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1. Introduction     

Robots have been used in several new applications. In recent years, both academic and 
commercial research has been focusing on the development of a new generation of robots in 
the emerging field of service robots. Service robots are individually designed to perform 
tasks in a specific environment for working with or assisting humans and must be able to 
perform services semi- or fully automatically (Kawamura & Iskarous, 1994; Rofer et al., 
2000). Examples of service robots are those used for inspection, maintenance, housekeeping, 
office automation and aiding senior citizens or physically challenged individuals (Schraft, 
1994; Rofer et al., 2000). A number of commercialized service robots have recently been 
introduced such as vacuum cleaning robots, home security robots, robots for lawn mowing, 
entertainment robots, and guide robots (Rofer et al., 2000; Kim et al., 2003; You et al., 2003; 
Pineau et al., 2003; Kim et al., 2005). 
In this context, Public Service Robot (PSR) systems have been developed for indoor service 
tasks at Korea Institute of Science and Technology (KIST) (Kim et al., 2003; Kim et al., 2004). 
The PSR is an intelligent service robot, which has various capabilities such as navigation, 
manipulation, etc. Up to now, three versions of the PSR systems, that is, PSR-1, PSR-2, and a 
guide robot Jinny have been built.  
The worldwide aging population and health care costs of aged people are rapidly growing 
and are set to become a major problem in the coming decades. This phenomenon could lead 
to a huge market for service robots assisting with the care and support of the disabled and 
elderly in the future (Kawamura & Iskarous, 1994; Meng & Lee, 2004; Pineau et al., 2003). As 
a result, a new project is under development at Center for Intelligent Robotics (CIR) at KIST, 
i.e. the intelligent service robot for the elderly, called T-Rot.  

                                                 

∗ This work was published in Proceedings of the 28th International Conference on Software 
Engineering (ICSE 2006), pp. 534-543, ISBN 1-59593-375-1, Shanghai, China, May 20-28, 
2006, ACM Press, New York 
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In our service robot applications, it is essential to not only consider and develop a well-

defined robot software architecture, but also to develop and integrate robot application 

components in a systematic and comprehensive manner. There are several reasons for this:  

• First, service robots interact closely with humans in a wide range of situations for 
providing services through robot application components such as vision recognition, 
speech recognition, navigation, etc. Thus, a well-defined robot control architecture is 
required for coherently and systematically combining these services into an integrated 
system.  

• Second, in robot systems, there are many-to-many relations among software 
components as well as hardware components. For instance, a local map module 
requires range data from a laser scanner, ultrasonic sensors, and infrared sensors, as 
well as prior geometrical descriptions of the environment. On the other hand, the laser 
scanner should provide its data to a path planner, localizer, and a local map building 
module. These relationships, as well as interactions among software or hardware 
modules, must be carefully analyzed and systematically managed from an early stage 
of development in order to understand the big picture.  

• Third, the functional performance of each software and hardware module becomes 
highly dependent on the architecture, as the number of robot platforms increases (Kim 
et al., 2004), and new services are added, or existing services are removed or updated to 
address changes in user needs. 

• Fourth, previously developed software modules like maps, localization, and path 
planners can be directly reused for new tasks or services by service robot developers. 
Thus, a robot architecture, as well as systematic processes or methods, are required to 
support the implementation of the system, to ensure modularity and reusability. 

As a consequence, in the previous work (Kim et al., 2003; Kim et al., 2004), the Tripodal 

schematic control architecture was proposed to tackle the problems. Many related research 

activities have been done. However, it is still a challenging problem to develop the robot 

architecture by carefully taking into account user needs and requirements, implement robot 

application components based on the architecture, and integrate these components in a 

systematic and comprehensive way. The reason is that the developers of service robots 

generally tend to be immersed in technology specific components, e.g. vision recognizer, 

localizer and path planner, at an early stage of product development without carefully 

considering architecture to integrate those components for various services (Kim et al., 

2005). Moreover, engineers and developers are often grouped into separate teams in 

accordance with the specific technologies (e.g., speech processing, vision processing), which 

makes integration of these components more difficult (Dominguez-Brito et al., 2004; Kim et 

al., 2005). In such a project like T-Rot, particularly, several engineers and developers (i.e., 

approximately, more than 150 engineers) from different organizations and teams participate 

in the implementation of the service robot. Each separate team tends to address the specific 

technologies such as object recognition, manipulation, and navigation and so on. Engineers 

who come from different teams are concerned with different characteristics of the system. 

Thus, a common medium is required to create mutual understanding, form consensus, and 

communicate with each other for successfully constructing the service robot. Without such a 

medium or language, it is difficult to sufficiently understand the service robot system and 

