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Mechatronics Engineering Group, Department of Mechanical Engineering,  

The University of Auckland  
New Zealand 

1. Introduction  

Vision-guided robotics has been one of the major research areas in the mechatronics 
community in recent years. The aim is to emulate the visual system of humans and allow 
intelligent machines to be developed. With higher intelligence, complex tasks that require 
the capability of human vision can be performed and replaced by machines. The 
applications of visually guided systems are many, from automatic manufacturing (Krar and 
Gill 2003), product inspection (Abdullah, Guan et al. 2004; Brosnan and Sun 2004), counting 
and measuring (Billingsley and Dunn 2005) to medical surgery (Burschka, Li et al. 2004; 
Yaniv and Joskowicz 2005; Graham, Xie et al. 2007). They are often found in tasks that 
demand high accuracy and consistent quality which are hard to achieve with manual 
labour. Tedious, repetitive and dangerous tasks, which are not suited for humans, are now 
performed by robots. Using visual feedback to control a robot has shown distinctive 
advantages over traditional methods, and is commonly termed visual servoing (Hutchinson 
et al. 1996). Visual features such as points, lines, and regions can be used, for example, to 
enable the alignment of a manipulator with an object. Hence, vision is a part of a robot 
control system providing feedback about the state of the interacting object. 
The development of new methods and algorithms for object tracking and robot control has 
gained particular interest in industry recently since the world has stepped into the century 
of automation. Research has been focused primarily on two intertwined aspects: tracking 
and control. Tracking provides a continuous estimation and update of features during 
robot/object motion. Based on this sensory input, a control sequence is generated for the 
robot. More recently, the area has attracted significant attention as computational resources 
have made real-time deployment of vision-guided robot control possible.  However, there 
are still many issues to be resolved in areas such as camera calibration, image processing, 
coordinate transformation, as well as real time control of robot for complicated tasks.   
This chapter presents a vision-guided robot control system that is capable of recognising 
and manipulating general 2D and 3D objects using an industrial charge-coupled device 
camera. Object recognition algorithms are developed to recognize 2D and 3D objects of 
different geometry. The objects are then reconstructed and integrated with the robot 
controller to enable a fully vision-guided robot control system. The focus of the chapter is 
placed on new methods and technologies for extracting image information and controlling a 
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serial robot. They are developed to recognize an object to be manipulated by matching 
image features to a geometrical model of the object and compute its position and orientation 
(pose) relative to the robot coordinate system. This absolute pose and cartesian-space 
information is used to move the robot to the desired pose relative to the object. To estimate 
the pose of the object, the model of the object needs to be established. To control the robot 
based on visual information extracted in the camera frame, the camera has to be calibrated 
with respect to the robot. In addition, the robot direct and inverse kinematic models have to 
be established to convert cartesian-space robot positions into joint-space configurations. The 
robot can then execute the task by performing the movements in joint-space.  
The overall system structure used in this research is illustrated in Figure 1. It consists of a 
number of hardware units, including the vision system, the CCD video camera, the robot 
controller and the ASEA robot. The ASEA robot used in this research is a very flexible 
device which has five degrees of freedoms (DOF). Such a robot has been widely used in 
industry automation and medical applications. Each of the units carries out a unique set of 
inter-related functions. 

 

Figure 1. The overall system structure 

The vision system includes the required hardware and software components for collecting 
useful information for the object recognition process. The object recognition process 
undergoes five main stages: (1) camera calibration; (2) image acquisition; (3) image and 
information processing; (4) object recognition; and (5) results output to the motion control 
program.  

