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Improvement of Force Control in Robotic 
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1System Engineering and Automation Department at Jaén University, 

 2Automatic Control Department at Lund University 
1Spain, 2Sweden 

1. Introduction 

In the never-ending effort of the humanity to simplify their existence, the introduction of 
‘intelligent’ resources was inevitable to come (IFR, 2001). One characteristic of these 
‘intelligent’ systems is their ability to adapt themselves to the variations in the outside 
environment as the internal changes occurring within the system. Thus, the robustness of an 
‘intelligent’ system can be measured in terms of the sensitivity and adaptability to such 
internal and external variations. 
In this sense, robot manipulators could be considered as ‘intelligent’ systems; but for a 
robotic manipulator without sensors explicitly measuring positions or contact forces acting 
at the end-effector, the robot TCP has to follow a path in its workspace without regard to 
any feedback other than its joints shaft encoders or resolvers. This restrictive fact imposes 
severe limitations on certain tasks where an interaction between the robot and the 
environment is needed. However, with the help of sensors, a robot can exhibit an adaptive 
behaviour (Harashima and Dote, 1990), the robot being able to deal flexibly with changes in 
its environment and to execute complicated skilled tasks. 
On the other hand, the manipulation can be controlled only after the interaction forces are 
managed properly. That is why force control is required in manipulation robotics. For the 
force control to be implemented, information regarding forces at the contact point has to be 
fed back to the controller and force/torque (F/T) sensors can deliver that information. But 
an important problem arises when we have only a force sensor. That is a dynamic problem: 
in the dynamic situation, not only the interaction forces and moments at the contact point 
but also the inertial forces of the tool mass are measured by the wrist force sensor (Gamez et 
al., 2008b). In addition, the magnitude of these dynamics forces cannot be ignored when 
large accelerations and fast motions are considered (Khatib, 1987). Since the inertial forces 
are perturbation forces to be measured or estimated in the robot manipulation, we need to 
process the force sensor signal in order to extract the contact force exerted by the robot. 
Previous results, related to contact force estimation, can be found in (Uchiyama, 1979), 
(Uchiyama and Kitagaki, 1989) and (Lin, 1997). In all the cases, the dynamic information of 
the tool was considered but some of the involved variables, such as the acceleration of the 
tool, were simply estimated by means of the kinematic model of the manipulator. However, 
these estimations did not reflect the real acceleration of the tool and thus high accuracy 
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could not be expected, leading to poor experimental results. Kumar et al. (Kumar and Garg, 
2004) applied the same optimal filter approach to multiple cooperative robots. 
Later, in (Gamez et al., 2004), (Gamez et al., 2005b), (Gamez et al., 2006b) and (Gamez et al., 
2007b), Gamez et al. presented a contact force estimator restricting initially the results to one 
and three dimensions. In these works, they proposed a new contact force estimator that 
fused the information of a wrist force sensor, an accelerometer placed at the robot tool and 
the joint position measurements, in order to differentiate the contact force measurements 
from the wrist force sensor signals. They proposed combining the F/T estimates from model 
based observers with F/T and acceleration sensor measurements in tasks with heavy tools 
interacting with the environment. Many experiments were carried out on different 
industrial platforms showing the noise-response properties of the model-based observer 
validating its behaviour. For these observers, self-calibrating algorithms were proposed to 
easily implement them in industrial robotic platforms (Gamez et al., 2008a); (Gamez et al., 
2005a). 
In addition, Kröger et al. (Kröger et al., 2006); (Kröger et al., 2007) also presented a contact 
F/T estimator based on this sensor fusion approach. In this work, they presented a contact 
F/T estimator based also on the integration of F/T and inertial sensors but they did not 
consider the stochastic properties of the system. Finally, a 6D contact force/torque estimator 
for robotic manipulators with filtering properties was recently proposed in (Gamez et al., 
2008b). 
This work describes how the force control performance in robotic manipulators can be 
increased using sensor fusion techniques. In particular, a new sensor fusion approach 
applied to the problem of the contact force estimation in robot manipulators is proposed to 
improve the manipulator-environment interaction. The presented strategy is based on the 
application of sensor fusion techniques that integrate information from three different 
sensors: a wrist force/torque (F/T) sensor, an inertial sensor attached to the end effector, 
and joint sensors. To experimentally evaluate the improvement obtained with this new 
estimator, the proposed methodology was applied to several industrial manipulators with 
fully open software architecture. Furthermore, two different force control laws were 
utilized: impedance control and hybrid control. 

