
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322387163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

8

UML-Based Service Robot Software

Development: A Case Study∗

Minseong Kim1, Suntae Kim1, Sooyong Park1, Mun-Taek Choi2,
Munsang Kim2 and Hassan Gomaa3

Sogang University1,
Center for Intelligent Robotics Frontier 21 Program

 at Korea Institute of Science and Technology2,
George Mason University3

Republic of Korea1,2,
USA3

1. Introduction

Robots have been used in several new applications. In recent years, both academic and
commercial research has been focusing on the development of a new generation of robots in
the emerging field of service robots. Service robots are individually designed to perform
tasks in a specific environment for working with or assisting humans and must be able to
perform services semi- or fully automatically (Kawamura & Iskarous, 1994; Rofer et al.,
2000). Examples of service robots are those used for inspection, maintenance, housekeeping,
office automation and aiding senior citizens or physically challenged individuals (Schraft,
1994; Rofer et al., 2000). A number of commercialized service robots have recently been
introduced such as vacuum cleaning robots, home security robots, robots for lawn mowing,
entertainment robots, and guide robots (Rofer et al., 2000; Kim et al., 2003; You et al., 2003;
Pineau et al., 2003; Kim et al., 2005).
In this context, Public Service Robot (PSR) systems have been developed for indoor service
tasks at Korea Institute of Science and Technology (KIST) (Kim et al., 2003; Kim et al., 2004).
The PSR is an intelligent service robot, which has various capabilities such as navigation,
manipulation, etc. Up to now, three versions of the PSR systems, that is, PSR-1, PSR-2, and a
guide robot Jinny have been built.
The worldwide aging population and health care costs of aged people are rapidly growing
and are set to become a major problem in the coming decades. This phenomenon could lead
to a huge market for service robots assisting with the care and support of the disabled and
elderly in the future (Kawamura & Iskarous, 1994; Meng & Lee, 2004; Pineau et al., 2003). As
a result, a new project is under development at Center for Intelligent Robotics (CIR) at KIST,
i.e. the intelligent service robot for the elderly, called T-Rot.

∗ This work was published in Proceedings of the 28th International Conference on Software
Engineering (ICSE 2006), pp. 534-543, ISBN 1-59593-375-1, Shanghai, China, May 20-28,
2006, ACM Press, New York

www.intechopen.com

 Service Robots

128

In our service robot applications, it is essential to not only consider and develop a well-

defined robot software architecture, but also to develop and integrate robot application

components in a systematic and comprehensive manner. There are several reasons for this:

• First, service robots interact closely with humans in a wide range of situations for
providing services through robot application components such as vision recognition,
speech recognition, navigation, etc. Thus, a well-defined robot control architecture is
required for coherently and systematically combining these services into an integrated
system.

• Second, in robot systems, there are many-to-many relations among software
components as well as hardware components. For instance, a local map module
requires range data from a laser scanner, ultrasonic sensors, and infrared sensors, as
well as prior geometrical descriptions of the environment. On the other hand, the laser
scanner should provide its data to a path planner, localizer, and a local map building
module. These relationships, as well as interactions among software or hardware
modules, must be carefully analyzed and systematically managed from an early stage
of development in order to understand the big picture.

• Third, the functional performance of each software and hardware module becomes
highly dependent on the architecture, as the number of robot platforms increases (Kim
et al., 2004), and new services are added, or existing services are removed or updated to
address changes in user needs.

• Fourth, previously developed software modules like maps, localization, and path
planners can be directly reused for new tasks or services by service robot developers.
Thus, a robot architecture, as well as systematic processes or methods, are required to
support the implementation of the system, to ensure modularity and reusability.

As a consequence, in the previous work (Kim et al., 2003; Kim et al., 2004), the Tripodal

schematic control architecture was proposed to tackle the problems. Many related research

activities have been done. However, it is still a challenging problem to develop the robot

architecture by carefully taking into account user needs and requirements, implement robot

application components based on the architecture, and integrate these components in a

systematic and comprehensive way. The reason is that the developers of service robots

generally tend to be immersed in technology specific components, e.g. vision recognizer,

localizer and path planner, at an early stage of product development without carefully

considering architecture to integrate those components for various services (Kim et al.,

2005). Moreover, engineers and developers are often grouped into separate teams in

accordance with the specific technologies (e.g., speech processing, vision processing), which

makes integration of these components more difficult (Dominguez-Brito et al., 2004; Kim et

al., 2005). In such a project like T-Rot, particularly, several engineers and developers (i.e.,

approximately, more than 150 engineers) from different organizations and teams participate

in the implementation of the service robot. Each separate team tends to address the specific

technologies such as object recognition, manipulation, and navigation and so on. Engineers

who come from different teams are concerned with different characteristics of the system.