2. Literature Review 

2D object recognition has been well researched, developed and successfully applied in many 
applications in industry. 3D object recognition however, is relatively new. The main issue 
involved in 3D recognition is the large amount of information which needs to be dealt with. 
3D recognition systems have an infinite number of possible viewpoints, making it difficult 
to match information of the object obtained by the sensors to the database (Wong, Rong et 
al. 1998). 
Research has been carried out to develop algorithms in image segmentation and registration 
to successfully perform object recognition and tracking. Image segmentation, defined as the 
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separation of the image into regions, is the first step leading to image analysis and 
interpretation. The goal is to separate the image into regions that are meaningful for the 
specific task. Segmentation techniques utilised can be classified into one of five groups (Fu 
and Mui 1981), threshold based, edge based, region based, classification (or clustering) 
based and deformable model based. Image registration techniques can be divided into two 
types of approaches, area-based and feature-based (ZitovZitova and Flusser 2003). Area-
based methods compare two images by directly comparing the pixel intensities of different 
regions in the image, while feature-based methods first extract a set of features (points, lines, 
or regions) from the images and then compare the features. Area-based methods are often a 
good approach when there are no distinct features in the images, rendering feature-based 
methods useless as they cannot extract useful information from the images for registration. 
Feature-based methods on the other hand, are often faster since less information is used for 
comparison. Also, feature-based methods are more robust against viewpoint changes 
(Denavit and Hartenberg 1995; Hartley and Zisserman 2003), which is often experienced in 
vision-based robot control systems. 
Object recognition approaches can be divided into two categories. The first approach utilises 
appearance features of objects such as the colour and intensity. The second approach utilises 
features extracted from the object and only matches the features of the object of interest with 
the features in the database. An advantage of the feature-based approaches is their ability to 
recognise objects in the presence of lighting, translation, rotation and scale changes (Brunelli 
and Poggio 1993; ZitovZitova and Flusser 2003). This is the type of approach used by the 
PatMax algorithm in our proposed system. 
With the advancement of robots and vision systems, object recognition which utilises robots 
is no longer limited to manufacturing environments. Wong et al. (Wong, Rong et al. 1998) 
developed a system which uses spatial and topological features to automatically recognise 
3D objects. A hypothesis-based approach is used for the recognition of 3D objects. The 
system does not take into account the possibility that an image may not have a 
corresponding model in the database since the best matching score is always used to 
determine the correct match, and thus is prone to false matches if the object in an image is 
not present in the database. Büker et al. (BBuker, Drue et al. 2001) presented a system where 
an industrial robot system was used for the autonomous disassembly of used cars, in 
particular, the wheels. The system utilised a combination of contour, grey values and 
knowledge-based recognition techniques. Principal component analysis (PCA) was used to 
accurately locate the nuts of the wheels which were used for localisation purposes. A coarse-
to-fine approach was used to improve the performance of the system. The vision system was 
integrated with a force torque sensor, a task planning module and an unscrewing tool for 
the nuts to form the complete disassembly system. 
Researchers have also used methods which are invariant to scale, rotation, translation and 
partially invariant to affine transformation to simplify the recognition task. These methods 
allow the object to be placed in an arbitrary pose. Jeong et al. (Jeong, Chung et al. 2005) 
proposed a method for robot localisation and spatial context recognition. The Harris 
detector (Harris and Stephens 1988) and the pyramid Lucas-Kanade optical flow methods 
were used to localise the robot end-effector. To recognise spatial context, the Harris detector 
and scale invariant feature transform (SIFT) descriptor (Lowe 2004) were employed. Peña-
Cabrera et al. (Pena-Cabrera, Lopez-Juarez et al. 2005) presented a system to improve the 
performance of industrial robots working in unstructured environments. An artificial neural 
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network (ANN) was used to train and recognise objects in the manufacturing cell. The object 
recognition process utilises image histogram and image moments which are fed into the 
ANN to determine what the object is. In Abdullah et al.’s work (Abdullah, Bharmal et al. 
2005), a robot vision system was successfully used for sorting meat patties. A modified 
Hough transform (Hough 1962) was used to detect the centroid of the meat patties, which 
was used to guide the robot to pick up individual meat patties. The image processing was 
embedded in a field programmable gate array (FPGA) for online processing. 
Even though components such as camera calibration, image segmentation, image 
registration and robotic kinematics have been extensively researched, they exhibit 
shortcomings when used in highly dynamic environments. With camera calibration in real 
time self-calibration is a vital requirement of the system while with image segmentation and 
registration it is crucial that the new algorithms will be able to operate under the presence of 
changes in lighting conditions, scale and with blurred images, e.g. due to robotic vibrations.  
Hence, new robust image processing algorithms will need to be developed. Similarly there 
are several approaches available to solve the inverse kinematics problem, mainly Newton-
Raphson and Neural Network algorithms. However, they are hindered by accuracy and 
time inefficiency respectively. Thus it is vital to develop a solution that is able to provide 
both high accuracy and a high degree of time efficiency at the same time.   

3. Methods 

The methods developed in our group are mainly new image processing techniques and 
robot control methods in order to develop a fully vision-guided robot control system. This 
consists of camera calibration, image segmentation, image registration, object recognition, as 
well as the forward and inverse kinematics for robot control. The focus is placed on 
improving the robustness and accuracy of the robot system. 

3.1 Camera Calibration 

Camera calibration is the process of determining the intrinsic parameters and/or the 
extrinsic parameters of the camera. This is a crucial process for: (1) determining the location 
of the object or scene; (2) determining the location and orientation of the camera; and (3) 3D 
reconstruction of the object or scene (Tsai 1987).  
A camera has two sets of parameters, intrinsic parameters which describe the internal 
properties of the camera, and extrinsic parameters which describe the location and 
orientation of the camera with respect to some coordinate system. The camera model 
utilised is a pinhole camera model and is used to relate 3D world points to 2D image 
projections. While this is not a perfect model of cameras used in machine vision systems, it 
gives a very good approximation and when lens distortion is taken into account, the model 
is sufficient for the most common machine vision applications. A pinhole camera is 
modelled by: 

 XtRKx ]|[=  (1) 

Where X is the 3D point coordinates and x the image projection of X. ( )tR,  are the extrinsic 

parameters where R  is the 3×3  rotation matrix and t  the 1×3  translation vector. K is the 

camera intrinsic matrix, or simply the camera matrix, and it describes the intrinsic 
parameters of cameras: 
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where (fx, fy) are the focal lengths and (cx, cy) the coordinates of the principal point along the 
major axes x  and y , respectively. The principal point is the point at which the light that 

passes through the image is perpendicular to the image, and this is often, but not always, at 
the centre of an image. 

 

Figure 2. Pinhole camera showing: camera centre (O), principal point (p), focal length (f), 3D 
point (X) and its image projection (x) 

As mentioned previously, lens distortion needs to be taken into account for pinhole camera 
models. Two types of distortion exist, radial and tangential. An infinite series is required to 
model the two types of distortions, however, it has been shown that tangential distortions 
can often be ignored, in particular for machine vision application. It is often best to limit the 
number of terms for the distortion coefficient for radial distortion for stability reasons (Tsai 
1987). Below is an example of how to model lens distortion, taking into account both 
tangential and radial distortions, using two distortion coefficients for both: 

 [ ] ( )[ ]22
21

4
2

2
1 2++2+++=~ xrpxyprkrkxxx  (3) 

 [ ] ( )[ ]22
21

4
2

2
1 2++2+++=~ yrpxyprkrkyyy  (4) 

 22 += yxr  (5) 

where ( )yx,  and ( )yx ~,~  are the ideal (without distortion) and real (distorted) image physical 

coordinates, respectively. r  is the distorted radius. 