interact between teams to integrate components for services.  
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Within the domain of software engineering, many approaches have been suggested for a 
systematic and complete system analysis and design, and for the capture of specifications. 
The object-oriented paradigm (Booch, 1994; Jacobson, 1992) is a widely-accepted approach 
to not only cover the external and declarative view of a system, but also at the same time 
bridge seamlessly with the internal implementation view of a system (Jong, 2002). Object-
oriented concepts are crucial in software analysis and design because they focus on 
fundamental issues of adaptation and evolution (Gomaa, 2000). Therefore, compared with 
the traditional structured software development methods, object-oriented methods are a 
more modular approach for analysis, design, and implementation of complex software 
systems, which leads to more self-contained and hence modifiable and maintainable 
systems. More recently, the Unified Modeling Language (UML) (UML, 2003; Fowler & Scott, 
2000) has captured industry-wide attention for its role as a general-purpose language for 
modeling software systems, especially for describing object-oriented models. The UML 
notation is useful to specify the requirements, document the structure, decompose into 
objects, and define relationships between objects in a software system. Certain notations in 
the UML have particular importance for modeling embedded systems (Martin et al., 2001; 
Martin, 2002), like robot systems. By adopting the UML notation, development teams thus 
can communicate among themselves and with others using a defined standard (Gomaa, 
2000; Martin et al., 2001; Martin, 2002). More importantly, it is essential for the UML 
notation to be used with a systematic object-oriented analysis and design method in order to 
be effectively applied (Gomaa, 2000).  
As a result, our aim is to develop the intelligent service robot based on the systematic 
software engineering method, especially for real-time, embedded and distributed systems 
with UML. To do so, we applied the COMET method, which is a UML based method for the 
development of concurrent applications, specifically distributed and real-time applications 
(Gomaa, 2000). By using the COMET method, it is possible to reconcile specific engineering 
techniques with the industry-standard UML and furthermore to fit such techniques into a 
fully defined development process towards developing the service robot systems. 
In this paper, we describe our experience of applying the COMET /UML method into 
developing the intelligent service robot for the elderly, called T-Rot under development at 
CIR. In particular, we focused on designing an autonomous navigation system for the 
service robot, which is one of the most challenging issues for the development of service 
robots. 
Section 2 describes the hardware configuration and services of the T-Rot, and discusses the 
related work. Section 3 illustrates how to apply the COMET method into designing and 
developing the autonomous navigation system for the service robot, and discusses the 
results of experiments. The lessons learned from the project are summarized in section 4, 
and section 5 concludes the paper with some words on further work. 

2. Background on T-Rot 

2.1 PSR and T-Rot 

At KIST, intelligent service robots have been developed in large-scale indoor environments 
since 1998. So far, , PSR-1, PSR-2, which performs delivery, patrol, and floor cleaning jobs, 
and a guide robot Jinny, which provides services like exhibition guide and guidance of the 
road at a museum, have been built (Kim et al., 2003; Kim et al., 2004) (see Fig. 1). The service 
robot T-Rot is the next model of the PSR system under development for assisting aged 
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persons. Development of T-Rot, in which our role is developing and integrating robot 
software, started in 2003 by mainly CIR with more than 10 groups consisting of more than 
150 researchers and engineers from academia and industry. This project is based on the 
needs and requirements of elderly people through the studies and analysis of the 
commercial health-care market for providing useful services to them. Thus, the aim of this 
project is to develop the intelligent service robot for the elderly by cooperating and 
integrating the results of different research groups. This project that is divided into three 
stages will continue until 2013 and we are now in the first stage for developing the service 
robot incrementally to provide various services. 
 

PSR-1                                        PSR-2                     Jinny
 

Fig. 1. KIST service robots 

2.2 Hardware of T-Rot 

The initial version of T-Rot, as shown in Fig. 2, has three single board computer (SBC), that 
is, mobile Pentium 4 (2.2GHz) and 1GB SDRAM on each SBC. In terms of software 
environment, Linux Red hat 9.0 and RTAI (Real-Time Application Interface) (RTAI, 2004) 
are used as operating system. Fig. 3 shows hardware configuration as a whole. As 
mentioned earlier, development of T-Rot is conducted incrementally for various services 
and thus the platform will be extended with manipulators and robot hands later. In our 
project, we developed the robot software based on the initial version of the platform. The 
details of the hardware platform are described in Table 1. 
 

 

Fig. 2. T-Rot robot hardware platform 
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Fig. 3. T-Rot robot hardware platform configuration 

 

Intel Mobile Pentium 4 (2.2 GHz) 

1GB SDRAM SBC 

30GB Hard Disk 

16 microphones for speaker localization 

1 microphone for speech recognition Voice 

1 speaker for speech generation 

2 stereo vision cameras for recognizing users 
and objects (1288 H x 1032 V maximum 
resolution and 7Hz frame rates) 

Vision 

Pan/Tilt for controlling the vision part 

2 laser scanners (front and back) 

2 IR scanners (front and back) 

12 Ultrasonic sensors 
Sensor 

1 Gyroscope sensor for measuring balance 

2 actuators for two drive wheels (right and 
left) 

2 free wheels (the support wheels) 

2 Servo Motors (100 [w]) 

2 encoders (2048 ppr) 

Actuator 

2 bumpers  

1 TFT LCD & Touch (10.4” 1024x768, 26000 
colors) 

KVM (Keyboard/Mouse) 
Interface 

Wireless LAN for communications 

Table 1. T-Rot hardware platform devices 
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2.3 Robot services 

Some of the primary services under-developed that the initial version for T-Rot provides for 
the elderly are described as below. 

• Voice-based Information Services: The robot T-Rot can recognize voice commands from 
a user (i.e., an aged person) via microphones equipped with the robot and can 
synthesize voices for services. While a user is watching TV, the user can ask some 
questions about the specific TV program or request a task to open an Internet 
homepage by speaking the TV program name.  

• Sound Localization and Voice Recognition: A user can call a robot’s predefined name, 
to let the robot recognize the call while the robot knows the direction to move to the 
user. This service analyzes audio data from 3 microphones on the shoulder for sound 
localization and 16 mic array on the head for speech recognition to recognize the 
command from the user. 

• Autonomous navigation: A user can command the robot to move to a specific position 
in the map to perform some task. For instance, the robot can navigate to its destination 
in the home environment via its sensors, which include laser scanners and ultrasonic 
sensors. The robot plans a path to the specified position, executes this plan, and 
modifies it as necessary for avoiding unexpected obstacles. While the robot is moving, it 
constantly checks sensor data from its sensors every 200 ms. 

