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1. Introduction     
 

Trajectory planning consists in finding a way to get from a starting position to a goal 
position while avoiding obstacles within a given environment or navigation space.  
Harmonic functions may be used as potential fields for trajectory planning (Connolly et al., 
1990). Such functions do not have local extrema (unlike other potential based methods as in 
(Khatib, 1986)), so that control algorithms may reduce to locally ascend the potential until 
they reach a global maximum, when obstacles correspond to minima of the potential and 
goals correspond to maxima. 
 
Harmonic control has had some impact on the robotics community (Masoud & Masoud, 
2002; Zelek, 1998; Alvarez et al., 2003; Feder & Slotine, 1997; Huber et al., 1996; Kazemi et al., 
2005; Sweeney et al., 2003; Wang & Chirikjian, 2000). Nevertheless, very few hardware 
implementations have been proposed. They are usually analog, therefore they suffer from a 
very long and complex design process, and a lack of flexibility (environment size, precision). 
This chapter presents a parallel hardware implementation of this navigation method on 
reconfigurable digital circuits. Trajectories are estimated after the iterated computation of 
the harmonic function, given the goal and obstacle positions of the navigation problem. The 
proposed implementation locally computes the direction to choose to get to the goal at any 
point of the environment. Dynamic changes in this environment may be taken into account, 
for example when obstacles are discovered during an on-line exploration. 
 
To fit real-world applications, our implementation has been designed to deal with very large 
environments while optimizing computation time. To do so, iterated updates are performed 
in a block-synchronous mode that takes advantage of large embedded SRAM memory 
resources. The proposed implementation maps the massively distributed structure of the 
space-discretized estimation of the harmonic function onto the circuit. When the size of the 
environment of navigation exceeds the resources available on the circuit, this environment is 
split into several so-called blocks. 
 
For each block, an area-saving serial arithmetic is used within a global scheme that 
simultaneously ensures pipelining and parallelism of the iterative computations. These 
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computations are scheduled for the different blocks so as to make a compromise between 
pipelining efficiency and block coherency. Moreover, an increasing precision is used 
throughout the convergence process, so as to further optimize computing times. Thanks to 
this increasing precision of the chosen serial arithmetic, first iterated updates are faster, the 
convergence of each block is reached sooner, and the serial detection of this convergence is 
also faster. When the whole process has converged for a given precision, iterated updates 
start again with an increased precision. This process is repeated until the necessary precision 
of the harmonic function estimation is reached. 
 
Our implementation is able to handle up to 16 blocks of size 96x48 (73728 nodes) with a 64-
bit precision on a single FPGA Xilinx Virtex XC4VLX160. The main module consists of an 
array of identical nodes that compute the iterated updates of the harmonic function 
estimation. Specialized modules have been designed to handle communications between 
contiguous blocks. Convergence detection is performed in a pyramidal way. All nodes 
communicate with a decision module that computes the navigation direction by means of a 
local interpolation of the discretized harmonic function. Obstacles and goals may be 
dynamically added and memorized for any block, resulting in a new iterated process to 
update the harmonic function estimation. 
 
Besides all implementation works, we carefully justify our algorithmic and technological 
choices through both theoretical and empirical studies of the required precisions and 
convergence times. We study the asymptotic convergence of the proposed algorithmic 
scheme and we analytically derive some bounds on its rate of convergence. The 
implementation results together with this theoretical analysis show that the proposed 
architecture simultaneously improves speed, power consumption, precision, and allows to 
tackle large environment sizes. 
 
Section 2 describes the principles of harmonic functions and of their use for trajectory 
planning. Section 3 summarizes the advantages of hardware parallel implementations on 
FPGAs for embedded navigation in autonomous systems, and it justifies the choice of serial 
arithmetics, especially with respect to the precision requirements of harmonic control. 
Section 4 defines the block-synchronous computation scheduling, and its optimization 
analysis through theoretical and experimental results. The proposed hardware architecture 
and its implementation results are described in section 5.  

 
2. Harmonic control 
 

In this part, we begin by a brief reminder of harmonic functions and some of their properties 
Then we discuss their application to the navigation problem. 
 

2.1 Harmonic functions 

Let Ω  be an open subset of 
nℜ , Ω∂  its boundary and Ω  its closure such that 

Ω∂∪Ω=Ω . 

 

Definition  Let ℜ→Ω:u  be a real function, twice continuously differentiable,  and 
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nℜ⊂Ω  with n > 1. Function u is harmonic iff 0
1

2

2

=
∂
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u
u  (Laplace’s equation). 

 
Harmonic functions satisfy interesting properties: 

• The maximum principle states that: if u is a non-constant continuous function on 

Ω  that is harmonic on Ω , then u attains its maximum and minimum values over 

Ω  on the boundary Ω∂ .  

• Applying the divergence theorem on harmonic functions, the following equation 

holds: 0. =∇∫ dsnu
s

r
 

where s is the boundary of a closed region strictly in Ω  and n
r

 is a normal vector of s. This 

equation expresses that the normal flow of the gradient vector field through the region 
bounded by s is zero. It follows that there can be no local minimum or maximum of the 

potential inside a bounded region of Ω .  

 
2.2 Application to navigation 

To solve the navigation problem using harmonic functions, we consider the problem as a 

Dirichlet problem: its solution is to find the function u that is harmonic on Ω  (navigation 

space) and that satisfies boundary conditions on Ω∂  (obstacles and navigation goal): 

 

⎩
⎨
⎧

=Ω∂∈∀
=ΔΩ∈∀

)()(,

0)(,

xgxux

xux
                                               (1) 

 
where the function ℜ→Ω∂:g  represents boundary conditions on Ω∂ . These conditions 

define the values of the navigation function on obstacles and goals. Without loss of 
generality we choose g(x) = 0 for obstacles and g(x) = 1 for goals. Solving the Dirichlet 

problem consists in finding the function u that is harmonic on Ω  and that has value 0 on 
obstacle positions and value 1 on goal positions. 
 