3.2 Object Segmentation 

Image segmentation is the first step leading to image analysis. In evaluation of the five 
methodologies (Fu and Mui 1981), the deformable model based segmentation holds a 
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distinct advantage over the others when dealing with image-guided robotic systems. Many 
visually-guided systems use feature based approaches for image registration. Such systems 
may have difficulty handling cases in which object features become occluded or 
deformation alters the feature beyond recognition. For instance, systems that define a 
feature as a template of pixels can fail when a feature rotates relative to the template used to 
match it. To overcome these difficulties, the vision system presented in this chapter 
incorporates contour tracking techniques as an added input along with the feature based 
registration to provide better information to the vision-guided robot control system. Hence, 
when a contour corresponding to the object boundary is extracted from the image, it 
provides information about the object location in the environment. If prior information 
about the set of objects that may appear in the environment is available to the system, the 
contour is used to recognise the object or to determine its distance from the camera. If 
additional, prior information about object shape and size will be combined with the contour 
information, the system could be extended to respond to object rotations and changes in 
depth. 

3.2.1 Active Contours Segmentation 

The active contours segmentation methodology implemented is a variation of the one 
proposed by (Kass, Witkin et al. 1988). 
The implemented methodology begins by defining a contour parameterized by arc length s 
as 

 ( ) ( )( ){ } Ω→ℜ≤≤≡ :0:,)( LssysxsC   (6) 

where L denotes the length of the contour C, and Ω  denotes the entire domain of an image 
I(x, y). The corresponding expression in a discrete domain approximates the continuous 
expression as 

 ( ) ( )( ){ }snsNnsysxnCsC ∆+=≤≤=≈ 0,0:,)()(  (7) 

where sNL Δ= . An energy function E(C) can be defined on the contour such as 

 
extint)( EECE +=   (8) 

where intE  and extE  respectively denote the internal energy and external energy functions. 

The internal energy function determines the regularity and smooth shape, of the contour.  
The implemented choice for the internal energy is a quadratic functional given by 

 ( ) ( )( ) snCǃnCǂE

N

n

Δ′′+′=

0=

22
int ∑   (9) 

Here ǂ  controls the tension of the contour, and ǃ  controls the rigidity of the contour. The 

external energy term determines the criteria of contour evolution depending on the image 
I(x, y), and can be defined as 

 ∑
=

∆=
N

n

imgext sncEE
0

))((  (10) 
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where imgE  denotes a scalar function defined on the image plane, so the local minimum of 

imgE  attracts the active contour to the edges. An implemented edge attraction function is a 

function of image gradient, given by 

 
( )yxIGλ

yxE
σ ,×

1
=),(img
∇

 (11) 

where σG  denotes a Gaussian smoothing filter with the standard deviation σ , and λ  is a 

suitably chosen constant. Solving the problem of active contours is to find the contour C that 

minimises the total energy term E with the given set of weights ǂ , ǃ  and λ . The contour 

points residing on the image plane are defined in the initial stage, and then the next position 
of those snake points are determined by the local minimum E. The connected form of those 
points are considered as the contour to proceed with. Figure 3 shows an example of the 
above method in operation over a series of iterations. 

    

(a)  (b) (c) (d) 
Figure 3. (a) Original level set contour, (b) Level set contour after 20 iterations, (c) Level set 
contour after 50 iterations, (d) Level set contour after 70 iterations 

3.3 Image Registration and Tracking 

 

Figure 4. Eye-in-hand vision system 
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An important role of machine vision in robotic manipulators is the ability to provide 
feedback to the robot controller by analysing the environment around the manipulator 
within the workspace. Thus a vision-guided robotic system is more suitable for tasks such as 
grasping or aligning objects in the workspace compared to conventional feedback controls, 
for example force feedback controllers. The main challenge in vision-based robot control 
systems is to extract a set of robust and useful feature points or regions and using these 
features to control the motion of the robotic manipulator in real-time. 
To accurately provide feedback information from the vision system, the camera first needs 
to be aligned with the robotic manipulator. Figure 4 shows an eye-in-hand configuration 
(Spong, Hutchinson et al. 2006), which has the camera mounted on the end-effector.  The 
‘eye-in-hand’ setup is often the preferred configuration in machine vision applications since 
it provides a better view of the object. The base of the robotic manipulator contains the 
world coordinate system ( )www zyx ,, , which is used as the reference for all the other 

coordinate systems. The end-effector’s coordinate system ( )eee zyx ,,  has a known 

transformation with respect to the world coordinate. The camera’s coordinate system is 
aligned to the end-effector by a number of methods, one of which is based on the geometric 
relationship between the origin of the end-effector and the camera coordinate. By knowing 
the geometric relationship of the end-effector and the camera, the rigid transformation or 
homogeneous transformation of the two components can be defined: 

 effectorendcamera

effectorend

camera PHP =  (12) 

where cameraP  is the homogeneous representation of a 3D point in the camera coordinate,  

 ⎥
⎦

⎤
⎢
⎣

⎡
=

1

camera

camera p
P  (13) 

Using the homogeneous transformation, the information obtained by the vision system can be 
easily converted to suit the robotic manipulator’s needs. In order for the vision system to track 
an object in the workspace, either continuous or discontinuous images can be captured. 
Continuous images (videos) provide more information about the workspace using techniques 
such as optical flow (Lucas and Kanade 1981), however require significantly more 
computation power in some applications, which is undesirable. Discontinuous images provide 
less information but can be more difficult to track an object, especially if both the object and the 
robotic manipulator are moving. However, the main advantage is that they require less 
computation as images are not being constantly compared and objects tracked. One method 
for tracking an object is by using image registration techniques, which aims at identifying the 
same features of an object from different images taken at different times and viewpoints. 
Image registration techniques can be divided into two types of approaches, area-based and 
feature-based (Zitova and Flusser 2003). Area-based methods compare two images by directly 
comparing the pixel intensities of different regions in the image, while feature-based methods 
first extract a set of features (points, lines, or regions) from the images, the features are then 
compared. Area-based methods are often a good approach when there are no distinct features 
in the images, rendering feature-based methods useless as they cannot extract useful 
information from the images for registration. Feature-based methods on the other hand, are 
often faster since less information is used for comparison. Also, feature-based methods are 
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more robust against viewpoint changes (Denavit and Hartenberg 1955; Hartley and Zisserman 
2003), which is often experienced in vision-based robot control systems. 