• An errand service: The robot can carry objects that a user (i.e., an aged person) usually 
uses, like a plate, books, a cane a cup of tea, beverages, etc according to the user’s 
instructions. For instance, the user can order the robot to bring a cup of tea or beverage 
by speaking the name of the drink. 

Of these T-Rot services, our emphasis was on the autonomous navigation service, which is 
one of the most challenging issues and is essential in developing service robots, particularly 
mobile service robots to assist elderly people. It includes hardware integration for various 
sensors and actuators, and the development of crucial navigation algorithms like maps, path 
planners, and localizers as well as software integration of software modules like a path 
planner, a localizer, and a map building module. 

2.4 Control architecture of PSR 

Up to now, there have been many related research activities to develop efficient and well-
defined control architectures and system integration strategies for constructing service 
robots. A recent trend is that many control architectures are converging to a similar 
structure based on a hybrid approach that integrates reactive control and deliberation (Kim 
et al., 2004). At KIST, for developing service robots, that is PSR-1, PSR-2, and Jinny in the 
previous work (Kim et al., 2003; Kim et al., 2004), the Tripodal schematic control architecture 
was proposed as the solution to the problem.  
One important point of Tripodal schematic design is to integrate robot systems by using a 
layered functionality diagram. The layered functionality diagram is a conceptual diagram of 
three layers for arrangement of various hardware and software modules and functions. It 
also shows the connectivity and the information flow between components. Those layers are 
composed of deliberate, sequencing, and reactive layers based on the hybrid approach. The 
purposes of the deliberate layer are to interface with a user and to execute a planning 
process. The sequencing layer is classified into two groups, that is, the controlling part that 
executes the process by managing the components in the reactive layer and the information 
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part that extracts highly advanced information from sensor data. The reactive layer controls 
the real-time command and hardware-related modules for sensors and actuators. The 
detailed description of whole control architecture of the PSR is introduced in (Kim et al., 
2003). 
However, as described earlier, in order to effectively apply this approach and the UML 
notation to developing service robots, it is essential to use a systematic software engineering 
process or methods like object-oriented analysis and design methods, especially for real-
time and embedded systems. We believe that only a systematic and comprehensive software 
development process and method will be able to resolve the issues discussed before and will 
be vital for success in developing service robots. 

2.5 The COMET method 

COMET (Gomaa, 2000) is a method for designing real-time and distributed applications, 
which integrates object-oriented and concurrent processing concepts and uses the UML 
notation (UML, 2003; Fowler & Scott, 2000). The COMET object- oriented software life cycle 
model is a highly iterative software development process based around the use case 
concept. Therefore, in this project, the COMET method with UML was used to develop a 
system for autonomous navigation by the intelligent service robot, T-Rot. The method 
separates requirements activities, analysis activities and design activities, and these 
activities are briefly described as below. The details are described in section 3 with the case 
study. 

• Requirements modeling - A use case model is developed in which the functional 
requirements of the system are defined in terms of actors and use cases.  

• Analysis modeling - Static and dynamic models of the system are developed. The static 
model defines the structural relationships among problem domain classes. A dynamic 
model is then developed in which the use cases from the requirements model are 
refined to show the objects that participate in each use case and how they interact with 
each other.  

• Design modeling – The software architecture of the system is designed, in which the 
analysis model is mapped to an operational environment. For distributed applications, 
a component based development approach is taken, in which each subsystem is 
designed as a distributed self-contained component. 

3. Applying the COMET/UML method to T-Rot 

In this section, we explain how to develop robot software for the autonomous navigation 
system with the COMET/UML method. In our project, the UML notation conforms to UML 
1.3 and the Rational Rose tool is used. 

3.1 Requirements modeling 
Capturing the functional requirements of the system is the first phase in software 
development, which defines what the system should do or provide for the user. In our 
approach, developers can catch the functional requirements or services by using the use case 
model in terms of use cases and actors (see Fig. 4). To identify and define the requirements 
of the system more clearly, the system has to be considered like a black box. In the service 
robot, the actor can be usually a human user as well as external I/O devices and external 
timer.  
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Navigation

Commander
(from 1.0 Actors)

Clock
(from 1.0 Actors)

Obstacle Avoidance

<<extend>>

 

Fig. 4. Use case diagram for Navigation 

Table 2 shows a specification for Navigation use case. In our navigation system, we identified 
a Commander and a Clock as an actor. While the robot is moving, if the robot recognizes 
obstacles, it should avoid them for continuing to go to the destination. Even when humans 
or objects suddenly appear, the robot must be able to stop to avoid crashing into those. 
However, in order to do this, the robot has to check that there are obstacles by using sensor 
data more often (e.g., every 50 ms) than the normal navigation system does (e.g., every 200 
ms). As a result, the Obstacle Avoidance use case is extended from the Navigation use case. 
During the Navigation use case is executing, if the obstacles are recognized, then the Obstacle 
Avoidance use case is triggered to perform the emergency stop of the robot. If the obstacles 
disappear, the robot moves again to the destination. 
 

Summary 
The Commander enters a destination and the 
robot system moves to the destination. 

Actor Commander 

Precondition 
The robot system has the grid map and the 
current position is known 

Description 

1. The use case begins when the commander 
enters a destination. 
2. The system calculates an optimal path to 
the destination. 
3. The system commands the wheel actuator 
to start moving to the destination. 
4. The wheel actuator notifies the system that 
it has started moving 
5. The system periodically reads sensor data 
and calculates the current position. 
6. The system determines that it arrives at the 
destination and commands the wheel 
actuator to stop. 
7. The wheel actuator notifies the system that 
it has stopped moving and the use case is 
finished. 