2. Problem Formulation 

Whereas force sensors may be used to achieve force control, they may have drawbacks if 
used in harsh environments and their measurements are complex in the sense that they 
reflect forces other than contact forces. Furthermore, if the manipulator is working with 
heavy tools interacting with the environment, the magnitude of these dynamics forces 
cannot be ignored, forcing control engineers to consider some kind of compensator that 
eliminates the undesired measurements. In addition, these perturbations, particulary the 
inertial forces, are higher when large accelerations and fast motions are considered. 
In this context, let us consider a robot manipulator where a force sensor has been placed at 
the robot wrist and that an inertial sensor has been attached to the robot tool to measure its 
linear acceleration and angular velocity (Fig. 1). Then, when the robot manipulator moves in 
either free or constrained space, a F/T sensor attached to the robot tip measures not only the 
contact forces and torques exerted to the environment but also the non-contact ones 
produced by the inertial and gravitational effects. That is,  
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where SF
f

 and SN
f

 are the forces and torques measured by the wrist sensor; EF
f

 and EN
f

 are 

the environmental forces and torques; IF
f

 and IN
f

 correspond to the inertial forces and  

torques produced by the tool dynamic and GF
f

 and GN
f

 are the forces and torques due to 

gravity. Normally, the task undertaken requires the control of the environmental force EF
f

 

and the torque EN
f

. 

 

Figure 1.  Coordinate frames of the robotic system. The sensor frames of the robot arm 

({ }W W W WO X Y Z ), of the force-torque sensor (FS) ({ }S S S SO X Y Z ) and of the inertial sensor (IS) 

({ }I I I IO X Y Z ) are shown 

The main goal of this work is to evaluate how the implementation of a contact force/torque 
estimator, that distinguishes the contact F/T from the wrist force sensor measurement, can 
improve the force control loop in robotic manipulators. This improvement has to be based in 
the elimination of the non-desired effects of the non-contact forces and torques and, 
moreover, to the reduction of the high amount of noise introduced by some of the sensors 
used. 

www.intechopen.com



Robot Manipulators 

 

184 

3.  6DOF Contact Force-Torque Estimator 

3.1  Description of Coordinate Frames and Motion 

 

Figure 2. Force and moments applied to the robot tool 

As shown in Fig. 1, let us consider an inertial sensor attached to the robot tool. Then, 

{ }S S S SO X Y Z  and { }I I I IO X Y Z  correspond to the force sensor and the inertial sensor frames 

respectively. The world frame is an inertial coordinate system represented by { }W W W WO X Y Z  

and without loss of generality we let it coincide with the robot frame for simplified notation. 

Let { }W

SR  and { }S

IR  denote the rotation matrices that relate the force sensor to the world 

frames and the inertial sensor to the force sensor frames, respectively. Assume that the force 
sensor is rigidly attached to the robot tip and that the inertial sensor can be placed either in 
the tool or at the robot wrist. 
Let us also define the following frames to characterize the robot tool or end effector (Fig. 2): 

{ }E E E EO X Y Z  is the end effector coordinate system by which the components of the external 

force and moment are represented and { }P P P PO X Y Z  represents the coordinate system fixed 

to the end effector so that { }PO  coincides with the center of gravity and the { }PX , { }PY , and 

{ }PZ  axes with the principal axes of the end effector. 
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3.2  Force-Torque Transformation 

The set of forces F  ( 3F ∈R ) and moments N  ( 3N ∈R ) referred to frame A  can be defined 

using wrench notation (Murray et al, 1994) as : 

 =
A

A A

A A

A

F
U

N

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (2) 

which can be transformed into a new frame B  applying the following transformation  

 
3 30=

B B T A

A A A

B B T B x B T A

A A A A

F R F

N R p R N

×
⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

−⎝ ⎠ ⎝ ⎠⎝ ⎠
  (3) 

 where B

AR  is the rotation matrix that relates frame A  to frame B , and matrix B xp  is 

obtained as (Murray et al, 1994):  

 

3 2

3 1

2 1

0

= , = 0

0

B x B x B x

p p

p q p q p p p

p p

−⎛ ⎞
⎜ ⎟

× −⎜ ⎟
⎜ ⎟−⎝ ⎠

   (4) 

 being B xp  the position vector from { }BO  to { }AO  with B xp , q  3∈R . 