3.3.1 Feature-Based Registration Algorithms 

To successfully register two images taken from different time frames, a number of feature-
based image registration methods, in particular, those based on the local descriptor method 
have been studied. In order for the algorithms to be effective in registering images of an 
object over a period of time, two types of rigid transformations have been analysed: (1) 
change of scale and (2) change of viewpoint. A change of scale implies that the camera has 
moved towards or away from the camera, hence the size of the object in the image has 
changed. A change in viewpoint implies that the camera has moved around in the 
environment and that the object is being viewed from a different location. Four algorithms 
were compared, namely: Scaled-Invariant Feature Transform (SIFT) (Lowe 2004), Principal 
Component Analysis SIFT (PCA-SIFT) (Ke and Sukthankar 2004), Gradient Location and 
Orientation Histogram (GLOH) (Mikolajczyk and Schmid 2004), and Speeded Up Robust 
Features (SURF) (Bay, Tuytelaars et al. 2006).  The scale of the image is defined as the ratio 
of the size of the scene in an image with respect to a reference image: 

 ,

,

I s

I r

h
s
h

=  (14) 

where ,I rh  is the height of the scene in the reference image, and ,I sh  is the height of the 

scene in the image of scale s . From this equation it is clear that the scale is proportional to 

the height of the scene in the image. This is best illustrated in Figure 5, where Figure 5(a) 
shows the image used as the reference and has a scale of one by definition, and Figure 5(b) 
shows a new image with scale s . 
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Figure 5.  Change of scale of objects in images 

3.4 Improved Registration and Tracking Using the Colour Information of Images 

3.4.1 Colour model 

One area of improvement over existing methods is the use of the information available from 
the images. Methods such as SIFT or SURF make use of greyscale images, however many 
images which need to be registered are in colour. By reducing a colour image to a greyscale 
one, a large proportion of information are effectively lost in the conversion process. To 
overcome this issue, it is proposed that colour images are used as inputs for the registration 
process, thus providing more unique information for the formation of descriptors, increasing 
the uniqueness of descriptors and enhancing the robustness of the registration process. 

www.intechopen.com



Robot Manipulators 

 

530 

While it is possible to simply use the RGB values of the images, it is often not the desirable 
approach, since factors such as the viewing orientation and location of the light source affect 
these values. Many colour invariant models exist in an attempt to rectify this issue, and the 
m1m2m3 model (Weijer and Schmid 2006) is utilised here. The advantage of the chosen 
model is that it does not require a priori information about the scene or object, as the model 
is illumination invariant, and is based on the ratio of surface albedos rather than the surface 
albedo itself. The model is a three component model, and can be defined as: 
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where ,1 2x x  are the neighbouring pixels. Without loss of generality, 1m  is used to derive 

the results, by taking the logarithm on both sides: 
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From this, it can be shown that the colour ratios can be represented as the difference of the 
two neighbouring pixels: 
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3.4.2 Dimension Reduction 

It should be noted that one main issue which arises from using the colour information of 
images is the increase in the amount of data which needs to be dealt with. By computing 
descriptors for the model described above, the dimension of each descriptor is increased 
three-fold. For example, in the case of the SURF descriptor, the dimension of each descriptor 
increases from 64 to 192. While this increase in dimension often aids in improving the 
robustness, a significant drop in computational speed is noted. To overcome this issue, 
Principal Component Analysis (PCA) (Pearson 1991) is applied. PCA is a statistical method 
for vector space transform, often used to reduce data to lower dimensions for analysis. The 
original data is transformed as follows: 

 Y UX=  (18) 

where Y is the new data, based on the original data X, and the eigenvectors of the covariant 
matrix of X, U. The covariance matrix can be computed by first mean-shifting the data, then 
estimating: 

 ( )( )
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where,
1

1 n

i
i

X X
n =

= Σ is the sample mean, and n is the number of data entries. Approximately 

20,000 image patches have been used for estimating the covariance matrix. Here, the SURF 
descriptor has been used to generate a set of descriptors for each image patch. 
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3.5 Object Recognition 

The algorithm for object recognition is one of the most important parts of the developed 
vision system. This module is used to make decisions for the object recognition process and 
command different parts of the system to function.  

3.5.1 Algorithm for 2D Object Recognition 

Recognising 2D objects is a relatively simple task, since only the top view of the objects need 
to be considered. One simple algorithm is described below. Firstly, the program commands 
the VisionServer, part of the vision system, to take an image of the object from the top and 
match it against the images of all the models in the database. The VisionServer will then 
compute a score for each model to indicate how close each model matches with the object, 
with 1.0 being the highest and 0.0 being the lowest. Preceding this, the program can identify 
what the object is by comparing the scores of the various models. 
One simple methodology is to compare the scores with a threshold value. The model is 
reported as the object only if the score is above the threshold value. Sometimes there will be 
more than one model getting a score that is bigger than the threshold value due to the 
similarity of the models in the database. In this case, the model with the highest score will be 
reported as the object. On the other hand, if none of the scores is above the threshold value, 
the program will report an error. After the object is recognised, the next 2D object can be 
processed using the same procedure. Since this algorithm is simple and only one image 
needs to be checked against other trained images in the system at each time, problems such 
as long computational time and view planning, which are common in 3D object recognition 
systems, do not exist. 

