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Abstract 
 

Linear programming is a powerful optimization technique and an important field in the 
areas of science, engineering, and business. Large-scale linear programming problems arise 
in many practical applications, and solving these problems requires an integration of data-
analysis and data-manipulation capabilities. Database technology has become a central 
component of today’s information systems. Almost every type of organization is now using 
database systems to store, manipulate, and retrieve data. Nevertheless, little attempt has 
been made to facilitate general linear programming solvers for database environments. 
Dozens of sophisticated tools and software libraries that implement linear programming 
models can be found. But, there is no database-embedded linear programming tool 
seamlessly and transparently utilized for database processing. The focus of the study in this 
chapter is to fill this  technical gap between data analysis and data manipulation, by solving 
large-scale linear programming problems with applications built on the database 
environment. Specifically, this chapter studies the representation of the linear programming 
model in relational structures, as well as the computational method to solve the linear 
programming problems. We have developed a set of ready to use stored procedures to solve 
general linear programming problems. A stored procedure is a group of SQL statements, 
precompiled and physically stored within a database, thereby having complex logic run 
inside the database. We show versions of procedures in the open-source MySQL database 
and commercial Oracle database system. The experiments are performed with several 
benchmark problems extracted from the Netlib library. Foundations for and preliminary 
experimental results of this study are presented.* 

 
1. Introduction 
 

                                                 
*
 This work has been partly supported by New York State Department of Transportation 

and New York City Department of Environment Protection. 
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Linear programming is a powerful technique for dealing with the problem of allocating 
limited resources among competing activities, as well as other problems having a similar 
mathematical formulation (Winston, 1994, Richard, 1991, Walsh, 1985). It has become an 
important field of optimization in the areas of science and engineering and has become a 
standard tool of great importance for numerous business and industrial organizations.  In 
particular, large-scale linear programming problems arise in practical applications such as 
logistics for large spare-parts inventory, revenue management and dynamic pricing, finance, 
transportation and routing, network design, and chip design (Hillier and Lieberman, 2001). 
 
While these problems inevitably involve the analysis of a large amount of data, there has 
been relatively little work addressing this in the database context. Little serious attempt has 
been made to facilitate data-driven analysis with data-oriented techniques. In today’s 
marketplace, dozens of sophisticated tools and software libraries that implement linear 
programming models can be found. Nevertheless, these products do not work with 
database systems seamlessly. They rather require additional software layers built on top of 
databases to extract and transfer data in the databases. The focus of our study gathered here 
is to fill this technical gap between data analysis and data manipulation by solving large-
scale linear programming problems with applications built on the database environment. 
 
In mathematics, linear programming problems are optimization problems in which the 
objective function to characterize optimality of a problem and the constraints to express 
specific conditions for that problem are all linear (Hillier and Lieberman, 2001, Thomas H. 
Cormen and Stein, 2001). Two families of solution methods, so-called simplex methods 
(Dantzig, 1963) and interior-point methods (Karmarkar, 1984), are in wide use and available as 
computer programs today. Both methods progressively improve series of trial solutions by 
visiting edges of the feasible boundary or the points within the interior of the feasible 
region, until a solution is reached that satisfies the constraints and cannot be improved. In 
fact, it is known that large problem instances render even the best of codes nearly unusable 
(Winston, 1994). Furthermore, the program libraries available today are found outside the 
standard database environment, thus mandating the use of a special interface to interact 
with these tools for linear programming computations. 
 
This chapter gives a detailed account of the methodology and technical issues related to 
general linear programming in the relational (or object-relational) database environment. 
Our goal is to find a suitable software platform for solving optimization problems on the 
extension of a large amount of information organized and structured in the relational 
databases. In principle, whenever data is available in a database, solving such problems 
should be done in a database way, that is, computations should be closed in the world of the 
database. There is a standard database language, ANSI SQL, for the manipulation of data in 
the database, which has grown to a level comparable to most ordinary programming or 
scripting languages. Eliminating reliance on a commercial linear programming package, 
thus eliminating the overhead of data transfer between database and package is what we 
hope to achieve.  
 