Alternative 
6.1. If the system doesn’t arrive at the 
destination, it keeps moving. 

Postcondition 
The robot system is at the destination and 
waiting for the next destination. 

Table 2. Navigation use case 
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3.2 Analysis modeling 
3.2.1 Static modeling 

The objective of static modeling is to understand the interface between the system and the 
external environment and to describe the static structure of the system under development 
by developing a system context class diagram. It is specifically important for real-time and 
embedded systems like robot systems (Gomaa, 2000). The system context class diagram can 
be determined by static modeling of the external classes that connect to the system. 
 

 

Fig. 5. Robot Navigation System context class diagram 

The system context class diagram of the Robot Navigation System is shown in Fig. 5, which 
illustrates the external classes to which the system has to interface. In our navigation system, 
a commander enters a destination via a command line, to which the robot should move. The 
system uses sensor data via various sensors such as laser scanners, IR scanners, ultrasonic 
sensors, etc and it controls the wheels of the robot via the wheel actuator. Therefore, the 
external classes correspond to the users (i.e., a Commander who interacts with the system via 
a Command Line), and I/O devices (i.e., a Sensor and Wheel Actuator). A Clock actor needs an 
external timer class called Clock to provide timer events to the system. This external timer 
class is needed to periodically check sensor data via those sensors for avoiding obstacles 
(i.e., doing the emergency stop) while the robot is moving.  
Next, to structure the Robot Navigation System into objects, object structuring needs to be 
considered in preparation for dynamic modeling. The objective of the object structuring is to 
decompose the problem into objects within the system. We identified the internal objects 
according to the object structuring criteria in COMET (see Fig. 6). In our system, interface 
objects, i.e. a Command Line Interface, Sensor Interface and Wheel Actuator Interface are 
identified by identifying the external classes that interface to the system, i.e. the Command 
Line, Sensor, and Wheel Actuator, respectively. There are four entity objects identified, that is, 
a Current Position, Destination, Navigation Path and Navigation Map, which are usually long-
living object that stores information. In addition to those objects, there is a need for control 
objects, which provide the overall coordination for objects in a use case and may be 
coordinator, state-dependent control, or timer objects. The Navigation System has a state-
dependent control object called Navigation Control that controls the wheel actuator and 
sensors. The states of the Navigation Control object are shown on a Navigation Control 
statechart (this will be discussed in the dynamic modeling). There are two timer objects, i.e. 
a Navigation Timer and an Obstacle Avoidance Timer. The Obstacle Avoidance Timer is activated 
by a timer event from an external timer to periodically check that there is any obstacle 
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around the robot. On the other hand, the Navigation Timer is started by the Navigation Control 
object and generates a timer event for navigation. Also, a Localizer algorithm object and Path 
Planner algorithm object are identified, which encapsulate an algorithm used in the problem 
domain, namely the autonomous navigation. 
 

                                         << Robot Navigation System >>

Commander

(from 1.0 Actors)

CommandLineInterface
<<user interface>>

CommandLine
<<external user>>

1 11 1

11 11

SensorInterface
<<input device interface>>

Sensor
<<external input device>>

11..* 11..*

WheelActuator
<<external output device>>

WheelActuatorInterface
<<output device interface>>

1 11 1

Destination
<<entity>>

Navigation Path
<<entity>>

Navigation Map
<<entity>>

Current Position
<<entity>>

Navigation Control
<<state dependent>>

Navigation Timer
<<timer>>

ObstacleAvoidanceTimer
<<timer>>

Clock
<<external timer>>

11 11

Localizer

<<algorithm>>
PathPlanner

<<algorithm>>

 

Fig. 6. Object structuring class diagram for Navigation System 

3.2.2 Dynamic modeling 

Dynamic modeling emphasizes the dynamic behavior of the system and plays an important 
role for distributed, concurrent and real-time system analysis. The dynamic model defines 
the object interactions that correspond to each use case and thus is based on the use cases 
and the objects identified during object structuring. In our case, collaboration diagrams are 
developed to show the sequence of object interactions for each use case. Additionally, if the 
collaboration involves the state-dependent object, which executes a statechart, the event 
sequence is shown on a statechart.  
In the navigation system, the Localizer has the algorithm which can calculate the current 
position based on sensor data via sensors. So, the role of the Localizer is to update the current 
position of the service robot. In the Path Planner object, there is a method for calculating a 
path to arrive at the destination based on both sensor information and the current position 
that is calculated at the Localizer. The Navigation Timer is an internal timer that is controlled 
by the Navigation Control. After the destination is entered from the external user, the 
Navigation Control starts the Navigation Timer, then the timer generates a timer event 
periodically (i.e., every 200ms) until the Navigation Control stops the timer.  
The Navigation use case starts with the commander entering the destination into the 
navigation system. The message sequence number starts at 1, which is the first external 
event initiated by the actor. Subsequence numbering in sequence is from 1.1 to 1.18 as 
shown in Fig. 7. The next message sequence activated by the Navigation Timer is numbered 
2, followed by the events 2.1, 2.2, and so forth. The following message sequences are 
illustrated in the collaboration diagram (see Fig. 7).  
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 : Navigation 

Control

 : CommandLine

 : Sensor  : WheelActuator : WheelActuatorInterface : SensorInterface

 : Destination
 : Navigation 

Path

 : Navigation Map

 : Current 

Position

 : CommandLineInterface

 : Navigation 

Timer

Path 

Planner

Localizer

Sequencing

Layer

<<external user>> <<user interface>>

<<state dependent control>>

<<timer>>
<<entity>> <<algorithm>>

<<entity>>

<<entity>>
<<entity>> <<algorithm>>

<<external input device>> <<input device interface>> <<output device interface>> <<external output device>>