The navigation problem is then solved as follows: a simple ascent along the gradient of u 
provides a trajectory towards a given goal from any starting position. The properties of 
harmonic functions ensure that such a path exists and it is free of local optima.  
 

2.2.1 Numerical method to solve Laplace's equation 

In this part we consider the case where 2ℜ=Ω . Traditionally, Laplace's equation is solved 

using methods from finite differences on a regular grid (discrete sampling of Ω ). Using a 
Taylor approximation of the second derivatives we obtain the following discrete form of 

),( 21 xxu  
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where δ  is the sampling of the grid nodes that represents Ω . In this form, the equation can 

be solved using relaxation methods such as Jacobi or Gauss-Seidel whose principle is to 
iteratively replace each node value with the simple average of its four neighbours. Figure 1 
shows different trajectories generated by simulations using this numerical scheme. 
 

 
Fig. 1. Trajectories generated by harmonic control (100x100 grid, equally spread starting 
nodes, two goals) 

 
2.2.2 Properties of harmonic navigation functions  
Harmonic navigation functions have many interesting properties which motivated their use 
in numerous applications especially in robotics (Tarassenko & Blake, 1991; Connolly & 
Grupen, 1993; Masoud & Masoud, 2002; Zelek, 1998; Alvarez et al., 2003; Feder & Slotine, 
1997; Huber et al., 1996; Kazemi et al., 2005; Sweeney et al., 2003; Wang & Chirikjian, 2000): 
 
Global navigation: Complete trajectories may be generated towards a goal position from 
anywhere in the environment, since there are no local minima.  
 
Dynamic trajectory planning: Unexpected updates of the environment may be taken into 
account, since harmonic functions are computed by iterative relaxation methods. Therefore 
newly detected obstacles may be integrated in the model as new boundary conditions 
during computation, so that harmonic control is available in dynamic environments or in 
environments explored on-line (Zelek, 1998; Boumaza & Louchet, 2003). 
 
Parallel computation: An interesting property of the computations described above is their 
massively parallel distribution. Computing node values only requires local information of 
the neighbouring nodes. Fine-grain parallel implementations appear as an opportunity, as 
discussed in the next section.  

goals 
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3. Towards a rapid and scalable implementation 
 

The results shown in figure 1 were obtained from software simulations carried out on a PC. 
The aim of our work is to design an embedded system for robot navigation. Computation 
speed is not the only criterion (trajectory decision must be performed in real time). Power 
consumption is also essential for autonomy. Besides, computation precision and scalability 
appear as critical issues for harmonic control, as discussed below. These combined aspects 
motivate the design of a parallel hardware implementation. In such a work, the number of 
inputs/outputs and above all the level of parallelism have a direct influence on the obtained 
implementation consumption and speed. A massively parallel implementation is a real 
challenge, taking into account constraints such as precision, grid size, dynamic updates, etc.  
 

3.1 Implementation environment  

Since the appearance of configurable circuits, such as field programmable gate arrays (FPGAs), 
algorithms may be implemented on fast integrated circuits with software-like design 
principles. VLSI designs lead to very high performances. But the time needed to realize an 
ASIC (application specific integrated circuit) is too long, especially when different 
configurations must be tested. The chip production time may take up to 6 months. 
 
FPGAs, such as Xilinx FGPA (Xilinx, 2000), are based on a matrix of configurable logic blocks 
(CLBs) that contain a few logic cells. Each logic cell is able to implement small logic  
functions (4 or 5 inputs) with a few elementary memory devices  (flip-flops  or latches) and  
some multiplexors. Each logic cell is independently programmable. Similarly, the routing 
structure that connects the logic cells as well as the CLBs can be configured. A FPGA 
approach simply adapts to the handled application, whereas a usual VLSI implementation 
requires costly rebuildings of the whole circuit when  changing  some characteristics.  A 
design  on FPGAs requires the description of several operating blocks. Then the control and 
the communication schemes are added to the description, and an automatic ``compiling'' 
tool maps the described circuit onto the chip.  

 
3.2 Technological choices  

When a massively distributed model is mapped onto a FPGA, the main issues are the huge 
number of operators, and the routing problems due to the dense interconnections. A first 
standard technological choice to solve these problems is to use serial arithmetics: smaller 
operators may be implemented, and they require less connection wires, at the cost of several 
clock cycles to handle each arithmetic operation. Another essential technological choice is to 
estimate the minimum precision required to keep satisfactory results with as small as 
possible operators and memory resources.  
 

3.2.1 Serial arithmetics  
Serial arithmetics correspond to computation architectures where digits are provided digit 
after digit. Serial arithmetics lead to operators that need small implementation areas and less 
inputs/outputs, and that easily handle different precisions, without an excessive increase of 
the implementation area. Serial systems are characterised by their delay, i.e, the number d 
such that p digits of the result are deduced from p+d digits of the input values.  
Two main kinds of serial arithmetics are available: LSBF or MSBF (least/most significant bit 
first). Standard serial operators work in a LSBF mode. Though our model requires the 
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computation of maximum values (gradient ascent, detection of local maxima), that may only 
be computed in a MSBF mode, we mostly use standard LSBF serial operators to optimize the 
required area of the main computations1. Nevertheless, our implementation simultaneously 
handles a read access in MSBF mode to detect local maxima: since we use dual port SRAM 
blocks with fully independant ports, we take advantage of two simultaneous read addresses 
(controled by two reverse counters in the control modules). 

