14)  c(10, 13) c(10, 19)  c(10, 21) = {8, 10, 13, 
14, 19, 21} shares node 8 with V1, nodes 8, 10, 14 with V2, nodes 10, 13, 14 with V3, and nodes 
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13, 21 with V4. So it is more likely that c(8, 10) and c(13, 14) belong to the same clique. This is 
because the grouping of the variables was made so that the variables are more highly 
associated with each other within the subsets than between them. Based on this observation, 
we chose the xGOPS in which c(8, 10) forms a clique with c(10, 13) and c(13, 14). We denote 

this graph by a(2, 3, 4, 5, 6). 

We can apply the same argument in combining a(2, 3, 4, 5, 6) with 1, which 

ends up with the GOPS in Figure 12. The bullets in the figure represent the non-PS variables, 
which are connected to their neighboring PSs. Note that those neighboring PSs are classified 
as such mostly due to the non-PS variables. For example, {37, 38} is a PS separating node 39 
from V6 \ {37, 38, 39} in 6. 

A PS is itself a complete subgraph and so is a clique of PSs. So we can easily 
transform the graph in Figure 12 into the undirected graph in Figure 13. This is the maximal 
CMS of the six marginal models as listed in Figure 8. The model in Figure 7 is fully 
recovered in the maximal CMS except the 5 thick edges appearing in Figure 13. These 
additional edges were created because X4 were missing in 2. If X4 had been added to 2, 
then X{4,9} would have separated X11, X12, and X{8,10} from each other, making those additional 
edges unnecessary. This phenomenon of additional edges leads 
 

 
Fig. 12. An independence graph of PSs and non-PS variables. The PSs are in ovals and the 
dots are for the non-PS variables, and the small numbers at the bottom-right of the ovals are 
the marginal model labels of which the ovals are PSs. 
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Fig. 13. The combined model structure which is obtained from the independence graph in 
Figure 12. The thick edges are additional to the model in Figure 7. us to recommend that the 
variables be grouped into marginal models so that the association between variables is 
higher within a marginal model than between marginal models. 

 
8. Conclusion 
 

In Section 7, we considered a model, , of 40 variables and six marginal models of 
it. The marginal models have their model structures given in decomposable graphs which 
are actually Markovian subgraphs of the graph . In this context, marginal model and 
Markovian subgraph may be regarded as synonyms as long as the joint model has a model 
structure which can be represented via an undirected graph. 

In combining marginal models, it is important to make use of the locations of the 
variables that are shared by the marginal models to be combined. While we use GOPS’s of 
marginal models to construct another GOPS, the locations of the non-PS nodes that are 
shared by the marginal models to be combined are as important as the PSs in the marginal 
models. The PS junction property (4) and the separateness condition are instrumental for 
locating PSs in model-combination. When | i  j | > 1, that is, a multiple number of 
maximal CMS’s are obtained, it is desirable that we look for or develop more marginal 
models from data in order to minimize the resultant maximal CMS’s. For instance, the PS {8, 
10} of 2 in Figure 8 can be connected to the combined graph  (3, 4, 5, 6) by three different 
sets of edges as shown at the bottom-left corner of Figure 11. Denote the three different sets 
of corresponding nodes by A,B, and C. Then if we could develop a model for the set of 
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variables, {8, 10}  A  B  C, then the model would help us in choosing one of the three 
different sets of edges. 

In selecting the subsets of variables, it is important that the variables that are highly 
associated belong to the same set. In other words, when the joint model is graphical with an 
undirected graph as its model structure, variables that appear as neighbors in the graph are 
desired to belong to a subset of variables. Otherwise, the model-combination may end up 
with an unnecessarily large graph. An example is demonstrated by thick edges in Figure 13. 
The thick edges would not have appeared, if X9 had been included in 1 or X4 in 2. In this 
regard, subset selection for marginal modeling is crucial for a successful model-
combination. 

As mentioned in Section 1, several heuristic searching methods are developed for 
learning Bayesian networks from data. Since they deal with the whole set of variables 
involved in data, we can easily run into a sparse data problem for large scale modeling, not 
to mention the time complexity burden. The marginal-model based approach as proposed in 
this 15 paper may not suffer from the sparse data problem. Furthermore, in applying our 
method, the marginal models don’t have to be based on observed data only. They may be 
based on expert opinions, since the method deals with model structures only. 

Although the model combination is carried out under the decomposability 
assumption, we can deal with the marginal models of a graphical model, which are not 
decomposable, by transforming their model structures into decomposable (i.e., triangulated) 
graphs. The combined model will then be larger than expected as a trade-off of the graph 
triangulation made on the marginal models. 
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