Deliberate 

Layer

Reactive 

Layer

1.2a: Store Destination
2.11, 3.11 : Check Destination

2.12 : No , 3.12: Yes

1.13, 2.18: Planned Path

1.10, 2.15: Read a Path

1.14: Start
2.19: Move
3.13: Stop

1.17: Started
3.16: Stopped

1.4, 2.7, 3.7: Read Current Position

1.7, 2.10, 3.10: Current Position

1.2, 2.5, 3.5: Read Map
1.8, 2.13: Update Map

1.3, 2.6, 3.6 : Map
1.9, 2.14: Updated Map

1: Enter Destination

1.1: Destination Entered

2.1, 3.1: Read Sensors

2.4, 3.4: Sensor Data
2.2, 3.2: Read

2.3, 3.3: Data

1.15: Start WheelActuator Output
2.20:Move WheelActuator Output
3.14: Stop WheelActuator Output

1.16, 5.8: Started Ack
3.15: Stopped Ack

1.5, 2.8, 3.8: Localize

1.6, 2.9, 3.9: Current Position2, 3: After(Elapsed Time)

1.18, 5.10: Start Timer
3.17, 4.10: Stop Timer

1.12, 2.17: Path

1.11, 2.16: Plan a path

 

Fig. 7. Collaboration diagram for Navigation use case 

The collaboration diagram for the Obstacle Avoidance use case is shown in Fig. 8. When 
activated by the Obstacle Avoidance Timer every 50 ms, the Sensor Interface object reads sensor 
data via various sensors (Events 4.1, 5.1, 6.1). If an obstacle is recognized, the Obstacle 
Avoidance Timer sends the emergency stop message to the Wheel Actuator Interface (Event 
4.5). Afterwards, the timer also sends a suspend event to the Navigation Control. If the 
obstacle disappears, the timer sends a restart event to the Navigation Control for the robot to 
move again. 
 

 : Sensor  : WheelActuator : WheelActuatorInterface : SensorInterface

 : Clock  : ObstacleAvoidanceTimer

<<state dependent control>>

<<external timer>>

<<external input device>>

<<timer>>

<<input device interface>> <<output device interface>> <<external output device>>

 : Navigation 

Control

Sequencing
Layer

Reactive 

Layer

5.6: Start

5.9: Started
4, 5, 6: Timer Event

4.2, 5.2, 6.2: Read

4.3, 5.3, 6.3: Data

4.1, 5.1, 6.1: Read Sensors

4.4, 5.4, 6.4: Sensor Data
4.5: Stop

4.8: Stopped

4.9: Suspend

5.5: Restart

6.5: Time Expired

5.7: Start WheelActuator Output
4.6 : Stop WheelActuator Output

5.8: Started Ack
4.7: Stopped Ack

 
Fig. 8. Collaboration diagram for Obstacle Avoidance use case 
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With COMET, the software architecture can be based on a software architectural style 
(pattern) such as client/server or layers of abstraction. In our project, the layered strategy of 
the Tripodal schematic design described in section 2 is applied for design and modeling of 
the robot system, which provides a conceptual diagram of three layers (i.e., deliberate, 
sequencing, and reactive layers) for arrangement of various hardware and software 
modules and functions. Therefore, in the collaboration diagrams (see Fig. 7 and 8), the 
Command Line Interface is located in the deliberate layer and the Sensor Interface, Wheel 
Actuator Interface, and Obstacle Avoidance Timer are in the reactive layer. The others are 
positioned in the sequencing layer.  
 

Idle

StartingPlanning a Path

Checking 
Destination

Stopping3.16: Stopped / 3.17: Stop Timer

Reading Sensors

Localizing

Moving

1.17, 5.9: Started / 1.18, 5.10: Start Timer

1.13: Planned Path[ Start ] / 1.14: Start

2.18: Planned Path[ Move ] / 2.19: Move

Reading 
Map

2.4, 3.4: Sensor Data / 2.5, 3.5: Read Map

1.1: Destination Entered / 1.2 : Read Map, 1.2a: Store Destination

1.3, 2.6, 3.6: Map / 1.4, 2.7, 3.7: Read Current Position

Updating 
Map

2.10, 3.10:Current Position[ Move ] / 2.11, 3.11: Check Destination

1.7: Current Position[ Start ] / 1.8: Update Map

1.9, 2.14: Updated Map / 1.10, 2.15: Read a Path

2.12: No / 2.13: Update Map

3.12 : Yes / 3.13: Stop

Suspending

2, 3: After( Elapsed Time ) / 2.1, 3.1: Read Sensors

4.9: Suspend / 4.10: Stop Timer

5.5: Restart / 5.6: Start

6.1: Time Expired

 

Fig. 9. Statechart for Navigation Control 

In our navigation system, after drawing the collaboration diagrams for the Navigation and 
Obstacle Avoidance use cases which include the Navigation Control state-dependent object, we 
develop a Navigation Control statechart, which is executed by the Navigation Control object. 
The statechart needs to be considered in connection with the collaboration diagram. 
Specifically, it is required to take into account the messages that are received and sent by the 
control object, which executes the statechart (Gomaa, 2000). An input event (e.g., 1.1: 
destination entered) into the Navigation Control object on the collaboration diagram should be 
consistent with the same event shown on the statechart. The output event, which causes an 
action, enable or disable activity, like 1.2: Read Map (which cases an action) on the statechart 
must be consistent with the output event depicted on the collaboration diagram.  
Because the statechart modeling involves two state-dependent use cases in the navigation 
system, it is also required to consolidate the two partial statecharts to create a complete 
statechart. The complete statechart for both the Navigation and Obstacle Avoidance use cases 
is shown in Fig. 9.  
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3.3 Design modeling 
3.3.1 Software architecture 

In this phase, all collaboration diagrams developed for use cases in the analysis model are 
merged into the consolidated collaboration diagram. The consolidated collaboration 
diagram is thus intended to be a complete description of all objects and their interactions.  
The consolidation of the two collaboration diagrams respectively supporting the two use 
cases is shown in Fig. 10. Some objects and message interactions appear on more than one 
collaboration diagram. For instance, the Navigation Control, Navigation Timer, Sensor Interface 
and Wheel Actuator Interface objects participate in both the Navigation and Obstacle Avoidance 
use cases. For those objects, their message interactions are only shown once in the 
consolidated collaboration diagram.  