 
3.2.2 Computation precision  
Software simulations are usually performed to study the precision that is required by an 
application before its hardware implementation. Precision issues appear as a critical 
problem for harmonic control. It has already been mentioned as a major limitation for 
analog implementations (Tarassenko & Blake, 1991). Computing a harmonic potential over a 
large grid may result in gradients too small to use because the allowable precision is easily 
reached. Connolly (Connolly & Grupen, 1993) proposes a relationship between the precision 
required for floating point representation on a PC and the number of nodes on the grid. He 

argues that the precision should at least represent 1/N (requiring at least N2log bits), 

where N is the total number of grid nodes, to circumvent precision problems.  
 
We may first discuss Connolly’s estimation from a theoretical point of view. We argue that 
1/N is not a sufficient precision for some kinds of environments. More precisely, we argue 

that the precision might have to represent at least )(21 LO (therefore requiring some O(L) 

bits), where L is the maximum trajectory length in the environment. To prove this assertion, 

let us consider a “corridor” of length L and width 1, with an obstacle on the left ( 00 =x ), 

and the goal at the other side ( )1=Lx . At each intermediate node 0 < i < L, according to 

equation (2), the following relation is fulfilled:            )(
4

1
11 +− += iii xxx  

This is a linear recurrent series of order 2. The roots of the associated polynomial are: 

32 +=+r                   32 −=−r  

so that the generic term of the series is  
ii

i rrx −+ += μλ  

Since 00 =x  and 1=Lx , we finally obtain                 
LL

ii

ix
)32()32(

)32()32(

−−+

−−+
=  

When ∞→L :        
L

x
)32(

32
1

+
≈  

 
Since the used precision must at least ensure that 

10 xx ≠ , the computation of the harmonic 

function in such an environment requires at least O(L) bits, as argued above. A similar result 

                                                 
1 The only existing radix-2 MSBF serial arithmetics is called on-line arithmetics. It uses a 
redundant number representations system, which induces less area-saving operators. 

www.intechopen.com



Block-synchronous harmonic control for scalable trajectory planning 

 

91 

would be obtained in a square grid containing for example a spiral of length L and width 1, 
which can be obtained with an environment of approximately 2L nodes. This further 
motivates the use of an embeded implementation in which high precisions may be handled. 
  

 
Fig. 2. Four different discrete environments: obstacles are in black, and ‘G’ denotes the goal. 

 

 
Fig. 3. Number of bits required with respect to the maximal distance L to the goal for 
different magnifications of the environments of Figure 2. The number of bits grows slightly 
slower than O(log(L)).  

 
Nevertheless, the study of the precision required by the computation of the harmonic 
function in a discretized environment should take “likely” environments into account. 
Therefore we have carried out numerous experiments with large randomly generated 
mazes. It follows that in most environments, the maximum distance to the goal is close to 
the square root of the environment size, and that a precision proportional to 1/L (i.e. a 
number of bits proportional to log(L)) is generally sufficient to ensure that the computation 
of the harmonic function converges such that no local minimum or maximum exists (i.e. a 
trajectory is found from any node). Figure 2 shows some experimental environments, and 
figure 3 shows the minimum precision that is required with respect to distance L. It should 
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be pointed out that in case of insufficient precision, large areas of the grid may share the 
same value, hence a null gradient that results in incomplete trajectories. 
 

Implementation note 

Implementations based on serial arithmetics may be more easily extended to larger 
precisions than implementations based on parallel arithmetics. Since the size of serial 
adders and comparators does not depend on precision (unlike multipliers and 
elementary functions), our implementation may handle large precisions by means of 
rather simple changes in the control modules. 

 
3.3 Dealing with very large environments  

As mentioned above, scalability and precision are key issues for harmonic control in large 
environments. In this chapter, two major implementation choices deal with these issues. 
 

3.3.1 Block-parallel computation  
Despite the technological choices discussed above, the size of the discretized environment 
we are able to map in a fully parallel way onto FPGAs is limited (around 50x50 nodes in our 
preliminary work in (Girau & Boumaza, 2007)). To handle much larger environments (or 
finer discrete resolutions), we propose a block-synchronous (or block-parallel) 
implementation: the environment is partitioned into several blocks, each block of nodes 
being handled in a fully parallel way by the FPGA while the different blocks are 
sequentially handled. In this section, we formalize this computation scheduling, and we 
analyse both its constraints and its performance so as to optimize our implementation. 
 
Let NxM be the total number of nodes (location units) in the discretized environment. Let 
nxm be the number of nodes that may be simultaneously handled on the FPGA. The 

environment is partitioned into 
m

M

n

N
B ×=  blocks of nxm nodes. 

Implementation note 

Our implementation performs computations in a block-synchronous way. Moreover up 
to I consecutive iterations are performed for each block before handling the next block, 
so as to improve the use of pipelining.  

 
3.3.2 Increasing precision  
Possible dynamic updates of the environment require fast computations so that the 
navigation trajectories adapt to these changes in real-time. Since the computation time in a 
serial implementation partially depends on the computation precision, and since several 
iterations are required to let our system converge to a good approximation of the expected 
harmonic function, we use an increasing precision so as to optimize the convergence time.  
 
The first iterations are performed with a chosen reduced precision. When the whole system 
has converged for a given precision (for all blocks of nodes), iterated updates start again 
with an increased precision. This process is repeated until the necessary precision of the 
harmonic function estimation is reached.  
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Thanks to this increasing precision of the chosen serial arithmetic, the global computation 
time of our implementation is optimized: 

• first iterations are faster: since they handle reduced precisions with serial operators, 
the first iterations are faster than with an immediate maximum precision, 

• next updates take advantage of a "good" starting point: when the system has 
converged for a given precision, the next iterations use an increased precision, and 
the additional convergence time only corresponds to computing the additional bits 
of the harmonic function estimation, 

• the convergence of each block is reached sooner: I consecutive iterations are 
performed for each block before handling the next block, except if the 
computations within this block converge before the I iterations, which may happen 
more rapidly with reduced precisions, 

• the serial detection of the convergence of each block is also faster: convergence 
detection is based on a comparison between the old and new node states, and the 
comparison time is proportional to the handled precision; moreover, when many 
blocks have already converged, this earlier convergence detection allows to switch 
more rapidly to the blocks that still need updates.  