There are also the issues of trade-off. A basic nature of linear programming is a collection of 
matrices defining a problem and a sequence of algebraic operations repeatedly applied to 
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these matrices, hence giving a perfect match for array-based programming in scientific 
computations. In general, the relational database is not designed for matrix operations like 
solving linear programming problems. Indeed, realizing matrix operations on top of the 
standard relational (or object-relational) structure is non-trivial. On the other hand, at the 
heart of the database system is the ability to effectively manage resources coupled with an 
efficient data access mechanism. The response to user is made by the best available sequence 
of operations, or so-called optimized queries, on the actual data. When handling extremely 
large matrices, the system probably gives a performance advantage over the unplanned or 
ad hoc execution of the program causing an insatiable use of virtual memory (thus causing 
thrashing) for the disposition of arrays.  
 
In this chapter, implementation techniques and key issues for this development are studied 
extensively. A model suitable to capture the dynamics of linear programming computations 
is incorporated into the aimed development, by way of realizing a set of procedural 
interfaces that enables a standard database language to define problems within a database 
and to derive optimal solutions for those problems without requiring users to write detailed 
program statements. Specifically, we develop two sets of ready to use stored procedures to 
solve general linear programming problems. A stored procedure is a group of SQL 
statements, precompiled and physically stored within a database (Gulutzan and Pelzer, 
1999, Gulutzan, 2007). It forms a logical unit to encapsulate a set of database operations, 
defined with  an application program interface to perform a particular task, thereby having 
complex logic run inside the database. The exact implementation of a stored procedure 
varies from one database to another, but is supported by most major database vendors. To 
this end, we will show implementations using MySQL open-source database system and 
freely available Oracle Express Edition selected from the commercial domain. Our choice of 
these popular database environments is to justify the feasibility of concepts and to draw 
comparisons of their usability. 
 
The rest of this chapter is organized as follows: Section 2 defines the linear programming 
model and introduces our approach to express the model in the relational database. Section 
3 presents details of developed simulation system and experimental performance studies. 
Section 4 discusses related work, and Section 5 concludes our work gathered in this chapter. 

 
2. Fundamentals 
 

A linear programming problem consists of a collection of linear inequalities on a number of 
real variables and a fixed linear function to maximize or minimize. In this section, we 
summarize the principle technical issues in formulating the problem and some solution 
method in the relational database environment. 

 

2.1 Linear Programming Principles 

Consider the matrix notation expressed in the set of equations (1) below. The standard form 

of the linear programming problem is to maximize an objective function Z = cT x, subject to 
the functional constraints of Ax ≤ b and non-negativity constraints of x ≥ 0, with 0 in this 
case being the n-dimensional zero column vector. A coefficient matrix A and column vectors 
c, b, and x are defined in the obvious manner such that each component of the column 
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vector Ax is less than or equal to the corresponding component of the column vector b. But 
all forms of linear programming problems arise in practice, not just ones in the standard 
form, and we must deal with issues such as minimization objectives, constraints of the form 
Ax ≥ b or Ax = b, variables ranging in negative values, and so on. Adjustments can be made 
to transform every non-standard problem into the standard form. So, we limit our 
discussion to the standard form of the problem. 
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The goal is to find an optimal solution, that is, the most favorable values of the objective 
function among feasible ones for which all the constraints are satisfied. The simplex method 
(Dantzig, 1963) is an algebraic iterative procedure where each round of computation 
involves solving a system of equations to obtain a new trial solution for the optimality test. 
The simplex method relies on the mathematical property that the objective function’s 
maximum must occur on a corner of the space bounded by the constraints of the feasible 
region. 
 
To apply the simplex method, linear programming problems must be converted into a so-
called augmented form, by introducing non-negative slack variables to replace non-equalities 
with equalities in the constraints. The problem can then be rewritten in the following form: 
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In equations (2) above, x ≥ 0, a column vector of slack variables xs ≥ 0, and I is the m × m 
identity matrix. Following the convention, the variables set to zero by the simplex method 
are called nonbasic variables and the others are called basic variables. If all of the basic 
variables are non-negative, the solution is called a basic feasible solution. Two basic feasible 
solutions are adjacent if all but one of their nonbasic variables are the same.  The spirit of the 
simplex method utilizes a rule for generating from any given basic feasible solution a new 
one differing from the old in respect of just one variable. 
 
Thus, moving from the current basic feasible solution to an adjacent one involves switching 
one variable from nonbasic to basic and vice versa for one other variable. This movement 
involves replacing one nonbasic variable (called entering basic variable) by a new one (called 

www.intechopen.com



Linear Programming in Database 

 

343 

leaving basic variable) and identifying the new basic feasible solution. The simplex algorithm 
is summarized as follows: 
 
Simplex Method: 

1. Initialization: transform the given problem into an augmented form, and select original 
variables to be the nonbasic variables (i.e., x = 0), and slack variable to be the basic 
variables (i.e., xs = b). 