3.5.2 Algorithm for 3D Object Recognition 

Three-dimensional object recognition is much more complex compared to 2D cases. This is 
because a 3D object can have many different faces and sitting bases. The appearance of the 
object can be very different from one viewpoint to another. Moreover, an object recognition 
system often needs to identify more than one object. If the camera is only fixed in one place 
to take images, it may not have enough information to identify an object if it looks similar to 
more than one model in the database. It may also report the wrong model name when 
cluster or occlusion exists. Therefore, taking multiple images from different angles is a 
common approach for 3D object recognition systems. 
Consider the case where there are several 3D objects to be recognised and there is no 
restriction on the number of sitting bases each object can have. One approach to solving this 
problem is to obtain and train several views of each object that can be seen by the camera 
and store the results in the system. In run-time, if any one of the images in the database 
looks similar to the object being recognised, the system will report the name of the model 
that this image belongs to. Otherwise, it will go to another viewpoint to take a new image 
and repeat the same process until it finds a trained image that looks similar to the new view 
of the run-time object. Sometimes, there may be two or more images from different models 
which appear similar to the view of the object due to the similarity of the models. In this 
case, the system will need to take another image from a new position and repeat the process 
again until there is only one image in the database which matches the run-time image. 
Figure 6 shows the flowchart of this algorithm. This algorithm is easy to implement but it 
has many drawbacks. One of the major problems is the long computational time needed. If 
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there is only one model in the database, this algorithm can perform reasonably fast. 
However, this is not a practical setup. If there are more models to be recognised or if the 
models have more complex shapes and more faces, there will be a lot more trained images 
in the database. For example, if there are n models to be identified and each has m faces, 
there will then be m×n trained images in the database of the system. Since there is no 
restriction on the number of sitting bases each object can have, the system has no idea which 
view of the object will face the camera. As a result, every time an image is taken, the system 
needs to compare the image with all the trained images in the database. This process is 
extremely time consuming and occupies a lot of computer resource. This problem is 
magnified when there are similar models in the database or when the system fails to find a 
trained image which looks similar to the run-time image because, as shown in the flowchart 
in Figure 6, the system will simply repeat the same process until it finds one model that 
matches. Another problem in this algorithm is if an object that has not been trained is put in 
the system for recognising, then the system will simply go into an endless loop and never 
finish since it can never find a model that matches the image of the new object. These 
disadvantages make it impractical to be used in real life applications and therefore, an 
improved method is derived. 
 
 

Obtain and train several views of each model that can 

possibly be seen by the camera in run-time

Command the KUKA robot to the defined  position

Taka a picture of the object and analyze it by checking 

it against all the trained images in the database of the 

system 

Check the 

number of trained picture(s) 

in the database that look(s) similar to 

the view of the object being recognized

 by finding the number of score(s) that

 is higher than the threshold 

value

Output the name of the model that this 

trained picture belongs to as the object 

name

Command the KUKA robot to 

another position

1

Repeat the 

process

0

>1

Check  if they are all

 from  the same model

Output the name of the model that these trained 

pictures belong to as the object name

Yes

No

 

Figure 6. Flowchart of a simple algorithm for 3D object recognition 
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3.5.3 Improved Algorithm for 3D Object Recognition 

 

 

 

Figure 7. Flowchart of an improved algorithm for 3D recognition 

To improve the above algorithm, one method which is used is to restrict all the 3D objects to 
one sitting base only. By placing this restriction, any 3D object will always have the same 
face showing up no matter what pose it is placed under the camera. This means that every 
time a new object recognition process starts, the robot can always go to the top (position 1) 
to take an image of the object and compare it with the top views of all other models in the 
database. After the images have been compared, the system will have an idea of which 
model the object being processed is likely to be by comparing the scores. It outputs what 
object it is based on the top view. If the system is uncertain what the object is, it goes to the 
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side positions (either position 2 or 3) to check for the object’s side views to further verify 
whether or not it is the one that the system initially determines before the system outputs 
the result. By allowing the system to output the result based on the top view, it can make the 
process performs faster, however, it also decreases the accuracy. On the other hand, if the 
system checks for at least two views of the object before it outputs the result, the system will 
perform slower, but will have a much higher accuracy. There is a trade-off between speed 
and accuracy and this decision should be made based on the situation. In this work, it was 
chosen to check for two views in for 3D object recognition to enhance the accuracy of the 
system. 
Using the proposed approach, if the run-time object looks similar to two or more models 
from the top, the ASEA robot will analyse the side view of the run-time object from position 
2 by checking it against all the side views of all the possible models. If the system can 
identify which model the object is, it will stop and output the result, otherwise, it will go to 
position 3 and repeat the same process. If the system still cannot determine what this object 
is, it will output a failure message and stop the object recognition process at this point. This 
is to prevent the system from running for a long period of time to handle complex or new 
objects. 
This improved algorithm is fast and accurate compared with the simple 3D object 
recognition algorithm described in Figure 6. For every object recognition process, only a 
small portion of the trained images in the database needs to be looked at. This minimises the 
time required and the workload of the vision computer. In addition, when there is not 
sufficient information to identify the object due to the presence of similar models in the 
database, the system will automatically go to a new position to take another image of the 
object and perform the analysis again. If the system still cannot identify the object after three 
runs, it will stop and report a failure. This algorithm can also be used in cases where objects 
have two or more sitting bases. This is achieved by treating the object sitting on the other 
base as a separate object.  