 
4. Optimizing block-synchronous harmonic control 
 

The implementation choices discussed in the previous section lead to a block-parallel 
algorithm that may be described as follows: 
 

p=initial_precision 
while (p<=required_precision)  /* i.e. local maxima exist */ 
    converge:=false 
    while (not(converge)) do 
        converge:=true 
        for b:=1 to B do 
            i:=0 
            block_cvg=false 
            while ((i<I) and (not(block_cvg))) do 
                block_cvg:=true 
                forall nodes (x,y) in block b do 
                    update node(x,y) 
                    if (node(x,y) changed)  
                        block_cvg:=false  
                    endif 
                endforall 
                i++ 
            endwhile 
            if (not(block_cvg))  
                converge:=false  
            endif 
        endfor 
    endwhile 
    increase(p) 
endwhile 
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In this section, we study the computation time of this algorithm, so as to optimize I and the 
increasing scheme of the precision. First of all, we define more precisely the convergence 
criteria that are used for the different loops of our algorithm. Then we analyze the 
convergence rate of the estimation method of the harmonic function as discussed in 2.2.1. 
We show this computation is contracting with a contraction coefficient that is strictly less 
than 1. We then take into account the error that corresponds to the computation 
approximations (considering reduced precisions) by analyzing it as a noisy iterative 
contraction. We finally introduce in this theoretical analysis the block-synchronous 
approach and the use of increasing precisions through the iterative process.  
 

4.1 What are the convergence criteria ?  

In the above algorithm, the main loop stops when the required precision is reached. Though 
this notion of required precision is studied in 3.2.2 with respect to a static analysis of the 
harmonic function along a trajectory, the iterated computation of equation (2) requires a 
dynamic evaluation of the convergence of the whole process. Since we use a block-
synchronous version with an increasing precision, different kinds of convergence are used: 

• The inner loop that handles the computations for one block uses the stabilization of 
the node states within the block as convergence criterion.  

• Similarly, the stabilization of all blocks is used as convergence criterion in the 
intermediate loop that performs the computations of all blocks for a given 
precision. 

• The main loop may not know in advance what is the required final precision. The 
goal of the all process is to provide valid trajectories. This is the case when no local 

minimum or maximum exists in Ω . Therefore we stop the algorithm when no such 
local extremum is detected. 

 
4.2 How much contracting is the computation of a harmonic function ?  

When computing a harmonic function on Ω  (inner space) Ω∂∪  (boundary), the system 

we need to solve may be written in matrix form: 
 

CHH += H  

 
where C is a vector that has non-zero values only for points in Ω∂ , and where H  is a 

matrix that has zero lines for points in Ω∂  and that only has non-zero values (1/4) on 4 

columns on the lines corresponding to Ω  points.  
 
Matrix H  is substochastic (coefficients are non-negative and on each row their sum is lower 

than 1). It corresponds to a (vanishing) random walk on Ω : when a point is inside the 

domain (in Ω ), it moves uniformly towards its 4 neighbours; when a point is on the border 

(in Ω∂ ), it vanishes (its mass disappears at the next instant). 

  
Since H  is substochastic, its eigenvalues take values in [0,1]. We now show that 1 cannot be 
an eigenvalue. To do so, consider a similar substochastic matrix H ', which corresponds to 
the Markov chain which only vanishes on the borders of the NxM rectangular domain. A 
standard result (see (Young, 1971)) is that the biggest eigenvalue of H ' is 
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Intuitively, the biggest eigenvalue (and more precisely, its distance to 1) corresponds to the 
amount by which this Markov chain is vanishing at each time step. As the former Markov 
chain H  vanishes more than H ', its eigenvalues should not be greater than γ . More 

formally, H  is equal to H ' on some lines and null on the others, thus for any vector d, 
 

dddd γ≤≤≤ 'HHH
 

 
where |x| is the componentwise absolute value of x, and where the first inequality comes 
from the fact that H  only has non-negative components (it is some sort of generalized 
triangle inequality). This means that the eigenvalues of H  cannot be greater than γ . As a 

consequence, the iterative algorithm 
 

CHH kk +←+ H1  

 
is converging at a linear rate γ≤ . When N and M are big, we have: 

 

⎟
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22

2 11

4
1

MN

πγ                                                   (3) 

 
4.3 General analysis of a noisy iterative contraction fixed point computation  

Let us consider a contraction operator O , with contraction factor at most γ . Let us assume 

that there is an error bounded by e at each iteration:  
 

kk HH AO←+1  

 
where A  is some approximation operator satisfying:  
 

eff ≤−A  

 
In our case, A  is related to the round-off error.  
 

4.3.1 Convergence: general case 
Unfortunately, the process of mixing a contraction mapping and a round-off does not 
stabilize in general. For example, if the error is the round-off to the closest integer, let us 
assume that we have the following contraction (with fixed point 0): 
 

kk xx 6.01 −←+  
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Then if 10 =x , we have the following sequence: 

 

16.016.0 2211 ==−=−= xxxx  

 
in other words we have a loop. 
 
One might think that the problem in the above example is due to the fact that the factor in 
front of x is negative. But one can also find multidimensional examples where convergence 
does not occur and which involves only positive terms.  