Thus, a common medium is required to create mutual understanding, form consensus, and

communicate with each other for successfully constructing the service robot. Without such a

medium or language, it is difficult to sufficiently understand the service robot system and

interact between teams to integrate components for services.

www.intechopen.com

UML-Based Service Robot Software Development: A Case Study

129

Within the domain of software engineering, many approaches have been suggested for a
systematic and complete system analysis and design, and for the capture of specifications.
The object-oriented paradigm (Booch, 1994; Jacobson, 1992) is a widely-accepted approach
to not only cover the external and declarative view of a system, but also at the same time
bridge seamlessly with the internal implementation view of a system (Jong, 2002). Object-
oriented concepts are crucial in software analysis and design because they focus on
fundamental issues of adaptation and evolution (Gomaa, 2000). Therefore, compared with
the traditional structured software development methods, object-oriented methods are a
more modular approach for analysis, design, and implementation of complex software
systems, which leads to more self-contained and hence modifiable and maintainable
systems. More recently, the Unified Modeling Language (UML) (UML, 2003; Fowler & Scott,
2000) has captured industry-wide attention for its role as a general-purpose language for
modeling software systems, especially for describing object-oriented models. The UML
notation is useful to specify the requirements, document the structure, decompose into
objects, and define relationships between objects in a software system. Certain notations in
the UML have particular importance for modeling embedded systems (Martin et al., 2001;
Martin, 2002), like robot systems. By adopting the UML notation, development teams thus
can communicate among themselves and with others using a defined standard (Gomaa,
2000; Martin et al., 2001; Martin, 2002). More importantly, it is essential for the UML
notation to be used with a systematic object-oriented analysis and design method in order to
be effectively applied (Gomaa, 2000).
As a result, our aim is to develop the intelligent service robot based on the systematic
software engineering method, especially for real-time, embedded and distributed systems
with UML. To do so, we applied the COMET method, which is a UML based method for the
development of concurrent applications, specifically distributed and real-time applications
(Gomaa, 2000). By using the COMET method, it is possible to reconcile specific engineering
techniques with the industry-standard UML and furthermore to fit such techniques into a
fully defined development process towards developing the service robot systems.
In this paper, we describe our experience of applying the COMET /UML method into
developing the intelligent service robot for the elderly, called T-Rot under development at
CIR. In particular, we focused on designing an autonomous navigation system for the
service robot, which is one of the most challenging issues for the development of service
robots.
Section 2 describes the hardware configuration and services of the T-Rot, and discusses the
related work. Section 3 illustrates how to apply the COMET method into designing and
developing the autonomous navigation system for the service robot, and discusses the
results of experiments. The lessons learned from the project are summarized in section 4,
and section 5 concludes the paper with some words on further work.

2. Background on T-Rot

2.1 PSR and T-Rot

At KIST, intelligent service robots have been developed in large-scale indoor environments
since 1998. So far, , PSR-1, PSR-2, which performs delivery, patrol, and floor cleaning jobs,
and a guide robot Jinny, which provides services like exhibition guide and guidance of the
road at a museum, have been built (Kim et al., 2003; Kim et al., 2004) (see Fig. 1). The service
robot T-Rot is the next model of the PSR system under development for assisting aged

www.intechopen.com

 Service Robots

130

persons. Development of T-Rot, in which our role is developing and integrating robot
software, started in 2003 by mainly CIR with more than 10 groups consisting of more than
150 researchers and engineers from academia and industry. This project is based on the
needs and requirements of elderly people through the studies and analysis of the
commercial health-care market for providing useful services to them. Thus, the aim of this
project is to develop the intelligent service robot for the elderly by cooperating and
integrating the results of different research groups. This project that is divided into three
stages will continue until 2013 and we are now in the first stage for developing the service
robot incrementally to provide various services.

PSR-1 PSR-2 Jinny

Fig. 1. KIST service robots

2.2 Hardware of T-Rot

The initial version of T-Rot, as shown in Fig. 2, has three single board computer (SBC), that
is, mobile Pentium 4 (2.2GHz) and 1GB SDRAM on each SBC. In terms of software
environment, Linux Red hat 9.0 and RTAI (Real-Time Application Interface) (RTAI, 2004)
are used as operating system. Fig. 3 shows hardware configuration as a whole. As
mentioned earlier, development of T-Rot is conducted incrementally for various services
and thus the platform will be extended with manipulators and robot hands later. In our
project, we developed the robot software based on the initial version of the platform. The
details of the hardware platform are described in Table 1.

Fig. 2. T-Rot robot hardware platform

www.intechopen.com

UML-Based Service Robot Software Development: A Case Study

131

Fig. 3. T-Rot robot hardware platform configuration

Intel Mobile Pentium 4 (2.2 GHz)

1GB SDRAM SBC

30GB Hard Disk

16 microphones for speaker localization

1 microphone for speech recognition Voice

1 speaker for speech generation

2 stereo vision cameras for recognizing users
and objects (1288 H x 1032 V maximum
resolution and 7Hz frame rates)

Vision

Pan/Tilt for controlling the vision part

2 laser scanners (front and back)

2 IR scanners (front and back)

12 Ultrasonic sensors
Sensor

1 Gyroscope sensor for measuring balance

2 actuators for two drive wheels (right and
left)

2 free wheels (the support wheels)

2 Servo Motors (100 [w])

2 encoders (2048 ppr)

Actuator

2 bumpers

1 TFT LCD & Touch (10.4” 1024x768, 26000
colors)

KVM (Keyboard/Mouse)
Interface

Wireless LAN for communications

Table 1. T-Rot hardware platform devices

www.intechopen.com

 Service Robots

132

2.3 Robot services

Some of the primary services under-developed that the initial version for T-Rot provides for
the elderly are described as below.