2. Optimality test: rewrite the objective function by shifting all the nonbasic variables to 
the right-hand side, and see if the sign of the coefficient of every nonbasic variable is 
positive, in which case the solution is optimal. 

3. Iterative Step: 
3.1 Selecting an entering variable: as the nonbasic variable whose coefficient is largest in 

the rewritten objective function used in the optimality test. 
3.2 Selecting a leaving variable: as the basic variable that reaches zero first when the 

entering basic variable is increased, that is, the basic variable with the smallest upper 
bound. 

3.3 Compute a new basic feasible solution: by applying the Gauss-Jordan method of 
elimination, and apply the above optimality test. 

 
2.2 Revised Simplex Method 

The computation of the simplex method can be improved by reducing the number of 
arithmetic operations as well as the amount of round-off errors generated from these 
operations (Hillier and Lieberman, 2001, Richard, 1991, Walsh, 1985). Notice that n nonbasic 
variables from among the n + m elements of [xT ,xsT]T are always set to zero. Thus, 
eliminating these n variables by equating them to zero leaves a set of m equations in m 
unknowns of the basic variables. The spirit of the revised simplex method (Hillier and 
Lieberman, 2001, Winston, 1994) is to preserve only the pieces of information relevant at 
each iteration, which consists of the coefficients of the nonbasic variables in the objective 
function, the coefficients of the entering basic variable in the other equations, and the right-
hand side of the equations. 
 
Specifically, consider the equations (3) below. The revised method attempts to derive a basic 
(square) matrix B of size m × m by eliminating the columns corresponding to coefficients of 
nonbasic variables from [A, I] in equations (2). Furthermore, let cB

T be the vector obtained 
by eliminating the coefficients of nonbasic variables from [cT, 0T]T and reordering the 
elements to match the order of the basic variables. Then, the values of the basic variables 
become B-1b and Z = cB

T B-1b. The equations (2) become equivalent with equations (3) after 
any iteration of the simplex method. 
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This means that only B-1 needs to be derived to be able to calculate all the numbers used in 
the simplex method from the original parameters of A, b, cB—providing efficiency and 
numerical stability. 

 
2.3 Relational Representation 

A relational model provides a single way to represent data as a two-dimensional table or a 
relation. An n-ary relation being a subset of the Cartesian product of n domains has a 
collection of rows called tuples. Implementions of the simplex and revised simplex methods 
must locate the exact position of the values for the equations and variables of the linear 
programming problem to solve. However, the position of the tuples in the table is not 
relevant in the relational model. By definition, tuple ordering and matrix handling are 
beyond the standard relational features, and these are the most important issues that need to 
be addressed to implement the linear programming solver within the database using the 
simplex method. We will explore two distinct methods for representing matrices in the 
relational model. 
 
Simplex calculations are most conveniently performed with the help of a series of tables 
known as simplex tableaux (Dantzig, 1963, Hillier and Lieberman, 2001). A simplex tableau is 
a table that contains all the information necessary to move from one iteration to another 
while performing the simplex method. Let xB be a column vector of m basic variables 
obtained by eliminating the nonbasic variables from x and xs. Then, the initial tableau can be 
expressed as, 
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The algebraic treatment based on the revised simplex method (Hillier and Lieberman, 2001, 
William H. Press and Flannery, 2002) derives the values at any iteration of the simplex 
method as, 
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For the matrices expressed (4) and (5), the first two column elements do not need to be 
stored in persistent memory. Thus, the simplex tableau can be a table using the rest of the 
three column elements in the relational model. Creating table instances as simplex tableaux 
is perhaps the most straighforward way. Indeed, our MySQL implementation in the next 
section uses this representation, in which a linear programming problem in the augmented 
form (equations (2)) can be seen as a relation: 
 

tableau(id, x1,x2, · · · xn, rhs) 
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A variable of the constraints and the objective function becomes an attribute of the relation, 
together with the right hand side that becomes the rhs column on the table. The id column 
serves as a key that can uniquely determine every variable of the constraints and of the 
objective function in the tuple. A constraint of the linear programming problem in the 
augmented form is identified by a unique positive integer value ranging from 1 to n in the id 
column, where n is the number of constraints for the problem plus the objective function. 
Thus by applying relational operations, it is feasible to know the position of every constraint 
and variable for a linear programming problem, and to proceed with the matrix operations 
necessary to implement the simplex algorithm. See Figure 1 for the table instance populated 
with a simple example. 
 