3.6 ASEA Robot Modelling and Simulation 

The control of the ASEA robot directly affects the performance of the system. The processing 
time is one of the key factors to determining the performance. For example, if the robot 
moves too slowly, it will reduce its efficiency. However if the robot moves too fast, 
vibrations will affect the quality of the images taken. Therefore, the control of the ASEA 
robot has to be carefully considered. 
One of the problems is to find a method to control the end-effector of the robot manipulator 
to follow a pre-defined trajectory. Normally a desired pose of the end-effector with respect 
to the base is given as well as the torque required to move a particular object. For serial 
robots, inverse kinematics algorithm is used to determine the desired rotational angle of 
each joint, given the desire position of end-effector. The corresponding torque of each motor 
needs be computed as well using inverse kinematics. In the kinematics model, the torques 
provided by the motors are the inputs into the plant, and the outputs are the resulting 
rotational angles and the angular velocities of the links. The operation is accomplished by 
actuating the five joint motors, by sensing the joint angles and angular velocities, and by 
comparing the desired angular positions with the actual ones. Figure 8 below shows a 
simulation model established to validate the control and kinematics of the ASEA robot.  
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Figure 8. Overall control system modelled in Simulink 

3.6.1 Kinematics Analysis  

The ASEA robot manipulator has five serial links, which allows the robot to move with five 
degrees of freedom (DOF). The dimension of the robot manipulator is shown in Table 1. L1-
L5 represent the five links that make up the serial robot while q1-q5 represent the five joints 
that form the serial structure. For the serial robot, a new inverse kinematics algorithm is 
developed using a combination of the numerical and analytic methods. The forward 
kinematics was implemented in combination with inverse kinematics in order to minimise 
the error of inverse kinematics solution. The basic principle is that the solution of inverse 
kinematics is fed to forward kinematics so that the desired position derived from calculated 
joint angles are computed. The difference between real desired position and calculated 
desired position is then calculated, which is added to inverse kinematics function. By 
repeating the  loop a few times, the solution of inverse kinematics should be optimal.  

 

Link Length(mm) Joint Type of Rotation Angle of Rotation(deg) 

L1 730 q1 axis 360 

L2 690 q2 vector 82.5 

L3 670 q3 vector 63 

L4 73 q4 vector 208.5 

L5 20 q5 axis 331.5 

Table 1. The ASEA robot parameters 
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3.6.2 Forward Kinematics 

The end-effector position and orientation can be solved link by link from the base to the 
end-effector. If uzyx ,,, andw  are defined as instantaneous cartesian coordinates then 

the end-effector orientation can be solved using the following relations, 

)qq(qw

)qq(qu

))qq(q)L(LL)q(qL)(qLz

))qq(q)L(L)q(qL)(q(L)(qy

))qq(q)L(L)q(qL)(q(L)(qx

432

432

43254132322

43254323221

43254323221

++sin=

++cos=

++sin×++++sin×+sin×=

++cos×+++cos×+cos××sin=

++cos×+++cos×+cos××cos=

 (20) 

3.6.3 Inverse Kinematics: Sugeno Fuzzy Inference System (SFIS) 

To achieve a mapping between the cartesian variables and joint variables of the ASEA robot, 
a zero-order Sugeno Fuzzy Inference System (SFIS) was developed. The Sugeno system is 
based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. 
Essentially the fuzzy system has three main components: a rule-base, which contains fuzzy 
if-then rules; a database defining input and output fuzzy membership functions (MF) used 
in the rule-base and an inferencing mechanism to perform fuzzy reasoning. While carrying 
out the inverse kinematic analysis it is required to find a set of joint variables (q1, q2,……q5) to 
achieve the specified end effector pose of the robot. The cartesian variables of the end 
effector are chosen to be fuzzy antecedent variables and each variable is represented by two 
gaussian fuzzy MF with linguistic terms such as Low and High. Similarly, constant 
functions are intuitively chosen for the output joint variables and a rule-base containing a 
total of 32 rules is generated based on the following rule (Jamwal and Shan 2005): 

 ∏
n

j

jmR

1=

=   (21) 

where R represents the total number of rules; mj is the number of linguistic terms of the jth 
linguistic variable and n is the total number of input variables. Thus in the present case the 
total number of rules becomes 25 or 32. A Sugeno inferencing (Jang, Sun et al. 1997) is 
selected due to its advantages over the Mamdani method. The rule-base defines the 
relationship between inputs and outputs and a typical Sugeno fuzzy rule has the following 
structure:  
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where uzyx ,,, andw  are instantaneous input cartesian coordinates and 4321 ,,, rrrr  and 

5r  are the crisp output values for the joint variables of ASEA robot. The fuzzy system so 
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developed is not accurate (Jang, Sun et al. 1997) until the fuzzy parameters of antecedent 
and consequent variables are adjusted or tuned.  

3.6.3.1 Consequent MF tuning  

Once a database containing a set of inputs and outputs is available from the forward 
kinematic analysis, the consequent MFs are tuned to produce the desired model accuracy. 
To achieve this, a gradient-descent method is used to minimise an error function. Outputs 
from the SFIS are compared from the corresponding values available from forward 
kinematic analysis to find the error. The learning rule for the consequent crisp MF (ri’s) can 
be expressed as below: 

 

i

ii
r

E
trtr

∂

∂
)()1( α=+  (23) 

where E is Sum of Squared Errors (SSE) and α is the learning rate which decides the 

quantum of change in the parameters after each iteration. 
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Figure 9. Antecedent membership functions after tuning with genetic algorithms 