• Voice-based Information Services: The robot T-Rot can recognize voice commands from
a user (i.e., an aged person) via microphones equipped with the robot and can
synthesize voices for services. While a user is watching TV, the user can ask some
questions about the specific TV program or request a task to open an Internet
homepage by speaking the TV program name.

• Sound Localization and Voice Recognition: A user can call a robot’s predefined name,
to let the robot recognize the call while the robot knows the direction to move to the
user. This service analyzes audio data from 3 microphones on the shoulder for sound
localization and 16 mic array on the head for speech recognition to recognize the
command from the user.

• Autonomous navigation: A user can command the robot to move to a specific position
in the map to perform some task. For instance, the robot can navigate to its destination
in the home environment via its sensors, which include laser scanners and ultrasonic
sensors. The robot plans a path to the specified position, executes this plan, and
modifies it as necessary for avoiding unexpected obstacles. While the robot is moving, it
constantly checks sensor data from its sensors every 200 ms.

• An errand service: The robot can carry objects that a user (i.e., an aged person) usually
uses, like a plate, books, a cane a cup of tea, beverages, etc according to the user’s
instructions. For instance, the user can order the robot to bring a cup of tea or beverage
by speaking the name of the drink.

Of these T-Rot services, our emphasis was on the autonomous navigation service, which is
one of the most challenging issues and is essential in developing service robots, particularly
mobile service robots to assist elderly people. It includes hardware integration for various
sensors and actuators, and the development of crucial navigation algorithms like maps, path
planners, and localizers as well as software integration of software modules like a path
planner, a localizer, and a map building module.

2.4 Control architecture of PSR

Up to now, there have been many related research activities to develop efficient and well-
defined control architectures and system integration strategies for constructing service
robots. A recent trend is that many control architectures are converging to a similar
structure based on a hybrid approach that integrates reactive control and deliberation (Kim
et al., 2004). At KIST, for developing service robots, that is PSR-1, PSR-2, and Jinny in the
previous work (Kim et al., 2003; Kim et al., 2004), the Tripodal schematic control architecture
was proposed as the solution to the problem.
One important point of Tripodal schematic design is to integrate robot systems by using a
layered functionality diagram. The layered functionality diagram is a conceptual diagram of
three layers for arrangement of various hardware and software modules and functions. It
also shows the connectivity and the information flow between components. Those layers are
composed of deliberate, sequencing, and reactive layers based on the hybrid approach. The
purposes of the deliberate layer are to interface with a user and to execute a planning
process. The sequencing layer is classified into two groups, that is, the controlling part that
executes the process by managing the components in the reactive layer and the information

www.intechopen.com

UML-Based Service Robot Software Development: A Case Study

133

part that extracts highly advanced information from sensor data. The reactive layer controls
the real-time command and hardware-related modules for sensors and actuators. The
detailed description of whole control architecture of the PSR is introduced in (Kim et al.,
2003).
However, as described earlier, in order to effectively apply this approach and the UML
notation to developing service robots, it is essential to use a systematic software engineering
process or methods like object-oriented analysis and design methods, especially for real-
time and embedded systems. We believe that only a systematic and comprehensive software
development process and method will be able to resolve the issues discussed before and will
be vital for success in developing service robots.

2.5 The COMET method

COMET (Gomaa, 2000) is a method for designing real-time and distributed applications,
which integrates object-oriented and concurrent processing concepts and uses the UML
notation (UML, 2003; Fowler & Scott, 2000). The COMET object- oriented software life cycle
model is a highly iterative software development process based around the use case
concept. Therefore, in this project, the COMET method with UML was used to develop a
system for autonomous navigation by the intelligent service robot, T-Rot. The method
separates requirements activities, analysis activities and design activities, and these
activities are briefly described as below. The details are described in section 3 with the case
study.

• Requirements modeling - A use case model is developed in which the functional
requirements of the system are defined in terms of actors and use cases.

• Analysis modeling - Static and dynamic models of the system are developed. The static
model defines the structural relationships among problem domain classes. A dynamic
model is then developed in which the use cases from the requirements model are
refined to show the objects that participate in each use case and how they interact with
each other.

• Design modeling – The software architecture of the system is designed, in which the
analysis model is mapped to an operational environment. For distributed applications,
a component based development approach is taken, in which each subsystem is
designed as a distributed self-contained component.

3. Applying the COMET/UML method to T-Rot

In this section, we explain how to develop robot software for the autonomous navigation
system with the COMET/UML method. In our project, the UML notation conforms to UML
1.3 and the Rational Rose tool is used.