 
Fig. 1. Two representations of the initial simplex tableau in the relational database 

 
The main drawback of this design is a fixed structure of table. An individual table needs to 
be created for each problem, and the cost of defining (and dropping) table becomes part of 
the process implementing the simplex method. The number of tables in the database will 
increase as the collection of problems to solve accumulates. This may cause administrative 
strain for database management. Subtle issues arise in the handling of large-scale problems. 
The table maps to the full instance of the matrix even if the problem has sparsely populated 
non-zero data. Thousands of zero values (or null values specific to database) held in a tuple 
pile up a significant amount of space. Besides, a tuple of a large number of non-zero values 
is problematic because the physical record holding such a tuple may not fit into a disk block. 
Accessing a spanned record over multiple disk blocks is time-consuming. 
 
As an alternative to the table-as-tableaux structure, element-by-element represenation can 
be considered. The simplex tableaux are decomposed to a collection of values, each of which 
is a tuple consisting of a tableau id, a row position, a column position, and a value in the 
specified position. This is to say that the table no longer possesses the shape of a tableau but 
has the information to locate every element in the tableau. Missing elements are zeros, thus 
space efficient for sparse contents. A single table can gather all the problem instances, in that 
the elements in the specific tableau are found by the use of the tableau id. The size of the 
tuple is small because there are only four attributes in the tuple. In return, there is a time 
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overhead for finding a specific element in the table. Our Oracle XE implementation detailed 
in the next section utilizes this representation. 

 
3. System Development 
 

The availability of real-time databases capable of accepting and solving linear programming 
problems helps us examine the effectiveness and practical usability in integrating linear 
programming tools into the database environment. Towards this end, a general linear 
programming solver is developed on top of the de facto standard database environment, 
with the combination of a PHP application for the front-end and a MySQL or Oracle 
application for the backend. Note that the implementation of this linear programming solver 
is strictly within the database technology, not relying on any outside programming 
language.   
 

 
Fig. 2. Architecture of the implemented linear programming solver 

The systems architecture is summarized in Figure 2. The PHP front-end enables the user to 

input the number of variables and number of constraints of the linear programming 

problem to solve. With these values, it generates a dynamic Web interface to accept the 

values of the objective function and the values of the constraining equations. The Web 

interface also allows the user to upload a file in a MPS (Mathematical Programming System) 

format that defines a linear programming problem. The MPS file format serves as a standard 

for describing and archiving linear programming and mixed integer programming 

problems (Organization, 2007). A special program is built to convert MPS data format into 

SQL statements for populating a linear programming instance. The main objective of this 

development is to obtain benchmark performances for large-scale linear programming 

problems. 
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The MySQL and Oracle back-ends perform iterative computations by the use of a set of 

stored procedures precompiled and integrated into the database structure. The systems 

encapsulate an API for processing a simplex method that requires the execution of several 

SQL queries to produce a solution. The input and output of the system are shown in Figure 

3 in which each table of the right figure represents the tableau containing the values resulted 

from each iteration of the simplex method. The system presents successive transformations 

and optimal solution if it exists.  

 

  
Fig. 3. Simplex method iterations and optimal solution 

3.1 Stored Procedure Implementation MySQL 

Stored procedures can have direct accesses to the data in the database, and run their steps 
directly and entirely within the database. The complex logic runs inside the database engine, 
thus faster in processing requests because numerous context switches and a great deal of 
network traffic can be eliminated. The database system only needs to send the final results 
back to the user, doing away with the overhead of communicating potentially large 
amounts of interim data back and forth (Gulutzan, 2007, Gulutzan and Pelzer, 1999). 
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Name m n Nonzeros Optimal value Time Standard 

deviation 
ADLITTLE 57 97 465 2.2549496316E+05 1 min. 25 

sec. 

2.78 sec. 

AFIRO 28 32 88 -464.7531428596 35 sec. 1.67 sec. 
BLEND 75 83 521 -3.0812149846E+01 1 min. 5 sec. 3.20 sec. 

BRANDY 22

1 

24

9 

2150 1.5185098965E+03 2 min. 50 

sec. 

4.25 sec. 