3.6.3.2 Antecedent MF tuning 

Initially the antecedent variables (cartesian coordinates) have been fuzzified and two 
gaussian MF linguistically termed as Low (L) and High (H) are placed equally dividing their 
respective universe of discourses. The position of the point of minimum fuzziness or the 
mean of the gaussian MF and its standard deviation are the important parameters, which 
influence accurate inferencing. There exists an optimal set of mean and standard deviation 
of all the membership functions for which the fuzzy model shall be given a maximum 
accuracy. In the present application these values of MF are varied within ±33% of their 
values. For example, mean of the ‘Low’ membership function of end effector displacement 
‘X’ has been varied between   -1.7373 and -0.8686 metres and the standard deviation is 
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varied between 0.66 and 1.33. Thus for five input variables consisting two MF each, there are 
20 points of mean and standard deviation which require tuning. In the present work genetic 
algorithms (GA) have been used (Jamwal and Shan 2005) for this tuning and to represent 20 
tuning points  a binary string of 200 bits is used, wherein 10 bits are devoted to each tuning 
point. Initial population of 20 binary coded strings of 200 bits was generated using Knuth’s 
random number generator. The roulette wheel selection method (Jang, Sun et al. 1997) is 
used for selection of binary strings in the mating pool from the initial population and the 
probabilities of crossover and mutation operators were kept as 0.95 and 0.01. A Matlab code 
has been written to implement a genetic algorithm to tune the fuzzy system. 

3.6.4 Simulation Model 

A simulation model is established using SimMechanics to validate the developed control 
and kinematic algorithms. The model is shown in Figure 10. The model directly 
communicates with the control algorithms developed in Simulink, hence the control 
algorithms are firstly tested before they are implemented. The simulation model also 
provides visual feedback on how the robot tracks predefined trajectories.  

  

Figure 10. Simulation results of the simple integrated control system – starting point of the 
robot (left) and final position of the robot (right) 

4. Results 

In this section the results that have been achieved to date are presented. These are from the 
vision system, modelling and simulation of the robot, and the test results of the vision-
guided robot. 

4.1 Experimental Setup  

The experimental setup is shown in Figure 11. The experiment consists of an ASEA robot 
and a small scale assembly line setup as shown. The ASEA robot is shown in its default 
position and carries a CCD camera on its end-effector for visual feedback. The assembly line 
runs at a constant speed, and carries a number of  objects (car wheels). The experiment is set 
up to  automatically inspect car wheels.  
In the robot control system such as this, it is important to keep track of the camera poses for 
taking images. An appropriate viewpoint planning algorithm is required to decide the 
camera viewpoint to get the next best view of an object, if the first image does not provide 
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sufficient information to identify what the object is. This prevents the camera from taking 
images from an inadequate viewpoint. In this research, the ASEA robot was only allowed to 
go to one of three pre-defined viewpoints to capture images. Three fixed viewpoints exist, 
one on top and two on the sides of the object. There are several software packages used in 
this system. Controlling the operations of the whole process, enabling communication 
between different parts and carrying out object recognition tasks are the main roles of the 
developed software system. The software used to facilitate the construction of the system 
include the VisionPro software package, LabVIEW Programming Language, and the ASEA 
Robot Programming Language. VisionPro is a very comprehensive software package for 
machine vision applications. It contains a collection of Microsoft’s Component Object Model 
(COM) components and ActiveX controls that allow the development of vision applications 
in Visual Basic and Visual C++ programming environments with great flexibility.  
 

 

Figure 11.  Experiment setup 

4.2 Results: Feature Identification 

The performance of the local descriptors are evaluated by using the criterion described in 
(Mikolajczyk and Schmid) which is based on the number of correct matches and number of 
false matches obtained for any image pair. A plot of the recall versus the 1-precision is 
computed for each image pair. In addition, the recall value for each image pair is computed 
and this is plotted against the viewpoint changes. Recall is a measure of how well the local 
descriptors performed, based on the ratio of the number of correct matches and the total 
number of corresponding regions, determined with the overlap error (Kadir, Zisserman et 
al. 2004): 

 
encescorrespond of #

matches correct of #
recall =  (24) 

Default Position of ASEA Robot

Top View

Side View 1

Side View 2
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An overlap error of 50% is used. The 1-precision is a measure of the accuracy of the local 
descriptors: 

 
matches of #

matches false of #
precision-1 =  (25) 

The performance of the descriptors for the two different transformation types are discussed 
below. 

4.2.1 Scale Changes 

The recall versus 1-precision plot for scale changes is shown in Figure 12(a). This curve is 
near straight, indicating that the performance of the descriptors do not change with the 
change in scale (Mikolajczyk and Schmid). Figure 12(b) shows the recall plot for scale 
changes. The first section of the plot shows the performance is not affected by the change in 
scale. The performance however decreases rapidly for scale values greater than two. Further 
study of the local descriptors suggests that the drop in the recall value is due to the loss of 
information in the images due to the images being taken from further distances away from 
the objects. 
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Figure 12. Recall v.s. 1-precision for a scale change of two (a) and recall for different scales 
(b) 

The good performance for scale change is in agreement with previous research (Mikolajczyk 
and Schmid 2004) which indicates that the local descriptors are relatively robust to the 
above-mentioned transformations regardless of the type of scene used. As the descriptors 
are normalised for scale, good results for the scale changes are expected and this is true for 
scales of up to two for the carved flute. The poor performance of the techniques for scales of 
higher values is possibly caused by the removal of the background in all images and the 
scene of interest not covering the entire reference image. Therefore less information from the 
images is available compared to the evaluation studies in previous works (Mikolajczyk and 
Schmid 2004). 