 
4.3.2 Weak convergence, rate of convergence  
Though not converging in general, it can be proved that the above system converges in 
some weak sense. Namely it leads to oscillations around the fixed point. At each iteration, 
let us assume: 
 

eHHHH kkkk ≤−=−+ OAOO1
 

 
Then, writing 

*H  the fixed point of O , we have 

 

                    
*1*1 HHHHHH kkkk −+−≤− ++ OO              (triangular inequality) 

                                           
*1 HHHH kkk OOO −+−= +        ( *H  fixed point of O ) 

                                           
*HHe k −+≤ γ                                   (definition of contraction) 

 
Thus by induction, 
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It shows that even if the process does not converge, it is asymptotically 

γ−1

e -close to 
*H . 

 
We may exploit the above equation to derive some rate of convergence: 
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For instance, for any 0>λ , taking 
γ
λε
−
+

=
1

)1( e , we see that: 
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We may interprete λ  as a margin that is added to the 

γ−1

e -wide asymptotical interval 

around 
*H . This margin defines a wider interval where 

kH finally lies. 

 

  
Fig. 4. Number of iterations required for full convergence (stabilization). 

 
4.3.3 Experimental convergence, rate of convergence  
Experimentally, the convergence of the iterated computation of the harmonic function (as in 
equation (2)) not only converges in a weak sense, but fully converges whatever the fixed 
precision. To validate this assertion, we have carried out numerous experiments with 
various environments. These experiments are illustrated by figure 4. They establish that the 
number of required iterations linearly depends on the number of nodes in the environment, 

which validates the above estimation of k (that depends on )log(1 γ  which is roughly 

proportional to 2N  and 
2M ). 
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Implementation note 

Following these experiments, we consider the complete stabilization of all bits of all 
nodes to define the convergence criterion within the inner loops of our algorithm (see 
4.1). 

 
4.4 An increasing precision algorithm  

We now consider the case where the harmonic function is iteratively computed using 

arithmetics with different precisions: Tp

T

pp eee −−− === 2,,2,2 21

21 K . Write )0(H  the 

initial estimate. The analysis of the previous subsection suggests that we can estimate the 

sequence of potentials KK ,,,, )()2()1( iHHH  with respective precisions 
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for some positive value λ . 
 

4.4.1 Initial and final precisions 

At the end, one will have:             TpT KHH −+≤− 2.)1(*

)( λ  

The final precision 
Tp  can be set such that the eventual approximation is smaller than some 

given 0>ε : 
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The initial precision 

1p  should be at least such that 1<ε  (the harmonic function is between 

0 and 1), so this means that we should take: 
 

min1
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4.4.2 Worst-case analysis  

Given the analysis of the previous subsection, estimating )(iH  from )1( −iH  with precision 

γ
λ
−
+
1

)1( ie  will be done in less than 
ik  iterations with: 
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Since K11)log( −=−≈ γγ , we finally get: 

 

( )( )*

)1(log)1log()1log()2log( HHKpKk i

ii −+++≈ −λ  

 
Remark: log(1/K) tends to ∞−  when the environment gets bigger, but it is compensated 

by the fact that )2log()log(Kpi >  (see previous subsection).  

The first number of iterations 
1k  depends on the initial value )0(H : 

 

( )( )*

)0(

11 log)1log()1log()2log( HHKpKk −+++≈ λ  

 
The subsequent numbers of iterations depend on the previous precision: for 2≥i  
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To summarize, 

1k  may be estimated as an affine function of the initial number of bits
1p , 

and each 
ik  may be estimated as an affine function of the precision increase (in terms of 

number of added bits). Both affine functions share the same linear coefficient K.log(2). 
 

)(' 111 −−+=+= iii ppbakbpak  

 
Let us now assume that the computation time of equation (2) is also an affine function of the 

number of bits pβα + , when very large precisions are used. It is for example the case on a 

standard processor for which vectors of integers code for very large precision numbers, and 
it is of course the case with hardware serial operators. Then the global computation time 
when the final precision is used from the beginning is: 
 

)()).(( 2
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2
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Whereas the global computation time with increasing precision is 
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If the increase of the precision is such that the number of bits is an arithmetic series 
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This shows that the increasing precision approach roughly divides the computation time by 
2 when very large precisions are required (therefore when large environments are handled, 
as discussed in 3.2.2). 
 
As such, this result holds without block-synchronous. The next subsection introduces the 
block-synchronous aspect to prove the relevance of the increasing precision approach within 
our main algorithm.  

 
4.5 A block-synchronous algorithm with increasing precision  

Let us now take into account the fact that an environment may be too large to fit within one 
single FPGA. Then one has to partition this environment into B blocks, as explained before. 
Since our FPGA implementation uses serial arithmetics with interleaved loops, its 

computation time for k iterations at precision pe −= 2  is 

 

)( dpk +τ  

 
where d is the serial delay for the computation of equation (2), and τ  is its latency. 

 
We can conclude that the overall time without increasing precision is: 
 

)))((( maxmax dpbpaB ++τ  

 
4.5.1 Introducing an increasing precision 
Following 4.4.2, we now assume that our implementation fully applies the algorithm 
depicted at the beginning of section 4, with I consecutive iterations for each block to ensure 
pipelining. We first consider that these consecutive iterations do not modify the total 
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number of iterations to perform for each precision (see below for an empirical study of this 
assertion). Assuming again that the number of bits is an arithmetic series, it follows that the 
overall computation time now is:  
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As in 4.4.2, this equation leads to roughly divide the computation time by 2 thanks to the 
increasing precision. Yet it does not appear as obvious that the I consecutive iterations 
provide a significant improvement (in the above equation, it just appears as a way to 
minimize the effect of the delay). But the above estimation considers that all I iterations are 
performed for all blocks in the algorithm. This is highly pessimistic, as shown below. 