Table 1. MySQL Experimental set and measured execution time 
Stored procedures are supported by most DBMSs, but there is a fair amount of variation in 
their syntax and capabilities even their internal effects are almost invisible. Our 
development uses MySQL version 5.0.22 at the time of this writing (as for MySQL version 5, 
stored procedures are supported). The next code listing is the stored procedure used to 
create the table to store the linear programming problem to be solved by the application 
(Perez, 2007). The first part of the stored procedure consists of the prototype of the function 
and the declaration of the variables to be used in the procedure. 

 
DELIMITER $$ 
DROP PROCEDURE IF EXISTS 

‘lpsolver‘.‘createTable‘ $$ 
CREATE PROCEDURE ‘lpsolver‘.‘createTable‘ 

(constraints INT, variables INT) 
BEGIN 

DECLARE i INT; 
DECLARE jiterator VARCHAR(50); 
DECLARE statement VARCHAR(1000); 
DROP TABLE IF EXISTS tableaux; 

 
Because of the dynamic nature of the calculations for solving linear programming problems, 
our stored procedure relies on the extensive use of prepared SQL statements. In the next 
code block, the SQL statement to create a table is generated on the fly, based on the number 
of variables and constraints of the problem to solve. The generated procedure is then passed 
to the database for execution. 
 

SET statement = ’CREATE TABLE 
tableaux(id INT(5) PRIMARY KEY, ’; 

SET i = 1; 
table_loop:LOOP 

IF i > constraints + variables + 1 THEN 
LEAVE table_loop; 

END IF; 
SET jiterator = CONCAT(’j’,i); 
SET statement = CONCAT(statement, 

jiterator); 
SET statement = CONCAT(statement, 

’ DOUBLE DEFAULT 0’); 
IF i <= constraints + variables THEN 

SET statement = CONCAT(statement, ’, ’); 
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END IF; 
SET i = i + 1; 
END LOOP table_loop; 
SET statement = CONCAT(statement, ’)’); 
SET @sql_call = statement; 
PREPARE s1 FROM @sql_call; 
EXECUTE s1; 
DEALLOCATE PREPARE s1; 

END $$ 
DELIMITER; 

 
3.2 Experimental Results MySQL 

To see the effectiveness of the implementation, various linear programming problems were 
selected from commonly available Netlib linear programming library (Organization, 2007). 
As one case, see Table 1 for a sufficiently large problem set. The values m and n indicate the 
size, m×n, of the coefficient matrix A in equations (1), or equivalently, m is the number of 
constraints and n is the number of decision variables. 

 
All experiments were performed by an Intel 586 based standalone machine with 1.2 GHz 
CPU and 512 MB memory that was running MySQL 5.0.22. The data values were extracted 
from Netlib MPS files to populate the problems into the database prior to run the simplex 
method. The time measured does not include this data preparation process, but only the 
execution of the stored procedure to produce a solution. The time listed in Table 1 is the 
average of ten executions of each problem. The results are based on the implementation of 
the revised simplex method contained in the stored procedures. 

 
One limiting factor is the fact that MySQL allows to have up to 1000 columns on a table. 
Given that this implementation is based on mapping of a simplex tableau into a database 
relation, the number of variables plus the number of constraints cannot exceed the number 
of columns allowed for a MySQL table. This prohibited us from testing the problems in the 
Netlib library that exceed the column size of 1000. Finally, we observed one problem when 
trying to find optimal solutions for larger problems with higher numbers of columns, 
variables and zero elements. The computation never came to an end, indicating that the 
problem had become unbounded, which can be attributed to the tableau becoming ill-
conditioned as a consequence of truncation errors resulted from repeated matrix operations 
(Kawaguchi and Perez, 2007).  

 
3.3 Stored Procedure Implementation in Oracle XE 
A Linear Programming Solver was implemented in Oracle XE stored procedures with a 
simple web interface built in PHP.  Oracle XE is a free version of the Oracle database system 
subject to some restrictions. Notably, Oracle XE will only utilize a single processor, and total 
user data is limited to 4 GB. Still, stored procedures are entirely supported, as well as 
advanced indexing techniques, making Oracle XE an attractive alternative.  
 