3.3 Robot Tool Dynamics Modeling 

The F/T sensor measures not only the contact forces and torques, but also the disturbances 
produced by the non-contact forces and torques (inertial and gravitational effects) due to the 
robot tool dynamics. From Fig. 2, the tool dynamics is modeled using forces and torques 
that occur between the robot tool and the manipulator tip and that are measured by the 

wrist F/T sensor S SF  and S SN ; and, on the other hand, the forces and moments exerted by 

the manipulator tool to its environment ( E EF  and E

EN ). Then, from a static equilibrium 

relation using wrench notation (Murray et al, 1994), the force and moment in { }PO  are 

obtained as: 

 
3 30= =

P T SP

P S SP

P P T S x P T SP

S S SP

R FF
U

R p R NN

×
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟

−⎝ ⎠ ⎝ ⎠⎝ ⎠
3 30

P T E

E E

P T E x P T E

E E E

R F

R p R N

×
⎛ ⎞⎛ ⎞

+ ⎜ ⎟⎜ ⎟
−⎝ ⎠⎝ ⎠

 

 =

S E

P PS E

S ES E

S E

F F
T T

N N

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
  (5) 

with P SR , P ER  being the rotation matrices that relate frames { }S  and { }E  to frame { }P ; 
S xp  and E xp  are matrices of dimension 3 3×  obtained from Eq. (4) where p  is the position 
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vector from { }PO  to { }SO  or from { }PO  to { }EO . Finally, applying the Newton-Euler 

equations, the dynamics of the robot tool are defined as  

1 1

=

W W W

P P I P

P P P P

I I I

m R R a m R g
U

R R Rω ω ω

− −⎛ ⎞−
⎜ ⎟

+ ×⎝ ⎠$I I
 

 

1

3 3

3 3

0
=

0

W W

P I x

P

I

am R R

R ω

−

×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ $I

1

3 3

3 3

0

0 ( )

W

P

P P

I I

gm R

R R ωω

−
×

×
×

⎛ ⎞− ⎛ ⎞
+ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠I
  (6) 

 where m  is the robot tool mass, = [ , , ]Ta x y z$$ $$ $$  is the robot tool acceleration measured in the 

inertial frame { }I ; = [ , , ]Tx y zg g g g  is the gravity acceleration vector; 1 2 3= [ , , ]Tω ω ω ω  is the 

angular velocity of the robot tool with respect to frame { }I . Matrix I  denotes the moment 

of inertia of the robot tool calculated with respect to the frame { }P  (Gamez et al., 2008b). 

3.4  Contact Forces and Torques Estimator 

The objective of the force observer is to estimate the environmental forces and torques by 
separating them from the end-effector inertial and gravitational forces and moments in the 
measurement given by the force sensor. As the sensor fusion approach considered integrates 
the information from different sensors, which may be quite noisy, it is necessary to consider 
an estimator with filtering properties. 
To define the robot tool dynamics, Eqs. (5-6) are translated to state space formulation. Let 
then us consider the following state space vector  

 1 2 3= [ , , , , , , , , , , , ]X x y z x y zθ φ ψ ω ω ω$ $ $    (7) 

 where , ,x y z  are the position coordinates of the robot tool center of mass ( = ( , , )Tp x y z ) and 

,θ φ  and ψ  are the Euler angles that define the robot tool orientation ( = ( , , ) )To θ φ ψ . Both 

refer to the W W W WO X Y Z  frame. , ,x y z$ $ $  correspond to the linear velocity of the robot tool 

center of mass. 
Those variables that can be measured are regarded as outputs: the robot tool position and 

orientation ( ,p o ), the F/T sensor signals ( ,s sF N ), the angular velocities ( ω ) and the robot 

tool linear acceleration ( p$$ ). ( ω ) and ( p$$ ) are measured through the inertial sensor. In 

addition, the angular accelerations ω$  of the robot tool are estimated using the angular 

velocities, also including them as outputs. Thus the output vector Y  will be : 

 ( )= , , , , , ,
T

T T T T T T T

s sY p o F N pω ω$$$     (8) 

Then, we propose the following state space system  

 
= ( )

= ( )

S S E E G X

S S E E G y

X A X X B U B U B g

Y C X X D U D U D g

ν

ν

⎧ + + + +⎪
⎨

+ + + +⎪⎩

$
  (9) 
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 where g  is the gravity vector, = [ , ]S T S T T

S S SU F N , and = [ , ]E T E T T

E E EU F N . Xν  and yν  are, 

respectively, the process and the output noises. Matrices ( )A X , SB , EB , GB , ( )C X , SD , ED  

and GD  obtain their values from Eqs. (5) and (6) (Gamez et al., 2008b). 