 
4.5.2 Taking advantage of “still” blocks 
The above notion of pipelined interleaved loops within each block corresponds to the most 
inner loop of our algorithm: 
 

while ((i<I) and (not(block_cvg))) do 

 
Therefore, I iterations are performed only for blocks that have not converged so far. In most 
experiments, it clearly appears that large parts of the environment stay unchanged (still) for 
several iterations while distant blocks slowly propagate the changes. This is even more true 
when small precisions are handled.  
 
We have performed experiments on a PC in order to compare the overall number of 
computations when one uses several blocks with detection of early stabilization within each 
block, to the case where there is only one block. These experiments are reported in figure 5 
for the “Labyrinth” environment. This figure illustrates the speed-up obtained with 
different block sizes over the purely synchronous case. The curves show the ratio between 
the number of iterations needed to converge in the asynchronous case and the number of 
iterations needed to converge in the block-synchronous case with respect to the maximum 
number of iterations by block I. The experiments show that partitioning by blocks speeds up 
the computation time, although the successive iterations are performed by a block without 
updating the neighbouring blocks. This speedup is observed provided that I is not too large 
and an early detection of block stabilization is performed. Similar results have been obtained 
for all kinds of environments.  
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Fig. 5. Comparison between asynchronous and block-synchronous overall computation 
time. Environment: labyrinth. The total number of blocks is indicated by ‘k’: for example 
when ‘k=4’, there are B=4x4 blocks.  

 
Figure 5 also shows that the speed-up appears greater when the block size is larger. This is 
confirmed by another series of experiments that are illustrated by figure 6. This figure shows 

the evolution of the ratio IÎ  until convergence for different values of B on the same 

environment (labyrinth), where Î  is the average number of iterations performed by the 
blocks before early detection of stabilization. The experiments show that the smaller the 
blocks, for example 6x6 (k=6), the larger the number of iterations required. They also show 

that Î  rapidly reaches a constant value until convergence.  
 
Following our experiments, it finally appears that the block-synchronous approach that uses 
an increasing precision divides the computation time by some coefficient between 2 and 4. 
 

 
Fig. 6. Evolution of the number of successive iterations performed by the blocks before early 
detection of stabilization.  
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5. Hardware implementation of harmonic control 
 

Though harmonic control has been widely used in robotics, few hardware implementations 
have been proposed. Their technological choices are mostly motivated by the fact that 
analog resistive grids may easily compute the harmonic function as in equation (2). For 

example in (Stan et al., 1994) an analog implementation of a 16x16 grid is proposed. The 
main limitation of this work is the precision (as for most analog implementations). To our 
knowledge, digital FPGA-based implementations have not yet been proposed.  
 
In this work, the discretized computation of the harmonic function is performed to make 
navigation decisions for a robot in an environment that may be explored on-line. Navigation 
commands are obtained by means of linear interpolations of the values of the neighbouring 

nodes (north, east, west and south), so as to obtain the best navigation orientation in [ [π2,0 . 

It results in global trajectories towards the goal position from any starting point.  
 

5.1 General architecture  

The fine grain pipelined internal structure of the proposed digital architecture was 
implemented using fixed point arithmetic. Since node values range from 0 to 1, an unsigned 
representation with p+1 bits is chosen, with a p-bit fractional part. As mentioned above, 
large wordlengths may easily be handled. 
 

 
Fig. 7. General architecture  
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Figure 7 illustrates the general architecture of the implementation of harmonic control in a 
given environment. Since the environment is split into several blocks, this architecture 
mostly consists of a grid of nxm identical node modules (gathered 18 by 18 to handle on-
chip data storage and access) surrounded by border node modules, a control module, a 
decision module, and a module to interact with the robot.  
 
The role of each component is the following: 

• Each node module computes its corresponding node value within the currently 
handled block. All node modules use interleaved loops that together perform all 
required computations within simultaneous local recurrent pipeline schemes. This 
kind of parallelism is particularly efficient for serial implementations of recurrent 
iterated computations within massively distributed models (Girau & Torres-
Huitzil, 2007). The control of these computations are synchronized in the whole 
block so that node modules may serially communicate their values to their 
neighbours. In order to simplify the block-diagram of figure 7, only few buses and 
wires are shown: the signals that carry the node values from and to any 
neighbouring node (and possibly to opposite border nodes). 

• The node modules are split in groups of 3x6 nodes that share common storage 
resources: a single dual port SRAM block stores the values of the 18 nodes, and its 
R/W accesses are controlled by a single set of counters (see 5.2). 

• The border nodes are simpler than the node modules. They only store the values of 
the immediate neighbours of the most outer nodes within each block, and they 
serially generate these values when required. The only difficulty is to handle the 
addressing scheme so that the values stored within each of the 4 possible borders 
are updated when the block that contains them is being computed. This update 
requires the long-range connections from the node modules on each side of the 
block to the opposite border nodes. Moreover, when the borders lie outside the 
whole set of blocks, the border nodes simply generate the constant value 0 that 
denotes obstacles. 

• The interaction with the robot has not yet been implemented. It strongly depends 
on the exact configuration of the robot and of the FPGA board. It includes a 

position modules, which role is mainly to compute the coordinates (B,X,Y) of the 
closest grid point (block, node) around the real coordinates (x,y) of the robot in 
its environment. 

• The control module generates the enable signals that are sent to all node modules 
to control their individual behaviour when an asynchronous event occurs:  

o convergence of the computation of the harmonic function (when all blocks 
have confirmed that no local extremum has been detected), 

o early detection of the convergence of the computation within the currently 
handled block (it depends on the local convergence signals computed by 
all nodes within the block, see 5.2), 

o detection of an unknown obstacle (at node (B,X,Y)). 