3.1 Requirements modeling
Capturing the functional requirements of the system is the first phase in software
development, which defines what the system should do or provide for the user. In our
approach, developers can catch the functional requirements or services by using the use case
model in terms of use cases and actors (see Fig. 4). To identify and define the requirements
of the system more clearly, the system has to be considered like a black box. In the service
robot, the actor can be usually a human user as well as external I/O devices and external
timer.

www.intechopen.com

 Service Robots

134

Navigation

Commander
(from 1.0 Actors)

Clock
(from 1.0 Actors)

Obstacle Avoidance

<<extend>>

Fig. 4. Use case diagram for Navigation

Table 2 shows a specification for Navigation use case. In our navigation system, we identified
a Commander and a Clock as an actor. While the robot is moving, if the robot recognizes
obstacles, it should avoid them for continuing to go to the destination. Even when humans
or objects suddenly appear, the robot must be able to stop to avoid crashing into those.
However, in order to do this, the robot has to check that there are obstacles by using sensor
data more often (e.g., every 50 ms) than the normal navigation system does (e.g., every 200
ms). As a result, the Obstacle Avoidance use case is extended from the Navigation use case.
During the Navigation use case is executing, if the obstacles are recognized, then the Obstacle
Avoidance use case is triggered to perform the emergency stop of the robot. If the obstacles
disappear, the robot moves again to the destination.

Summary
The Commander enters a destination and the
robot system moves to the destination.

Actor Commander

Precondition
The robot system has the grid map and the
current position is known

Description

1. The use case begins when the commander
enters a destination.
2. The system calculates an optimal path to
the destination.
3. The system commands the wheel actuator
to start moving to the destination.
4. The wheel actuator notifies the system that
it has started moving
5. The system periodically reads sensor data
and calculates the current position.
6. The system determines that it arrives at the
destination and commands the wheel
actuator to stop.
7. The wheel actuator notifies the system that
it has stopped moving and the use case is
finished.

Alternative
6.1. If the system doesn’t arrive at the
destination, it keeps moving.

Postcondition
The robot system is at the destination and
waiting for the next destination.

Table 2. Navigation use case

www.intechopen.com

UML-Based Service Robot Software Development: A Case Study

135

3.2 Analysis modeling
3.2.1 Static modeling

The objective of static modeling is to understand the interface between the system and the
external environment and to describe the static structure of the system under development
by developing a system context class diagram. It is specifically important for real-time and
embedded systems like robot systems (Gomaa, 2000). The system context class diagram can
be determined by static modeling of the external classes that connect to the system.

Fig. 5. Robot Navigation System context class diagram

The system context class diagram of the Robot Navigation System is shown in Fig. 5, which
illustrates the external classes to which the system has to interface. In our navigation system,
a commander enters a destination via a command line, to which the robot should move. The
system uses sensor data via various sensors such as laser scanners, IR scanners, ultrasonic
sensors, etc and it controls the wheels of the robot via the wheel actuator. Therefore, the
external classes correspond to the users (i.e., a Commander who interacts with the system via
a Command Line), and I/O devices (i.e., a Sensor and Wheel Actuator). A Clock actor needs an
external timer class called Clock to provide timer events to the system. This external timer
class is needed to periodically check sensor data via those sensors for avoiding obstacles
(i.e., doing the emergency stop) while the robot is moving.
Next, to structure the Robot Navigation System into objects, object structuring needs to be
considered in preparation for dynamic modeling. The objective of the object structuring is to
decompose the problem into objects within the system. We identified the internal objects
according to the object structuring criteria in COMET (see Fig. 6). In our system, interface
objects, i.e. a Command Line Interface, Sensor Interface and Wheel Actuator Interface are
identified by identifying the external classes that interface to the system, i.e. the Command
Line, Sensor, and Wheel Actuator, respectively. There are four entity objects identified, that is,
a Current Position, Destination, Navigation Path and Navigation Map, which are usually long-
living object that stores information. In addition to those objects, there is a need for control
objects, which provide the overall coordination for objects in a use case and may be
coordinator, state-dependent control, or timer objects. The Navigation System has a state-
dependent control object called Navigation Control that controls the wheel actuator and
sensors. The states of the Navigation Control object are shown on a Navigation Control
statechart (this will be discussed in the dynamic modeling). There are two timer objects, i.e.
a Navigation Timer and an Obstacle Avoidance Timer. The Obstacle Avoidance Timer is activated
by a timer event from an external timer to periodically check that there is any obstacle

www.intechopen.com

 Service Robots

136

around the robot. On the other hand, the Navigation Timer is started by the Navigation Control
object and generates a timer event for navigation. Also, a Localizer algorithm object and Path
Planner algorithm object are identified, which encapsulate an algorithm used in the problem
domain, namely the autonomous navigation.