3.3.2 Architectural design of distributed real-time systems 
The robot system is a distributed embedded system and executes on distributed nodes by 
the communication methods like TCP/IP, CAN (Controller Area Network), and 
Wire/Wireless LAN. With COMET, a distributed real-time system is structured into 
distributed subsystems. Tasks in different subsystems may communicate with each other 
via several types of message communication, such as asynchronous, synchronous with 
reply, synchronous without reply, and client/server communications, etc. Hence, we should 
define distributed nodes and their messages to each node.  
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Time Expired

Stop
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Fig. 10. Consolidated collaboration diagram for Navigation System  
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The overall distributed software architecture for the robot navigation system is depicted in 

Fig. 11. In the robot system, objects that are part of the navigation are located in the robot 

navigation system. The robot navigation system communicates with the external I/O 

devices via synchronous message without reply communication and with the external timer 

via asynchronous message communication.  

 

 : CommandLine

 : Sensor  : WheelActuator

 : Robot Navigation 

System

<< synchronous message without reply>><< synchronous message without reply>>

<< synchronous message without reply>>

 : Clock

<<asynchronous message>>
Enter Destination

Start WheelActuator Output
Stop WheelActuator Output
Move WheelActuator Output

Read

Timer Event

 
 

Fig. 11. Distributed software architecture for Navigation System 

3.3.3 Task structuring 

During the task structuring phase, a task architecture can be developed in which the system 

is structured into concurrent tasks, and the task interfaces and interconnections are defined. 

A task is an active object and has its own thread of control. In this sense, the term “object” 

will be used to refer to a passive object in this paper. In COMET, task structuring criteria are 

provided to help in mapping an object-oriented analysis model of the system to a concurrent 

tasking architecture. At the end of this phase, a task behavior specification (TBS) is 

developed.  

The task architecture for the Navigation System is shown in Fig. 12. In order to determine the 

tasks in the system, it is necessary to understand how the objects in the application interact 

with each other based on the collaboration diagrams. In the collaboration diagram of Fig. 7, 

the Localizer object reads sensor data and the map from the Current Position object, calculates 

a new current position, and sends the current position to the Current Position object for 

updating it. Thus, the Localizer object is structured as an asynchronous algorithm task called 

Localizer. There are two asynchronous algorithms, i.e. Localizer and Path Planner, which are 

internal asynchronous tasks. There are four passive entity objects, i.e. Destination, Current 

Position, Navigation Map, and Navigation Path, which do not need a separate thread of control 

and are further all categorized as data abstraction objects. The Sensor and Wheel Actuator are 

a passive input device and a passive output device, respectively because they do not 

generate an interrupt on completion of the input or output operation. 

The Navigation Control is a state-dependent control object that executes the Navigation Control 

statechart and is structured as a control task because it needs to have a separate thread of 

control. The Navigation Control object can be combined with the Command Line Interface, 

Navigation Timer, Sensor Interface, and Wheel Actuator Interface objects into one task, 

Navigation Controller, based on the control clustering task structuring criterion because it is 
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not possible for them to execute concurrently (see the middle of Fig. 12). The Obstacle 

Avoidance Timer object is structured as a periodic task, activated periodically to read sensor 

data. It can be grouped with the Sensor Interface and Wheel Actuator Interface into one 

sequentially clustered task, Obstacle Avoidance Controller based on sequential clustering since 

those are carried out in a sequential order. The design of those composite tasks, the 

Navigation Controller and Obstacle Avoidance Controller are considered in the next section (i.e., 

detailed software design). 

 

 
 

Fig. 12. Task architecture for Navigation System 

After developing the task architecture, a task behavior is described for specifying the 

characteristics of each task based on COMET. During the task structuring, the TBS focuses 

on the task inputs and outputs. One part of the TBS, i.e. the task’s event sequencing logic is 

defined in the detailed software design phase.  

3.3.4 Detailed software design 

The internals of composite tasks which have passive objects nested inside them are 

designed, detailed task synchronization issues are addressed, and each task’s internal event 

sequencing logic is defined in this phase. Before this is done, the information hiding classes 

(from which the passive objects are instantiated) are designed. In particular, the operations 

of each class and the design of the class interfaces are determined and specified in a class 

interface specification (because of space limitation, the detailed TBS and the class interface 

specification have not been included).  
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Let us consider the internal design of the Navigation Controller, which is a composite task 

designed as a control clustering task, to show the nested information hiding objects (see Fig. 

13). The information hiding objects are the Navigation Control state-dependent control object, 

the Sensor Interface and Wheel Actuator Interface objects, the Navigation Timer object and the 

user interface object, the Command Line Interface. In addition, the Navigation Controller 

contains one coordinator object called Navigation Coordinator, which receives incoming 

messages and coordinates the execution of the other objects. That is, the Navigation 

Coordinator extracts the event from the request and calls Navigation Control.processEvent (in 

event, out action) (see Fig. 13). The Navigation Control returns the action to be performed like 

store, check, start, etc according to the state transition table. Afterwards, the Navigation 

Coordinator initiates the action. 