The web interface shown in Figure 4 provides for creation, editing, and display of large 
matrices, and allows the user to perform elementary matrix operations. The “Linear 
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Programming“ menu provides options for uploading and parsing standard MPS files, for 
solving the problem automatically, and for viewing performance data. The “Work Tableau“ 
option is shown, and provides an interface where the user can view the tableau, or any 
portion of it.  They can choose an element to pivot on, or by clicking the “suggest“ button, 
the column and row selected by the simplex method is high-lighted and displayed. This was 
useful for debugging, but also serves as a good educational tool since a student can go 
through the algorithm step by step. 
 

 
Fig. 4. Web interface showing tableau with next iteration highlighted 

 
The data model was also changed in this implementation to address the limitation of max 
number of columns allowed in a table.  Rather than creating a table with enough columns to 
contain the simplex tableau, a matrix is represented by two tables, one describing the 
properties, and one containing the row position, column position, and value of each 
element.  This has the added benefit of simplifying matrix operations. Since the tables 
described below hold any matrices stored in the system, creation, deletion, and alteration of 
matrices relies only on INSERT, DELETE, and UPDATE statements, with no need for ‘on the 
fly’ table creation or procedure compilation. 
 

matrix_property(matrix_id, name, row_size, column_size) 
matrix_values(matrix_id, row_position, column_position, value) 

 
Although allowing for an indefinite number of columns in a stored matrix, this model 
introduces a problem in data look up. In the MySQL implementation, since each row of the 
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matrix was a tuple in the relation, once a row is retrieved by the database, every element in 
the row is either in main memory or efficiently buffered since the tuple is stored 
contiguously on disk. But in the Oracle implementation, getting each element in a row could 
require a new disk read. Fortunately, Oracle XE supports Hash Index for fast retrieval of 
tuples that share a common hash value. Since in the Oracle model, any two elements in the 
same row share the same matrix_id and row_position, we can build such an index.  
 
In the Oracle XE environment, this is achieved by first creating a hash cluster (equivalent to 
hash buckets), then creating the table that is designated to be stored in the cluster according 
to a hash of at least one of its attributes. 
 

CREATE CLUSTER Matrix_index (matid NUMBER, rowpos NUMBER) SIZE 
512 SINGLE TABLE HASHKEYS 1000; 
 
CREATE TABLE "MVALUE"  
( 
"MATID" NUMBER NOT NULL ENABLE,  
"ROWPOS" NUMBER NOT NULL ENABLE, 
"COLPOS" NUMBER NOT NULL ENABLE,  
"CELL_VALUE" NUMBER(26,14) NOT NULL ENABLE,  
CONSTRAINT "MVALUE_UK1" UNIQUE ("MATID", "ROWPOS", "COLPOS") 
ENABLE,  
CONSTRAINT "MVALUE_FK" FOREIGN KEY ("MATID") REFERENCES  
"MPROPERTY" ("MATID") ON DELETE CASCADE ENABLE 
)  
CLUSTER "Matrix_index" ("MATID", "ROWPOS"); 

 
To actually benefit from this index, it is necessary to make use of Cursors in the stored 
procedures that operate on the matrices. Cursors are featured in many database systems, 
and provide an interface to declare complex SELECT statements and iterate over the results.  
By declaring cursors, rather than using a SELECT statement inside a FOR loop, the query 
optimizer is better able to take advantage of the hash index and retrieve entire rows of the 
matrix with minimal disk I/O. Implementing the solver in this way resulted in more than 
50% performance increase, particularly as problem size was increased. 
 

Name m n 

Non 
zeros 

Optimal Value 
(calculated) Std. Err. Iterations 

Avg. Time 
(sec) 

Std. 
Dev 

ISRAEL 175 143 2358 -896641.4612 0.0004% 308 784 1.41 

LOTFI 154 309 1086 -25.26470426 0.0000% 203 79.9 9.18 

AFIRO 28 33 88 -464.7531429 0.0000% 11 0.4 0.52 

SC105 106 104 281 -52.20206121 0.0000% 110 77.9 1.1 

SC205 206 204 552 -52.20206121 0.0000% 257 702.2 2.9 

ADLITTLE 57 98 465 225494.9384 0.0000% 146 38.1 1.73 

BLEND 75 84 521 -30.82213945 0.0324% 118 41.2 0.63 

BRANDY 221 250 2150 557.6518123 63.2764% 659 1433.8 7.11 

Table 2. Oracle Experimental set and measured execution time 
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3.4 Experimental Results Oracle XE 

As before, a set of linear programming problems was selected from the Netlib library 
(Organization, 2007).  The results are presented in Table 2, where again, m is the number of 
constraints and n is the number of decision variables.  The standard error is calculated based 
on the optimal value our solver returned compared to the optimal values published by 
Netlib.The Oracle experiments were run on an Intel D865GV board with 3 GHz Pentium 4 
CPU and 2 GB memory running Oracle XE 10g. Other parameters and timing of the 
experiment are as described in 3.2. 
 