 << Robot Navigation System >>

Commander

(from 1.0 Actors)

CommandLineInterface
<<user interface>>

CommandLine
<<external user>>

1 11 1

11 11

SensorInterface
<<input device interface>>

Sensor
<<external input device>>

11..* 11..*

WheelActuator
<<external output device>>

WheelActuatorInterface
<<output device interface>>

1 11 1

Destination
<<entity>>

Navigation Path
<<entity>>

Navigation Map
<<entity>>

Current Position
<<entity>>

Navigation Control
<<state dependent>>

Navigation Timer
<<timer>>

ObstacleAvoidanceTimer
<<timer>>

Clock
<<external timer>>

11 11

Localizer

<<algorithm>>
PathPlanner

<<algorithm>>

Fig. 6. Object structuring class diagram for Navigation System

3.2.2 Dynamic modeling

Dynamic modeling emphasizes the dynamic behavior of the system and plays an important
role for distributed, concurrent and real-time system analysis. The dynamic model defines
the object interactions that correspond to each use case and thus is based on the use cases
and the objects identified during object structuring. In our case, collaboration diagrams are
developed to show the sequence of object interactions for each use case. Additionally, if the
collaboration involves the state-dependent object, which executes a statechart, the event
sequence is shown on a statechart.
In the navigation system, the Localizer has the algorithm which can calculate the current
position based on sensor data via sensors. So, the role of the Localizer is to update the current
position of the service robot. In the Path Planner object, there is a method for calculating a
path to arrive at the destination based on both sensor information and the current position
that is calculated at the Localizer. The Navigation Timer is an internal timer that is controlled
by the Navigation Control. After the destination is entered from the external user, the
Navigation Control starts the Navigation Timer, then the timer generates a timer event
periodically (i.e., every 200ms) until the Navigation Control stops the timer.
The Navigation use case starts with the commander entering the destination into the
navigation system. The message sequence number starts at 1, which is the first external
event initiated by the actor. Subsequence numbering in sequence is from 1.1 to 1.18 as
shown in Fig. 7. The next message sequence activated by the Navigation Timer is numbered
2, followed by the events 2.1, 2.2, and so forth. The following message sequences are
illustrated in the collaboration diagram (see Fig. 7).

www.intechopen.com

UML-Based Service Robot Software Development: A Case Study

137

 : Navigation

Control

 : CommandLine

 : Sensor : WheelActuator : WheelActuatorInterface : SensorInterface

 : Destination
 : Navigation

Path

 : Navigation Map

 : Current

Position

 : CommandLineInterface

 : Navigation

Timer

Path

Planner

Localizer

Sequencing

Layer

<<external user>> <<user interface>>

<<state dependent control>>

<<timer>>
<<entity>> <<algorithm>>

<<entity>>

<<entity>>
<<entity>> <<algorithm>>

<<external input device>> <<input device interface>> <<output device interface>> <<external output device>>

Deliberate

Layer

Reactive

Layer

1.2a: Store Destination
2.11, 3.11 : Check Destination

2.12 : No , 3.12: Yes

1.13, 2.18: Planned Path

1.10, 2.15: Read a Path

1.14: Start
2.19: Move
3.13: Stop

1.17: Started
3.16: Stopped

1.4, 2.7, 3.7: Read Current Position

1.7, 2.10, 3.10: Current Position

1.2, 2.5, 3.5: Read Map
1.8, 2.13: Update Map

1.3, 2.6, 3.6 : Map
1.9, 2.14: Updated Map

1: Enter Destination

1.1: Destination Entered

2.1, 3.1: Read Sensors

2.4, 3.4: Sensor Data
2.2, 3.2: Read

2.3, 3.3: Data

1.15: Start WheelActuator Output
2.20:Move WheelActuator Output
3.14: Stop WheelActuator Output

1.16, 5.8: Started Ack
3.15: Stopped Ack

1.5, 2.8, 3.8: Localize

1.6, 2.9, 3.9: Current Position2, 3: After(Elapsed Time)

1.18, 5.10: Start Timer
3.17, 4.10: Stop Timer

1.12, 2.17: Path

1.11, 2.16: Plan a path

Fig. 7. Collaboration diagram for Navigation use case

The collaboration diagram for the Obstacle Avoidance use case is shown in Fig. 8. When
activated by the Obstacle Avoidance Timer every 50 ms, the Sensor Interface object reads sensor
data via various sensors (Events 4.1, 5.1, 6.1). If an obstacle is recognized, the Obstacle
Avoidance Timer sends the emergency stop message to the Wheel Actuator Interface (Event
4.5). Afterwards, the timer also sends a suspend event to the Navigation Control. If the
obstacle disappears, the timer sends a restart event to the Navigation Control for the robot to
move again.

 : Sensor : WheelActuator : WheelActuatorInterface : SensorInterface

 : Clock : ObstacleAvoidanceTimer

<<state dependent control>>

<<external timer>>

<<external input device>>

<<timer>>

<<input device interface>> <<output device interface>> <<external output device>>

 : Navigation

Control

Sequencing
Layer

Reactive

Layer

5.6: Start

5.9: Started
4, 5, 6: Timer Event

4.2, 5.2, 6.2: Read

4.3, 5.3, 6.3: Data

4.1, 5.1, 6.1: Read Sensors

4.4, 5.4, 6.4: Sensor Data
4.5: Stop

4.8: Stopped

4.9: Suspend

5.5: Restart

6.5: Time Expired

5.7: Start WheelActuator Output
4.6 : Stop WheelActuator Output

5.8: Started Ack
4.7: Stopped Ack

Fig. 8. Collaboration diagram for Obstacle Avoidance use case

www.intechopen.com

 Service Robots

138

With COMET, the software architecture can be based on a software architectural style
(pattern) such as client/server or layers of abstraction. In our project, the layered strategy of
the Tripodal schematic design described in section 2 is applied for design and modeling of
the robot system, which provides a conceptual diagram of three layers (i.e., deliberate,
sequencing, and reactive layers) for arrangement of various hardware and software
modules and functions. Therefore, in the collaboration diagrams (see Fig. 7 and 8), the
Command Line Interface is located in the deliberate layer and the Sensor Interface, Wheel
Actuator Interface, and Obstacle Avoidance Timer are in the reactive layer. The others are
positioned in the sequencing layer.