Note the non-linearity of the system through the entries 1A  and 2A  in the matrices ( )A X  

and ( )C X . 

In this context, an observer where input EU  has not been considered is proposed as (Gamez 

et al., 2004); (Gamez et al., 2005b): 

  “ “ ˆ= ( ) ( )( )S S GX A X X B U B g L t Y Y+ + + −     (10) 

 “ “= ( ) S S GY C X X D U D g+ +   (11) 

 where “X  corresponds to the state estimation of X  and ( )L t  is the observer gain for a 

given instant t: Then, the dynamics of the estimation error ƒ “=X X X−  are obtained as  

ƒ ƒ= ( ( ) ( ) ( )) ( ( ) )E E EX A X L t C X X B L t D U− + −  

 ( )X yL tν ν+ −     (12) 

 ƒ “ ƒ= = ( ) E E yY Y Y C X X D U ν− + +     (13) 

Then, a dynamic force estimator is defined as:  

 “ ƒ ƒ†= ( ( ) )E EU D C X X Y− +    (14) 

 where †

ED  is the Moore-Penrose pseudoinverse of ED (Johansson, 1993). 

Note that, from Eqs. (10) and (12), the core of the estimator is to combine F/T estimates from 

model based observers, where the input EU  has not been considered, with F/T, inertial and 

position measurements, in order to obtain a dynamic contact F/T estimator with low-pass 
properties. 

3.5  Observer Gain Selection 

While there are many application-specific approaches to estimating an unknown state from 
a set of process measurements, many of these methods do not inherently take into 
consideration the typically noisy nature of the measurements. In our case, while the contact 
F/T estimates vary with the robotic task, the fundamental sources of information are always 
the same: wrist F/T, inertial and position measurements. All of them are derived from noisy 
sensors. This noise is typically statistical in nature (or can be effectively modeled as such), 
which leads us to stochastic methods for addressing the problems. The solution adopted for 
this work is the Extended Kalman Filter (Jazwinski, 1970). 
Considering that stochastic disturbances are present in our system (Eq. (9)) and supposing 

that the process noises Xν  and yν  are white, Gaussian, zero mean, and independent with 
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constant covariance matrices Q  and R  respectively, then, there exists an optimal Extended 

Kalman Filter gain ( )L t  for the state space system (12) that minimizes the estimation error 

variance due to the system noise (Grewal and Andrews, 1993) that, in our case, is directly 
related to minimizing the variance of the contact F/T estimation error. That is, as the 
variance of the F/T is not stationary under relevant conditions of application, there is no 
unique optimal observer gain. 

Since matrices ( )A X  and ( )C X  from Eqs. (10) and (11) are non-linear, a linearization of the 

system for an online estimated trajectory ( )X t  is used to select ( )L t  (see (Gamez et al., 

2008b) for more details). 

4.  Improvement of Force Control in Robotic Manipulators 

For the applied force control laws used to fully test the contact force observer, note that the 
dynamic interaction between a manipulator and an environment occurring during assembly 
tasks or manufacturing requires frequent exchanges between a free motion and a 
constrained motion making desirable to have a unified approach to position and force 
control. That is why all the results are mainly obtained using an impedance control as force 
control law. However, another different force control law has been used to validate the 
behavior of the contact force observer: Hybrid position-force control. To analyze the 
behavior of the force control loops where the force estimator is used, two industrial 
manipulators were used: an ABB system and a Stäubli manipulator. 

4.1  Force control loop utilized 

A brief explanation of the implemented control laws is developed as follows. 