• The decision modules forwards the current position coordinates (B,X,Y) of the 
robot to the nodes. It collects the navigation information that are provided by the 
node modules in return (local values of all nodes in block B). Then it performs the 
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linear interpolation (see 5.3) to compute the navigation direction that must be given 
to the robot.  
 

In the following subsections, the hardware architecture for the node module and its main 
components will be described in some detail.  

 

 
Fig. 8. Architecture of a node module 

 
5.2 Node module implementation  

The architecture for a node module is shown in the simplified block diagram on figure 8. It 
uses 1-bit inputs and outputs to exchange data among nodes and with the global modules. 
Inputs are mainly used to receive the neighbouring node values (signals h_N, h_E, h_W, 
h_S) and global control signals (standard signals clk, reset, enable, signals Sel and 
Sat to indicate obstacle/goal changes, and SRAM controls EN, R, W). The local value h of 
the harmonic function is sent to all 4 neighbours (signals to_N, to_E, to_W, to_S) as 
well as to the global interpolation module so as to compute the navigation orientation if the 
robot is found to be located in the area that corresponds to the local node (see 5.3 for the 
description of the interpolation process). 
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The proposed hardware node module is constituted by five main sub-modules: the iterative 
computation of the harmonic function is performed by the Update module, the local 

convergence of this computation (stabilization) is detected by the Stable module, the node 
receives orders to behave as an obstacle or a goal through the Saturation module, the 
Maximum module checks for the presence of a local maximum, and communication with the 
dual port SRAM block that stores the node value is controled by the Mem module. Figure 8 
shows this architecture, as well as its interaction with shared resources that are surrounded 
by dotted lines (the local Counters and RAM modules are shared by a group/cluster of 3x6 

node modules, the Early module that detects the early stabilization of the block is part of 
the global control module, and the navigation decision is performed when all blocks have 
indicated no more local maximum through the Cvg module). The functionality of the main 
modules and their implementation details are described below. 
 
Update: This module performs the iterated computation of the harmonic function value 

),( jih  where (i,j) are the coordinates of the node in the environment. As described in (2), each 

iteration computes: 
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Three standard Full-Adder cells compute this average, without any shift or division 
operator, since the output value is sent to the RAM with a write address that is delayed by 2 
clock cycles (division by 4). Additional flip-flops are required to store the carry values. Since 
there is no more carry equal to 1 when writing the last bit of the result in the RAM, no 
additional reset clock cycle is required. 
 
Stable: This module serially compares the output of the iterated computation to the stored 

value (delayed by two flip-flops in the Mem module). This local convergence test is then sent 
to a global OR gate (in the Early module) to disable the inner computation loop of the 
block when early stabilization has been detected before I iterations. 
 
Maximum: This module uses a comparison between all neighbouring values and a 
comparison with the local value so as to determine whether the local node corresponds to a 
local maximum. This local information is sent to the Cvg module that uses a global OR gate 
so as to check for the presence of any local maximum in the current block. This global 
information is handled by the general Control module to finish the whole computation of 
harmonic values, so that the determination of the trajectory may start. 
 
Counters: This module is shared by 18 node modules. It generates the read (resp. write) 
addresses for the dual port RAM by means of counters cntR, r_cnt (resp. cntW). Both 
read addresses are sent to the ports of the RAM to handle both LSBF (counter cntR) and 
MSBF (reverse counter r_cnt) modes. When handling d-bit precision data, these counters 
are reset each d+2 cycles (the RAM is written with a 2-clock cycles delay). Value 1 (for 
obstacles) is computed as a logical function of cntR.  
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Mem and Saturation: The local node value is not directly the output of the Update module. 
It may also be a constant 0 or 1 (goal or obstacle). A multiplexer selects the correct value 

with respect to a control given by the Saturation module that memorizes the Sat value to 
be the constant value of the grid point when the node is selected by the global control 
module (signal Sel). Since multiple blocks are handled, these constant values must also be 
stored in and retrieved from the RAM. To do that, we add a special bit (the MSB) to the 
values stored in memory (this bit is set to 1 when the local value is constant). The 
Saturation module also receives this information. 

 
5.3 Convergence detection and determination of the navigation direction 

Control: This global module performs the usual scheduling of the loops of the algorithm 
through various counters. It mostly computes the number B of the current block, and it takes 
into account the stabilization and the convergence (no maximum) of the different blocks to 
adapt the global scheduling. Moreover, it handles the different counters such that the 
computations are performed with an increasing precision until global convergence. 
 
Decision: This module operates after convergence of the iterations. Knowing the 
coordinates of the node (B,X,Y) that corresponds to the current position of the robot, this 
module acts as a sequential program that computes the maximum slope among the four 
triangles that are defined by the node and two of its immediate neighbours. It simply 
reduces to the determination of the two consecutive neighbours (B,X’,Y’) and (B,X”,Y”) 
which values maximize the sum of their difference with respect to the center node value 

( ) ( )2)",",(),,(

2

)'',,(),,( YXBYXBYXBYXB hhhh −+− . Then the best trajectory direction (gradient 

ascent) is given by a vector which coordinates are equal to ( ))',',(),,( YXBYXB hh −  and 

( )"),",(),,( YXBYXB hh −  or to their opposite values (it depends on the position of (X’,Y’) and 

(X”,Y”) with respect to (X,Y)). 

 
5.4 Implementation results  

In order to deal with larger environments, elemental node modules are gathered together to 
form a 2D grid of 3x6 clusters. Most of the connections among nodes are local with the four 
neighbours. The main reason to group in such a configuration is due to the 18-bit width of 
the shared block ram (technological constraints of the targeted FPGA) that is used to store 
the values of each node. The depth of the BlockRAMs is 1K. It allows handling a wide range 
of arithmetic precisions such as 64-128 bits per word without modifying the memory 
organization. 
 