While the model used in the Oracle implementation does allow for storage and simple 
manipulation of matrices larger than 1000 x 1000, it did not solve all the problems 
experienced in the MySQL version. Truncation and rounding errors created deviance from 
the published optimal value, hence the inclusion of standard error in Table 2. For larger 
problems, this sometimes degenerated to an ‘ill-conditioned’ state, as with the MySQL 
implementation and the algorithm may not finish or may report incorrect results as with 
BRANDY.   
 
Rounding errors were sometimes more of an issue in the Oracle implementation because it 
uses the Big M variant of the Simplex method when dealing with problems in non-standard 
form. Briefly, this involves introducing artificial variables to make each constraint feasible 
for the basic solution and penalizing those artificial variables with a large coefficient in the 
objective function, this penalty being the Big M. While this method is easy to implement, it 
requires more iterations, which introduces more potential for rounding/truncation errors. 

4. Related Work 
 

A vast amount of effort for the establishment of theory and practice is observed today. 
Certain special cases of linear programming, such as network flow problems and multi-
commodity flow problems are considered important enough to have generated much 
research on specialized algorithms for their solution (Winston, 1994, Thomas H. Cormen 
and Stein, 2001, Hillier and Lieberman, 2001). A number of algorithms for other types of 
optimization problems work by solving linear programming problems as sub-problems. 
Historically, ideas from linear programming have inspired many of the central concepts of 
optimization theory, such as duality, decomposition, and the importance of convexity and 
its generalizations (Hillier and Lieberman, 2001). 

 

There are approaches considered to fit a linear programming model, such as integer 

programming and nonlinear programming (Alexander, 1998, Richard, 1991, Hillier and 

Lieberman, 2001). But, our research focuses on the area of iterative methods for solving 

linear systems. Some of the most significant contributions and the chain of contributions 

building on each other are summarized in (Saad and van der Vorst, 2000), especially a 

survey of the transition from simplex methods to interior-point methods is presented in 

(Wang, 99). In terms of implementation techniques, the work of (Morgan, 1976, Shamir, 

1987) provided us with introductory sources for reference.  There are online materials such 

as (Optimization Technology Center and Laboratory, 2007, Organization, 2007) to help us 

understand the details and plan for experimental design. 
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The contents of this chapter are extended from the work gathered in (Kawaguchi and Perez, 

2007), in which the experimental performance of MySQL implementation is shown. A more 

detailed implementation of MySQL stored procedures can be found in (Perez, 2007). 

5. Conclusion 
 

The subject of this research is to respond a lack of database tools for solving a linear 
programming problem defined within a database. We described the aim and approach for 
integrating a linear programming method into today’s database system, with our goal in 
mind to establish a seamless and transparent interface between them. As demonstrated, this 
is feasible by the use of stored procedures, the emerging database programming standard 
that allows for complex logic to be embedded as an API in the database, thus simplifying 
data management and enhancing overall performance. As a summary, contributions of the 
discussions presented in this chapter are threefold: First, we present a detailed account on 
the methodology and technical issues to integrate a general linear programming method 
into relational databases. Second, we present the development as forms of stored procedures 
for today’s representative database systems. Third, we present an experimental performance 
study based on a comprehensive system that implements all these concepts. 

 
Our implementation of general linear programming solvers is on top of the PHP, MySQL, 
and Oracle software layers. The experiments with several benchmark problems extracted 
from Netlib library showed its correct optimal solutions and basic performance measures.  
However, due to the methods used, rounding errors were still an issue for large problems 
despite the system having the capacity to work with large matrices. We thus plan to 
continue this research in several directions. Although the Oracle system can work with large 
matrices, both implementations have too much rounding error to solve linear programming 
problems that would be considered large by commercial standards. This should be 
addressed by the implementation of a more robust method. Overall, the code must be 
optimized to reduce the execution time, which could also be improved by tuning the size 
and number of hash buckets in the index. We will perform more experiments to collect 
additional performance measures. Non-linear and other optimization methods should also 
be explored. 
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