 
 

<<control clustering>>
      :NavigationController

 : Navigation 
Control

 : Navigation 
Timer

 : CommandLineInterface

 : Current 
Position

 : Navigation 
Map

 : Navigation 
Path

 : WheelActuatorInterface

 : WheelActuator

 : SensorInterface

 : Sensor

 : Destination

 : Navigation 
Coordinator

 : CommandLine

<< external user >>

<<user interface>>

<<timer>> <<coordinator>>

<<data abstraction>>

<<data abstraction>>

<<data abstraction>>

<<input device interface>> <<state dependent control>> <<output device interface>>

<<data abstraction>>

Start WheelActuator Output

Move WheelActuator Output

Stop WheelActuator Outputread(out sensorData)

store(in destination)

check(in currentPosition,out yes/no)

read(out sensorData)

startTimer( )

stopTimer( )

activate( )

read(in sensorData, in map, out CurrentPosition)

read(out map)

update(sensorData, currentPosition, map)

read(destination, currentPosition, map)

start(in path,out started)

move(in path)

stop(out stopped)

processEvent(in event,out action)

startRobot(in destination)

enter(in destination)

 
 

Fig. 13. Detailed software design for Navigation Controller 

In our system, communication between tasks such as the Navigation Controller, Localizer, and 

Path Planner is through data abstraction classes like the Current Position and Navigation Path. 

As a result, connector objects (Gomaa, 2000) are not used for the message communication 

interface between tasks. 

Lastly, the task’s event sequencing logic is specified, which describes how the task responds 

to each of its message or event inputs. However, instead of using informally Pseudo code in 

COMET, in this project, task event diagrams are developed for tasks by using the UML 

sequence diagrams for understanding and readability, which turned out to be very useful 

when to implement the tasks. Fig. 14 illustrates the task event diagram for the Navigation 

Controller. 
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if not desitniation
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Fig. 14. The task event diagram for Navigation Controller 

4. Lessons learned  

This section summarizes the lessons learned from the project where we successfully applied 
the object-oriented method with UML to developing the service robot. 

4.1 UML for service robot domain 
Through the case study, we found that the UML standard was very useful as a notation for 
specifying the requirements, documenting the structure, decomposing into objects, and 
defining relationships between objects especially in a service robot system. Certain diagrams 
and notations were particularly importance for analyzing, designing, and modeling service 
robot systems as follows. 

• Use case diagrams: With the use case model, services or functions (i.e., functional 
requirements), which a service robot performs or provides, can be defined in terms of 
actors who are users of the robot system and use cases. Each use case defines the 
behavior of some aspect of the robot system without revealing its internal structure.  
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• Class diagrams: The class diagram notation is used to depict the static model, which 
focuses on the static structure of the robot system. The class diagram shows the classes 
of objects in the system, their internal structure including attributes, their operations, 
and their relationships to other classes (such as associations and 
generalization/inheritance).  

• Collaboration diagrams: This diagram shows how objects that participate in each use 
case interact with each other by sending and receiving messages in the dynamic model. 
It defines a specific way to use objects in the robot system by showing the possible 
interactions between them, especially to satisfy the needs described in the use case, 
namely provide the services. Compared to a sequence diagram, the diagram in 
particular is useful for synthesizing the collaboration diagrams to create the software 
architecture of the system as discussed in section 3.3. 

• Sequence diagrams: This diagram show objects interaction arranged in time sequence 
and in particular could be used to describe the task event sequencing logic, which 
describes how the task responds to each of its message or event inputs. In COMET, the 
event sequencing logic is usually described informally in Pseudo code. We found that 
the sequence diagram can help the engineers describe the task event sequencing logic 
and implement the tasks by showing the order in which messages are passed between 
tasks and objects.  

• State chart diagrams: The service robot system is highly state-dependent like real-time 
embedded systems. This diagram describes how state-dependent aspects of the system 
are defined by a finite state machine and can help design and developing highly state-
dependent systems. It is also possible for this diagram to model object behavior over 
several use cases with the collaboration diagrams. 

In addition, by using the UML notation as a defined standard, different research groups and 
development teams can communicate among themselves and with others to develop and 
integrate specific components for providing various services.  

4.2 Importance of systematic process/method for service robot domain 

In order to effectively apply the UML notation and the robot control architecture like the 

Tripodal schematic control architecture to developing service robots, it is essential to use 

them with a systematic software engineering process or method,  like an object-oriented 

analysis and design method, especially for real-time and embedded systems. It is not 

possible to resolve the issues in integrating and developing the service robots discussed 

before without systematic and comprehensive software development methods, particularly 

for service robots. 

In our case study, we applied COMET/UML method to developing the service robot. The 

COMET object-oriented software life cycle model is a highly iterative software development 

process based around the use case concept. In the requirements model, the service or 

functions (i.e., the function requirements) of the robot system are defined in terms of actors 

and use cases. In the analysis model, the use case is refined to describe the objects that 

participate in the use case, and their interactions. In the design model, the robot software 

architecture is developed, emphasizing issues of distribution, concurrency, and information 

hiding. This project showed that this was a viable approach because applying the COMET 

method with UML led to developing an effective service robot architecture by carefully 
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taking into account user needs and requirements, implementing technical components 

based on the architecture, and integrating these components in a systematic and 

comprehensive fashion.  