4.1.1  Impedance Control 

Since the proposed observer must work in both free space and constrained space, it is 
interesting to use a force control law which allows a manipulator to handle both types of 
motion without switching control strategies during transitions. In this sense, the impedance 
control (Hogan, 1985) manages how stiff the end-point comes into contact with the 
environment and required no control mode switching. However, it can not command the 
contact forces directly. The motivation of the impedance control is that, instead of 
controlling position and force separately in task space, the desirable dynamic behavior of a 
manipulator is specified as a relation between force and motion, referred to as impedance, 
and accomplished based on an estimated or sensed contact force. 
As pointed out in (Hogan, 1985), the environmental model is central to any force strategy. 
Basically, a second-order mass-spring-damper system is used to specify the target dynamics. 
However simpler models such as pure stiffness or combination of dampening and stiffness 
can also be used (Whitney, 1985). In this manner, the equation of the dynamic relationship 

between the end-effector position = [ , , ]p x y z
f

 and the contact force EF
f

 used to control the 

force exerted to the environment is  

 = ( ) ( )E r rF B p p K p p− + −
f f f f f$ $    (15) 
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where the diagonal matrices B and K contain the impedance parameters along Cartesian 

axes representing the damping and stiffness of the robot respectively, p
f

 is the steady state 

nominal equilibrium position of the end effector in the absence of any external forces and 

rp
f

 is the reference position. As rp
f

 is software specified, it may reach positions beyond the 

reachable workspace or inside the environment during contact with the environment. Note 
that for a desired static behavior of the interaction, the impedance control is reduced to a 
stiffness control (Chiaverini et al., 1999). 
To carry out the impedance control, a LQR controller was used to make the impedance 
relation variable go to zero for the three axes ( , ,x y z ) (Johansson and Robertsson, 2003). The 

control law applied was  

 
“

= · · E r ru L p f F l p− + +
ff f

   (16) 

 with f  as the force gains in the impedance control, «
EF

f
 the estimated environmental force, 

which, in our case, was estimated using the contact force observer, rp
f

 the position reference 

and rl  the position gain constants, L  being calculated considering the linear model of the 

robot system. 

4.1.2  Hybrid Control 

Consider the contact force EF
f

 and the end-effector position p
f

, expressed in the world 

frame W W W WO X Y Z , which are estimated through the force observer and measured through 

the joint sensors and the kinematic model respectively. Denoting the desired values for EF
f

 

and p
f

 as d

EF
f

 and dp
f

, respectively, we obtain expressions for the position and force errors 

after considering their directions to be controlled:  

 = ( )[ ]e dp I S p p− −
f f f

  (17) 

 = ( )[ ]e d

E E EF S F F−
f f f

   (18) 

 where I  is the unity matrix and S  is the selection matrix for the force controlled directions. 

Using Eqs. (17) and (18), a hybrid control law can be given by:  

 ( ) = ( ) ( )P Ft t tτ τ τ+    (19) 

 ( ) = e e

P P P
p d

t K p K pτ +
f f$   (20) 

 
0

( ) =
t

e

F F E
i

t K F dtτ ∫
f

   (21) 

 where ( )P tτ  compensates for the position error and ( )F tτ  compensates for the force error. 

Applying this control law one can expect that the component of the desired position dp
f

 and 

the component of the desired force d

cF
f

 are closely tracked. 
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4.2  Experimental Platforms 

Two different platforms were used to validate the behavior of the resulting contact force 
observers. The first one, placed in the Robotics Lab at the Department of Automatic Control, 
Lund University, is composed of the following devices and sensors (Fig. 3): an ABB IRB 2400 
robot, a JR3 wrist force sensor, a compliant grinding tool that links the robot tip and the tool, 
and a capacitive 3D accelerometer. 
This platform was based on an ABB robot. A totally open architecture is its main 
characteristic, permitting the implementation and evaluation of advanced control strategies. 
The controller was implemented in Matlab/Simulink using the Real Time Workshop of 
Matlab, and later compiled and linked to the Open Robot Control System (Nilsson and 
Johansson, 1999); (Blomdell et al., 2005). The wrist sensor used was a DSP-based 
force/torque sensor of six degrees of freedom from JR3. The tool used for our experiments 
was a grinding tool with a weight of 12 kg. The mechanical device Optidrive-in itself a linear 
force sensor-the purpose of which was to provide to the tool additional compliance in the 
contact with the environment, was considered as a spring-damping system and provided a 
measure of the force exerted between its extremes. The accelerometers were placed on the 
tip of the tool to measure its acceleration. The accelerometer and Optidrive signals were 
read by the robot controller in real time via analog inputs. 