4.2.2 Viewpoint Changes 

Viewpoint changes often pose the greatest challenge for image registration and this is 
reflected in the results obtained. Figure 13 shows the recall plotted against the 1-precision 
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for different viewpoint changes. A slowly increasing curve in Figure 13(a) indicates that the 
performance of the local descriptors is influenced by the degradation of images, in particular 
viewpoint changes. The near-horizontal curve in Figure 13(b) indicates that the performance 
of the local descriptors is limited by the similarity of the structures of the scenes, and the 
descriptors cannot distinguish between the structures (Mikolajczyk and Schmid 2004). 
Figure 14 shows the best recall values for the different viewpoint changes. The best recall 
value is defined as the value which has the maximum number of correct matches for the 
given number of correspondences, obtained by using different threshold values for 
identifying a pair of descriptors. As can be shown, the recall values degrade rapidly as the 
viewpoint angle increases, indicating the poor performance of the descriptors for dealing 
with viewpoint changes when using complex 3D scenes or scenes without distinctive 
features. Note that the recall value for a zero viewpoint angle is computed from two images 
of the scene taken from very close, but not identical, viewpoints due to the errors which 
exist in the turntable. The reason for a relatively low recall value despite the small difference 
in viewpoints is due to the way descriptors are matched. For low matching threshold values, 
not all the descriptors from the same region in the scene can be matched correctly, however 
for high threshold values mismatches occur, which decreases the recall value. 
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Figure 13. Recall v.s. 1-precision for a 5˚ viewpoint change (a), and 10˚ viewpoint change (b) 
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Figure 14.  Recall values for different viewpoint changes 
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4.3 Results: Improved Feature Identification Using Colour Information of Images 

The performances of several of the local descriptors were once again evaluated to quantify 
the benefit of utilising colour information during the feature identification process. The top 
two images shown in Figure 15 were taken from the active contours segmented tyre images 
of Figure 3.  

                  

(a)   (b)   (c)   (d) 
Figure 15. Images used for comparison of the performance of the improved feature 
identification approach. (a) is the original control image while (b), (c) and (d) have been 
rotated, translated and scaled respectively. The results of the registration process between 
(a) and (b) are given below 

 

Figure 16. Results for the improved approach. The graphs show the recall against 1-
precision values for the tyre images 

Once again the recall versus 1-precision plot is used, which were discussed previously. As it 
can be shown in Figure 16 the improved descriptor performs slightly better than the SURF 
descriptors, indicating the robustness of the algorithm against changes in the image 
conditions (for example, illumination). This is due to the lack of sufficient colour 
information in the test images. Significant improvements are observed when colour images 
are used. 

4.4 Results: SFIS  

The inverse kinematics SFIS system was tuned using genetic algorithm for 50 cycles and the 
average sum of squared errors in prediction of joint variables was dropped from 2.339 to 
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0.000193 for a set of 100 random end-effector poses. The SFIS, after tuning of antecedent and 
consequent variables is now accurate enough and is available for implementation in 
SIMULINK for simulations and online use.  In order to check the system accuracy, 50 
random sets of Cartesian variables were given to the system as inputs and the results 
obtained were plotted in Figure 17. It can be observed that the sum of squared errors in joint 
variables is very small and falls in the range of 31020 −×− radians. Further, the inference 

system so developed can be used for online control application, since it is time efficient and 
can provide results in less than 0.8 milliseconds. 
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Figure 17. Sum of squared errors in joint variables for random sets of cartesian variables 

5. Conclusions 

Research into a fully automated vision-guided robot for identifying, visualising and 
manipulating 3D objects with complicated shapes is still undergoing major development 
world wide. The current trend is toward the development of more robust, intelligent and 
flexible vision-guided robot systems to operate in highly dynamic environments.  
The theoretical basis of image plane dynamics and robust image-based robot systems 
capable of manipulating moving objects still need further research. Research carried out in 
our group has been focused on the development of more robust image processing methods 
and adaptive control of robot. Our research has been focused on manufacturing automation 
and medical surgery (Graham, Xie et al. 2007), with the main issues being the visual feature 
tracking, object recognition and adaptive control of the robot that requires both position and 
force feedback.  
The developed vision-guided robot system is able to recognise general 2D and 3D objects 
using a CCD camera and the VisionPro software package. Object recognition algorithms 
were developed to improve the performance of the system and a user interface has been 
successfully developed to allow easy operation by users. Intensive testing was performed to 
verify the performance of the system and the results show that the system is able to 
recognise 3D objects and the restructured model is precise for controlling the robot. The 
kinematics model of the robot has also been validated together with the robot control 
algorithms for the control of the robot. 
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6. Future Research 

Future work includes a number of improvements which will enhance the robustness and 
efficiency of the system. The first is the use of affine invariant methods for 3D object 
recognition. This method utilises local descriptors for feature matching and it has been 
shown to have higher success and accuracy rates for complex objects, cluster and occlusion 
problems (Bay, Tuytelaars et al. 2006). An automatic threshold selection process can also be 
implemented. This will eliminate the need to manually select a threshold for determining if 
an object is correctly recognised or not. 
The current threshold value was determined empirically and is not guaranteed to work in 
every possible case. The system needs to be optimised to reduce the processing time 
required for recognising objects. This requires the development of more efficient image 
processing algorithms that are also robust and accurate. 
Much work still needs to be done into the processing of images in real time, especially when 
objects become more complicated geometrically. A more robust algorithm for camera self-
calibration that works for any robot set-up is also under development in our group. 
The control of a serial robot still needs to be investigated for manipulating a wider range of 
3D objects. New hybrid algorithms need to be developed for applications that require multi-
objective control tasks, e.g. trajectory and force. Efficient algorithms also need to be 
developed for the inverse kinematics of a serial robot. In this regard, we will further 
improve the Sugeno Fuzzy Inference System for the inverse kinematics by optimising the 
number of fuzzy rules. The rule-base of the fuzzy system is equally important and has larger 
effect on time efficiency of the system. 
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