4.3 Customizing the COMET method for service robot domain 

Service robots like , PSR-1, PSR-2 and Jinny have been built at KIST based on the Tripodal 
schematic control architecture. The Tripodal schematic design addressed on developing 
efficient and well-defined control architecture and a system integration strategy for 
constructing service robots. T-Rot is the next model of the PSR system under development 
for assisting aged persons. One of our aims is to develop the intelligent service robot for the 
elderly by cooperating and integrating the results of different research groups in accordance 
with the Tripodal schematic control architecture that has already been implemented on the 
PSR and successfully tested. Thus, the layered strategy of the Tripodal schematic design has 
been applied for design and modeling of the T-Rot. In the collaboration diagrams of the 
analysis modeling, and the consolidated collaboration diagram and the task architecture of 
the design modeling, the Command Line Interface is located in the deliberate layer for 
interfacing with a user, while the Sensor Interface, Wheel Actuator Interface, and Obstacle 
Avoidance Timer are in the reactive layer for controlling and managing the components in the 
reactive layer. The Navigation Control, Navigation Timer, Destination, Current Position, 
Navigation Path, Navigation Map, Localizer, and Path Planer are positioned in the sequencing 
layer for controlling the robot motion by executing relatively simple computations in real-
time. As a result, the Tripodal schematic control architecture was helpful in arranging 
various hardware and software modules and functions.  
Additionally, as stated in section 4.1, in COMET, the event sequencing logic is usually 
described informally in Pseudo code. We found that the sequence diagram can help the 
engineers describe the task event sequencing logic and implement the tasks by showing the 
order in which messages are passed between tasks and objects. Hence, instead of using 
informal Pseudo code, task event diagrams were developed for tasks by using the UML 
sequence diagrams to improve understanding and readability. It turned out that these task 
event diagrams are very useful when implementing these tasks. 

4.4 Human communication 

Human communication to understand and develop what is desired of the service robot is 
likely to be more difficult than expected. In our case study, most engineers who are involved 
in the project come from the mechanical or robotics engineering field. The different research 
groups and teams tend to focus on their own technology and components and thus it is not 
easy to realize how much knowledge they have and how much information will need to be 
made explicit and communicated to integrate those components for the service robot. 
Several things can be done to improve the situation. One is for engineers from different 
teams, especially software engineers and mechanical engineers to work together for 
analyzing, designing, and developing the robot system during the project. It is very 
important that all engineers and developers from different groups and teams interact 
directly. Also, in order to develop a common ground for understanding the domain, 
technology, process and method, a common medium or language such as UML is critical.  
In addition to the standard notation like UML, guidelines about what notation to use, when 
to use it, and how to use the notation comprehensively and systematically are required. This 
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is why the method like COMET is needed. Domain knowledge and experiences in each area 
will make it much easier to communicate what is desired, e.g. service robot domain, the 
autonomous robot navigation, vision processing, and so on for software engineers, and 
object-oriented concepts, software development process, and UML, etc for mechanical 
engineers. If there is relatively little domain knowledge and experience, to have one day or 
half-day technical workshop is needed. This has proved useful in a variety of settings in the 
development of the robot system, such as developing and increasing background 
knowledge of the domain and technology. 

4.5 Necessity of multi-aspect integration method for service robot domain 

A service robot should be able to perform several tasks autonomously to provide various 
services for human beings in a dynamic and partially unknown environment by applying 
both technology and knowledge. In order to be able to achieve complex tasks, perform new 
tasks, and integrate data learned from experience for the robot services, it is required to 
consider not only the robot’s behavior, but also other robot’s characteristics such as learning, 
planning, decision-making, and knowledge representation. It is necessary to allow existing 
robot behaviors to be used in new ways, to plan for accomplishing more complex tasks, to 
reuse the knowledge of one task in other tasks, and to complete tasks more efficiently by 
learning various action sequences.  
In the case study, we focused on designing and modeling the robot’s behavioral aspect, 
which is related to the sequencing and reactive layers in the Tripodal layered design, by 
applying the COMET/UML method. However, it is clear that planning and learning 
abilities have to also be considered when designing and developing a service robot, which 
correspond to the deliberate layer that is responsible for interfacing with a user and 
executing the planning process. As a consequence, a task manager, which is located in the 
deliberate layer, has been in charge of these robotic abilities in the project. Because the 
planning process is knowledge based and not reactive, a different analysis and design 
approach is needed for the task manager. Hence, we are convinced that methods to model 
the robot’s learning, planning and decision making aspects as well as to incorporate, use 
and maintain task knowledge are necessary. Furthermore, it is essential to integrate these 
methods with the COMET method into a multi-aspect integration method for developing 
service robot software.  

5. Conclusions and future work 

Service robots have been suggested for a growing number of applications. A service robot is 
a complex system as it includes various technical components (i.e., hardware and software) 
to be integrated correctly and many different research groups to develop the components. 
As a result, it is not only essential to develop complex algorithms or technical components, 
but also to integrate them adequately and correctly to provide the various robot services.  
In the paper, we have presented our case study where we developed the autonomous 
navigation system for the intelligent service robot for the elderly, T-Rot. The object-oriented 
method for real-time embedded systems, COMET has been applied to the service robot T-
Rot with the industry standard UML. It makes it possible to reconcile specific engineering 
techniques like robot technologies with the UML notation and furthermore to fit such 
techniques into a fully defined development process towards developing the service robot 
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system. In this way, we contribute to developing service robot software with UML in a 
systematic manner.  
The service robot T-Rot is still under development (at this point, we are at the first stage of 
total three stages). Thus, the current status of our work is to extend applications that include 
vision processing, speech processing and manipulation for providing various robot services. 
Also, we work on designing the knowledge-based task manager for improving the robot’s 
ability. 
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