 

Figure  3.  The ABB experimental setup. An ABB industrial robot IRB 2400 with an open 
control architecture system is used. The wrist sensor is placed between the robot TCP and a 
compliance tool where the grinding tool is attached. The accelerometer is placed on the tip 
of the grinding tool 
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Figure 4.  Stäubli Platform. An RX60 robot with an open control architecture system is used. 
An ATI wrist force sensor is attached to the robot tip. The accelerometer is placed between 
the robot TCP and the force sensor 

Regarding the second robotic platform (Fig. 4), it consisted of a Stäubli manipulator situated 
in the Robotics and Automation Lab at Jaen University, Spain. It is based on a RX60 which 
has been adapted in order to obtain a completely open platform (Gamez et al., 2007a). This 
platform allows the implementation of complex algorithms in Matlab/Simulink where, once 
they have been designed, they were compiled using the Real Time Toolbox and downloaded 
to the robot controller. The task created by Simulink communicates with other tasks through 
shared memory. Note that the operative system that managed the robot controller PC is 
VxWorks (Wind River, 2005). 
For the environment, in both situations a vertical screen made of cardboard, whose stiffness 
was determined experimentally, was used to represent the physical constraint. 
With regard to the sensors, an ATI wrist force sensor together with an accelerometer was 
attached to the robot flange. Both sensors were read via analog inputs (Gamez et al., 2003). 
The acceleration sensor is a capacitive PCB sensor with a real bandwidth of 0-250Hz. 

4.3  Experimental Results 

In this subsection, the results obtained from the contact force observers to both robotic 
platforms are described. Firstly, the results obtained applying the estimator to the Stäubli 
platform are presented in Fig. 5. The first experiment consisted of a linear movement in the 
axis z of three phases: an initial movement in free space (from t =5s to t = 6.2s), a contact 
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transition (from t =6.2s to t = 6.4s) and a movement in constrained space (from t =6.4s to t = 
9s). The force controller was an impedance one. In this case, it can be compared how the 
observer eliminates the inertial effects and the noise introduced by the sensors. Regarding 

the noise spectra, in Fig. 6, the power spectrum density for the composed signal zu mξ− $$  

(left) and the observer output power spectrum density (right) are shown. Note how the 
observer cuts off the noise introduced by the sensors. 

 

Figure 5. Force measurement from the wrist sensor ATI (upper-left), force observer output 
(upper-right), accelerometer output (lower-left) and real and measured position of the robot 
tip for y-axis (lower-right) 
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Figure 6. Power spectrum density for the composed signal u mz− $$  (left) and observer output 

power spectrum density (right). The sample frequency is 250 Hz 

 On the other hand, another experiment was executed consisting of an oscillation movement 
for one of the Cartesian axis. Results are depicted in Fig. 7. From this figure it can be verified 
how the observer eliminates the force oscillations due to the inertial forces that are 
measured by the force sensor. Note that the movement follows a cubic spline, which means 
that the acceleration is almost a straight line.  
 
 

  

 Figure  7. Force sensor measurement and Observer output (left) and robot tool position 
(right) measured during an oscillation movement in free space 

Another experiment carried out consisted of the same former phases but the force control 
loop is a hybrid control one. In Fig. 8, the ATI force sensor measurement and the observer 
output are shown. From this figure it is possible to verify how the observer eliminates the 
force oscillations due to the inertial forces at the beginning of the experiment (where the 
robot is moving in free space). 
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Regarding the experiments carried out on the ABB robot, they consisted of three phases 
for all axes ( , ,x y z ) as well: an initial movement in free space, a contact transition and 

later, a movement in constrained space. The velocity during the free movement was 300 
mm/s and the angle of impact was 30 degrees with respect to the normal of the 
environment. 
The experiments for axis x  are shown in Fig. 9, which depicts, at the top, the force 

measurement from the ATI sensor (left) and the force observer output (right) while at the 
bottom, the acceleration of the tool getting into contact with the environment (left), and 
the observer compensation (right). Note that the observer eliminates the inertial effects. 
 

 

Figure 8. Force sensor and observer output in a hybrid force/position control loop 

To test the torque estimation effects, Fig. 10 shows an experiment where, first the robot 

tool followed an angular trajectory in free space varying the Euler angle φ  and, later, the 

manipulator gets into contact with the environment. Fig. 10 (a) and (b) show how the 
inertial disturbances can be indirectly measured through the angular velocity sensor. Fig. 