Idle

StartingPlanning a Path

Checking
Destination

Stopping3.16: Stopped / 3.17: Stop Timer

Reading Sensors

Localizing

Moving

1.17, 5.9: Started / 1.18, 5.10: Start Timer

1.13: Planned Path[Start] / 1.14: Start

2.18: Planned Path[Move] / 2.19: Move

Reading
Map

2.4, 3.4: Sensor Data / 2.5, 3.5: Read Map

1.1: Destination Entered / 1.2 : Read Map, 1.2a: Store Destination

1.3, 2.6, 3.6: Map / 1.4, 2.7, 3.7: Read Current Position

Updating
Map

2.10, 3.10:Current Position[Move] / 2.11, 3.11: Check Destination

1.7: Current Position[Start] / 1.8: Update Map

1.9, 2.14: Updated Map / 1.10, 2.15: Read a Path

2.12: No / 2.13: Update Map

3.12 : Yes / 3.13: Stop

Suspending

2, 3: After(Elapsed Time) / 2.1, 3.1: Read Sensors

4.9: Suspend / 4.10: Stop Timer

5.5: Restart / 5.6: Start

6.1: Time Expired

Fig. 9. Statechart for Navigation Control

In our navigation system, after drawing the collaboration diagrams for the Navigation and
Obstacle Avoidance use cases which include the Navigation Control state-dependent object, we
develop a Navigation Control statechart, which is executed by the Navigation Control object.
The statechart needs to be considered in connection with the collaboration diagram.
Specifically, it is required to take into account the messages that are received and sent by the
control object, which executes the statechart (Gomaa, 2000). An input event (e.g., 1.1:
destination entered) into the Navigation Control object on the collaboration diagram should be
consistent with the same event shown on the statechart. The output event, which causes an
action, enable or disable activity, like 1.2: Read Map (which cases an action) on the statechart
must be consistent with the output event depicted on the collaboration diagram.
Because the statechart modeling involves two state-dependent use cases in the navigation
system, it is also required to consolidate the two partial statecharts to create a complete
statechart. The complete statechart for both the Navigation and Obstacle Avoidance use cases
is shown in Fig. 9.

www.intechopen.com

UML-Based Service Robot Software Development: A Case Study

139

3.3 Design modeling
3.3.1 Software architecture

In this phase, all collaboration diagrams developed for use cases in the analysis model are
merged into the consolidated collaboration diagram. The consolidated collaboration
diagram is thus intended to be a complete description of all objects and their interactions.
The consolidation of the two collaboration diagrams respectively supporting the two use
cases is shown in Fig. 10. Some objects and message interactions appear on more than one
collaboration diagram. For instance, the Navigation Control, Navigation Timer, Sensor Interface
and Wheel Actuator Interface objects participate in both the Navigation and Obstacle Avoidance
use cases. For those objects, their message interactions are only shown once in the
consolidated collaboration diagram.

3.3.2 Architectural design of distributed real-time systems
The robot system is a distributed embedded system and executes on distributed nodes by
the communication methods like TCP/IP, CAN (Controller Area Network), and
Wire/Wireless LAN. With COMET, a distributed real-time system is structured into
distributed subsystems. Tasks in different subsystems may communicate with each other
via several types of message communication, such as asynchronous, synchronous with
reply, synchronous without reply, and client/server communications, etc. Hence, we should
define distributed nodes and their messages to each node.

 : Navigation
Control

 : CommandLine

 : Sensor : WheelActuator : WheelActuatorInterface : SensorInterface

 : Destination
 : Navigation

Path

 : Navigation Map

 : Current
Position

 : CommandLineInterface

 : Navigation
Timer

Path
Planner

Localizer

<<external user>> <<user interface>>

<<state dependent control>>

<<timer>>
<<entity>> <<algorithm>>

<<entity>>

<<entity>>
<<entity>> <<algorithm>>

<<external input device>> <<input device interface>> <<output device interface>> <<external output device>>

 : Clock : ObstacleAvoidanceTimer

<<external timer>> <<timer>>

Deliberate
Layer

Sequencing
Layer

Reactive
Layer

Store Destination

Check Destination

Yes/No

Planned Path

Read a Path

Start

Move

Stop
Started

Stopped

Read Current Position

Current Position

Read Map

Update Map

Map

Enter Destination

Start WheelActuator Output

Move WheelActuator Output

Stop WheelActuator Output

Started Ack

Stopped Ack

Read Sensors

Sensor Data

Read

Data

Read Sensors

Sensor Data

Localize

Current Position

Destination Entered

After(Elapsed Time)

Start Timer

Stop Timer

Path

Plan a path

Timer Event

Suspend
Restart

Time Expired

Stop

Stopped

Fig. 10. Consolidated collaboration diagram for Navigation System

www.intechopen.com

 Service Robots

140

The overall distributed software architecture for the robot navigation system is depicted in

Fig. 11. In the robot system, objects that are part of the navigation are located in the robot

navigation system. The robot navigation system communicates with the external I/O

devices via synchronous message without reply communication and with the external timer

via asynchronous message communication.