Node hardware resource utilization XC2V6000-5ff1517 

Number of Slice Flip Flops 11/67,584 

Number of 4 input LUTs 22/67584 

Number of occupied Slices 13/33792 

Frequency 361 MHz  

Table 1. Synthesis results for a node module 
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This work uses two PCI bus board. The first one is equiped with a Virtex XC2V6000-4FF1517 
FPGA from Xilinx, with up to 6,000,000 system gates. Such a FPGA contains 67,584 logic 
cells. The second one is equiped with three FPGAs, the largest one being a Virtex-4 
XC4VLX160ff1513-12 FPGA from Xilinx, that contains 135,168 logic cells, to be compared 
with the 200,448 ones of the current largest Virtex-4. The design was synthesized, placed 
and routed automatically in Xilinx Foundation ISE 7.1i. Results are shown in tables 1, 2 and 
3. Each node module requires 26 logic cells, and each cluster of 18 node modules requires 
470 logic cells (counters included). On a XC2V6000, 144 dual port SRAM blocks are 
available, that may be configured as 1Kx18 RAMs to be shared by clusters of 18 node 
modules. The whole architecture may implement a 36x66 grid on less than 92 % of the 
XC2V6000 logic cells.  
 

3x6 cluster hardware resource utilization XC2V6000-5ff1517 

Number of Slice Flip Flops 198/67,584 

Number of 4 input LUTs 398/67584 

Number of occupied Slices 235/33792 

Frequency 300 MHz  

Table 2. Synthesis results for a 18-node cluster module  

 
We use the remaining 12 SRAM blocks to implement the storage facilities of the 204 border 
blocks (for a 36x66 grid). Handling addresses for these special blocks mostly reduces to 
generate in a parallel way B+1, B-1, B+k, B-k (all values modulo kxk, where kxk is the 
total number of blocks). A few slices are sufficient (around 10 for up to 5x5 blocks). Then the 

Control module (844 slices) and the Decision module are added (3p + 682 slices for a p-
bit precision). So that for example 99.4 % of this FPGA is finally used for the implementation 
of the whole algorithm with 4 blocks and p=255 (see below for the speed). 
 
Larger blocks (up to 54x108 nodes) may be implemented on the current largest FPGAs with 
this approach (the available SRAM blocks being the critical resource). As an example, table 3 
shows the hardware resource utilization for a 48x96 block on the Virtex-4.  
 

48x96 block hardware resource utilization XC4VLX160ffff1513-12 

Number of Slice Flip Flops 50699/135168 

Number of 4 input LUTs 101396/135168 

Number of occupied Slices 59914/67584 

Frequency 150 MHz 

Table 3. Synthesis results for a 48x96 block 

 
Software implementations of the harmonic function computation on a microprocessor based 
computer, Pentium 4,2 GHz, require around 100 μs  per iteration with a 36x66 block. In the 

proposed hardware implementation, p+2 clock cycles are required per iteration for precision 
p, with an estimated clock frequency of 150 MHz. Thus, the implementation on the Virtex-2 
provides a speed factor up to 100x (for a 128-bit precision that corresponds to some average-
sized environments in our reported experiments), that would even increase with the 
number of nodes in the grid (sequential vs parallel implementation). But the 
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implementation speed is not the only advantage of our implementation. Power 
consumption is a key factor for embedded implementations, and above all large precisions 
may be handled by the proposed serial implementation when few blocks are used (up to 1K 
bits when only one block is used).  
 
When using multiple blocks (for large environments) together with an increasing precision, 
the computation time linearly increases with the number of blocks as in the sequential 
implementation on PC. Therefore, the speedup is not intrinsically changed. But following 
our experiments in section 4, the number of iterations decreases before convergence, so that 
a final speed factor is up to 400x. As an example, with a not too complex maze with 9500 
nodes divided into 4 blocks, a p=255 precision, and I=6 consecutive iterations for each block 
at most, a speedup of 270x is obtained. 
 
It might be noticed that the depth of the SRAM memory blocks appears as the main 
limitation to handle larger environments (more blocks). Considering that the most recent 
Virtex-5 FPGAs contain different SRAM blocks, some of them twice larger than the ones we 
use, this limitation should also evolve with the technological improvements of FPGAs. 

 
6. Conclusion 
 

This chapter presents an embedded architecture to solve the navigation problem in robotics, 
that computes trajectories along a harmonic potential, using a FPGA implementation. This 
architecture includes the iterated estimation of the harmonic functions. The goals and 
obstacles of the navigation problem may be changed during computation. The trajectory 
decision is also performed on-chip, by means of local computations of the preferred 
direction at each point of the discretized environment. The proposed architecture uses a 
massively distributed grid of identical nodes that interact with each other within mutually 
dependant serial streams of data to perform pipelined iterative updates of the local 
harmonic function values until global convergence.  
 
When the environment size is too large for a fully parallel implementation on the used 
FPGA, our implementation takes advantage of the available SRAM to handle larger 
environments that are partitioned into blocks. It results in an iterated computation mode 
that is both globally asynchronous and block-synchronous.  
 
The proposed architecture also introduces the use of an increasing precision. First of all, this 
approach enables our implementation to reach the required precision for convergence 
without having to over-estimate it initially (resulting in excessively long computations). 
Then it also enables an optimization of the overall computation time. This optimization is 
carefully studied from a theoretical and experimental point of view, with respect to both the 
block-synchronous approach and the increasing precision technique.  
 
Despite all these results, our implementation may still appear as not able to handle 
particularly large and complex environments. This is intrinsically linked to the nature of the 
harmonic control that rapidly requires huge precisions for such environments. The main 
perspective of this work is to extend it to optimal control, a more generic (and tunable) 
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trajectory planning method, that uses similar computations without requiring such huge 
precisions. 
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