10 (c) depicts a comparison between the torque sensor measurement S
y

N  and the contact 

torque estimator E
y

N . It can be observed how the estimator eliminates the disturbances 

produced by the inertial torques due to the robot tool angular velocity. Fig. 10 (d), (e) and 
(f) show the power spectrum density of the torque measurement, the angular velocity 
measurement and the contact torque estimator, respectively. In these spectra, the dynamic 
filtering properties of the proposed estimator can be noted since the proposed observer 
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filters the noise introduce mainly by the torque sensor at 0.15 of the normalized 
frequency. 
Another strategy could be that, starting from the premise we have attached an 
accelerometer to the robot tool to determine the tool acceleration, why not to to subtract 
the tool acceleration multiplied by the tool mass from the force sensor measurement. 
However, as both the accelerometer and the force sensors are quite noisy elements, it 
must be pointed out that we would have a final signal with too much noise with simple 
addition of accelerometer sensors. Then, a next step to be applied is, after subtracting 
from the force sensor measurement the tool acceleration pondered by the tool mass, why 
not to apply a standard low-pass filter to eliminate the noise introduced by the sensors. To 
this purpose, we compare the performance of the proposed force observer against 
different standard low-pass filters in order to validate the proposed contact force 
estimator. The most common types of low-pass filters-i.e. Butterworth filter, Chebyshev 
filters (type I and II) and, finally, an elliptic filter-will be compared using the ABB 
platform as benchmark. 
 

 

Figure 9. Force measurement from the wrist sensor (upper-left), force observer output 
(upper-right), acceleration of the robot TCP (lower-left) and observer compensation (lower-
right). These results were obtained for x-axis 
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Figure 10. (a) Angular velocity xw  measured with the gyroscope. (b) Angular velocity zw  

measured with the gyroscope. (c) Comparison between the torque sensor measurement 

( S
y

N ) and the contact torque observer ( E
y

N ) for axis y . (d) Power spectrum density of the 

torque sensor for axis y . (e) Power spectrum density of the gyroscope sensor for axis x . (f) 

Power spectrum density of the contact torque observer for axis y . The sampling frequency 

is 250 Hz 
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Figure 11.  Comparison between the force sensor measurements, the observer outputs and 
different low-pass filters with different cut-off frequencies (ABB system) 
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Fig. 11 shows a comparison between the force sensor measurements, the observer output 
and different low-pass filters with different cut-off frequencies. These figures show results 
from different configurations of the filters (degree and cut-off frequency) applied to the ABB 
platform. Analyzing the data, this solution presents two main drawbacks against the 
proposed contact force observer: depending on the cut-off frequency of the low-filter, they 
introduce a quite considerable delay; another problem is that these filters also suffers from 
an overshoot problem.          
Finally, another strategy is that before considering the idea of placing an accelerometer at 
the robot tool to measure its acceleration and, using this measurement to compensate for the 
inertial forces, the tool acceleration was estimated through the joint measurements and the 
kinematics robot model (Gamez, 2006a). 

 

Figure 12.  Comparison between the force sensor measurement with the accelerometer 
output multiplied by the tool mass (upper) and the acceleration estimate using the 
kinematic model multiply by the tool mass (lower). These experiments were carried out in 
the Stäubli platform 

Figs. 12 show a comparison between the force sensor measurement and the accelerometer 
output (left), and a comparison between the force sensor signal and the accelerometer 
estimate (right) for the Stäubli platform. The picture on the left depict how the acceleration 
measurement follows accurately the force sensor measurement divided by the tool mass. 
However, it can be appreciated that high accuracy can not be expected because the 
acceleration estimate, independently from the acceleration estimation algorithm used, does 
not represent accurately the true acceleration (right). 

5. Conclusions 

A new contact force observer approach, that fusions the data from three different kind of 
sensors-that is, resolvers/encoders mounted at each joint of the robot with six degrees of 
freedom, a wrist force sensor and accelerometers-with the goal of obtaining a suitable 
contact force estimator has been developed. 
We have shown all the advantages and drawbacks of the new sensor fusion approach, 
comparing the performance of the proposed observers to other alternatives such as the use of the 
kinematic robot model to estimate the tool acceleration or the use of standard low pass filters. 
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From the experimental results, it can be concluded that the final observer approach helps to 
improve the performance as well as stability and robustness for the impact transition phase 
since it eliminates the perturbations introduced by the inertial forces. 
The observer obtained has been validated on several industrial robots applying two well 
known and widely used control approaches: an impedance control and a hybrid position-
force control. 
Several successful experiments were performed to validate the performance of the proposed 
architecture, with a particular interest in compliant motion control. These experiments 
showed the actual possibility to easily test advanced control algorithms and to integrate new 
sensors in the developed benchmark as it is the case of the accelerometer. 
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