 : CommandLine

 : Sensor : WheelActuator

 : Robot Navigation

System

<< synchronous message without reply>><< synchronous message without reply>>

<< synchronous message without reply>>

 : Clock

<<asynchronous message>>
Enter Destination

Start WheelActuator Output
Stop WheelActuator Output
Move WheelActuator Output

Read

Timer Event

Fig. 11. Distributed software architecture for Navigation System

3.3.3 Task structuring

During the task structuring phase, a task architecture can be developed in which the system

is structured into concurrent tasks, and the task interfaces and interconnections are defined.

A task is an active object and has its own thread of control. In this sense, the term “object”

will be used to refer to a passive object in this paper. In COMET, task structuring criteria are

provided to help in mapping an object-oriented analysis model of the system to a concurrent

tasking architecture. At the end of this phase, a task behavior specification (TBS) is

developed.

The task architecture for the Navigation System is shown in Fig. 12. In order to determine the

tasks in the system, it is necessary to understand how the objects in the application interact

with each other based on the collaboration diagrams. In the collaboration diagram of Fig. 7,

the Localizer object reads sensor data and the map from the Current Position object, calculates

a new current position, and sends the current position to the Current Position object for

updating it. Thus, the Localizer object is structured as an asynchronous algorithm task called

Localizer. There are two asynchronous algorithms, i.e. Localizer and Path Planner, which are

internal asynchronous tasks. There are four passive entity objects, i.e. Destination, Current

Position, Navigation Map, and Navigation Path, which do not need a separate thread of control

and are further all categorized as data abstraction objects. The Sensor and Wheel Actuator are

a passive input device and a passive output device, respectively because they do not

generate an interrupt on completion of the input or output operation.

The Navigation Control is a state-dependent control object that executes the Navigation Control

statechart and is structured as a control task because it needs to have a separate thread of

control. The Navigation Control object can be combined with the Command Line Interface,

Navigation Timer, Sensor Interface, and Wheel Actuator Interface objects into one task,

Navigation Controller, based on the control clustering task structuring criterion because it is

www.intechopen.com

UML-Based Service Robot Software Development: A Case Study

141

not possible for them to execute concurrently (see the middle of Fig. 12). The Obstacle

Avoidance Timer object is structured as a periodic task, activated periodically to read sensor

data. It can be grouped with the Sensor Interface and Wheel Actuator Interface into one

sequentially clustered task, Obstacle Avoidance Controller based on sequential clustering since

those are carried out in a sequential order. The design of those composite tasks, the

Navigation Controller and Obstacle Avoidance Controller are considered in the next section (i.e.,

detailed software design).

Fig. 12. Task architecture for Navigation System

After developing the task architecture, a task behavior is described for specifying the

characteristics of each task based on COMET. During the task structuring, the TBS focuses

on the task inputs and outputs. One part of the TBS, i.e. the task’s event sequencing logic is

defined in the detailed software design phase.

3.3.4 Detailed software design

The internals of composite tasks which have passive objects nested inside them are

designed, detailed task synchronization issues are addressed, and each task’s internal event

sequencing logic is defined in this phase. Before this is done, the information hiding classes

(from which the passive objects are instantiated) are designed. In particular, the operations

of each class and the design of the class interfaces are determined and specified in a class

interface specification (because of space limitation, the detailed TBS and the class interface

specification have not been included).

www.intechopen.com

 Service Robots

142

Let us consider the internal design of the Navigation Controller, which is a composite task

designed as a control clustering task, to show the nested information hiding objects (see Fig.

13). The information hiding objects are the Navigation Control state-dependent control object,

the Sensor Interface and Wheel Actuator Interface objects, the Navigation Timer object and the

user interface object, the Command Line Interface. In addition, the Navigation Controller

contains one coordinator object called Navigation Coordinator, which receives incoming

messages and coordinates the execution of the other objects. That is, the Navigation

Coordinator extracts the event from the request and calls Navigation Control.processEvent (in

event, out action) (see Fig. 13). The Navigation Control returns the action to be performed like

store, check, start, etc according to the state transition table. Afterwards, the Navigation

Coordinator initiates the action.

<<control clustering>>
 :NavigationController

 : Navigation
Control

 : Navigation
Timer

 : CommandLineInterface

 : Current
Position

 : Navigation
Map

 : Navigation
Path

 : WheelActuatorInterface

 : WheelActuator

 : SensorInterface

 : Sensor

 : Destination

 : Navigation
Coordinator

 : CommandLine

<< external user >>

<<user interface>>

<<timer>> <<coordinator>>

<<data abstraction>>

<<data abstraction>>

<<data abstraction>>

<<input device interface>> <<state dependent control>> <<output device interface>>

<<data abstraction>>

Start WheelActuator Output

Move WheelActuator Output

Stop WheelActuator Outputread(out sensorData)

store(in destination)

check(in currentPosition,out yes/no)

read(out sensorData)

startTimer()

stopTimer()

activate()

read(in sensorData, in map, out CurrentPosition)

read(out map)

update(sensorData, currentPosition, map)

read(destination, currentPosition, map)

start(in path,out started)

move(in path)

stop(out stopped)

processEvent(in event,out action)

startRobot(in destination)

enter(in destination)

Fig. 13. Detailed software design for Navigation Controller

In our system, communication between tasks such as the Navigation Controller, Localizer, and

Path Planner is through data abstraction classes like the Current Position and Navigation Path.

As a result, connector objects (Gomaa, 2000) are not used for the message communication

interface between tasks.

Lastly, the task’s event sequencing logic is specified, which describes how the task responds

to each of its message or event inputs. However, instead of using informally Pseudo code in

COMET, in this project, task event diagrams are developed for tasks by using the UML

sequence diagrams for understanding and readability, which turned out to be very useful

when to implement the tasks. Fig. 14 illustrates the task event diagram for the Navigation

Controller.

www.intechopen.com

UML-Based Service Robot Software Development: A Case Study

143

 : CommandLineInterface : Navigation
Control

 : Navigation
Coordinator

 : Destination : Navigation
Map

 : Current
Position

 : Navigation
Path

 : WheelActuatorInterface : Navigation
Timer

 :
SensorInterface

1. startRobot(destination)

1.2. store(destination)

1.4. read(map)

1.6. read(sensorData, map, currentPosition)

1.1. processEvent(event, action)

1.3. processEvent(event, action)

1.5. processEvent(event, action)

1.7. processEvent(event, action)

1.8. update(sensorData, currentPosition, map)

1.9. processEvent(event, action)

1.10. read(destination, currentPosition, map, path)

1.11. processEvent(event, action)

1.12. start(path, started)

1.13. processEvent(event, action)
1.14. startTimer()

2. activate()

2.1. processEvent(event, action)
2.2. read(sensorData)

2.3. processEvent(event, action)
2.4. read(map)

2.5. processEvent(event, action)
2.6. read(sensorData, map, currentPosition)

2.7. processEvent(event, action)

2.8. check(currentPosition, yes/no)

2.10. update(sensorData, currentPosition, map)

2.9. processEvent(event, action)

2.12. read(destination, currentPosition, map, path)

2.11. processEvent(event, action)

2.13. processEvent(event, action)

2.14. move(path)

3. stop(stopped)

4. processEvent(event, action)

5. stopTimer()

if not desitniation

if destination

Fig. 14. The task event diagram for Navigation Controller

4. Lessons learned

This section summarizes the lessons learned from the project where we successfully applied
the object-oriented method with UML to developing the service robot.

4.1 UML for service robot domain
Through the case study, we found that the UML standard was very useful as a notation for
specifying the requirements, documenting the structure, decomposing into objects, and
defining relationships between objects especially in a service robot system. Certain diagrams
and notations were particularly importance for analyzing, designing, and modeling service
robot systems as follows.

• Use case diagrams: With the use case model, services or functions (i.e., functional
requirements), which a service robot performs or provides, can be defined in terms of
actors who are users of the robot system and use cases. Each use case defines the
behavior of some aspect of the robot system without revealing its internal structure.

www.intechopen.com

 Service Robots

144

• Class diagrams: The class diagram notation is used to depict the static model, which
focuses on the static structure of the robot system. The class diagram shows the classes
of objects in the system, their internal structure including attributes, their operations,
and their relationships to other classes (such as associations and
generalization/inheritance).

• Collaboration diagrams: This diagram shows how objects that participate in each use
case interact with each other by sending and receiving messages in the dynamic model.
It defines a specific way to use objects in the robot system by showing the possible
interactions between them, especially to satisfy the needs described in the use case,
namely provide the services. Compared to a sequence diagram, the diagram in
particular is useful for synthesizing the collaboration diagrams to create the software
architecture of the system as discussed in section 3.3.

• Sequence diagrams: This diagram show objects interaction arranged in time sequence
and in particular could be used to describe the task event sequencing logic, which
describes how the task responds to each of its message or event inputs. In COMET, the
event sequencing logic is usually described informally in Pseudo code. We found that
the sequence diagram can help the engineers describe the task event sequencing logic
and implement the tasks by showing the order in which messages are passed between
tasks and objects.

• State chart diagrams: The service robot system is highly state-dependent like real-time
embedded systems. This diagram describes how state-dependent aspects of the system
are defined by a finite state machine and can help design and developing highly state-
dependent systems. It is also possible for this diagram to model object behavior over
several use cases with the collaboration diagrams.

In addition, by using the UML notation as a defined standard, different research groups and
development teams can communicate among themselves and with others to develop and
integrate specific components for providing various services.

4.2 Importance of systematic process/method for service robot domain

In order to effectively apply the UML notation and the robot control architecture like the

Tripodal schematic control architecture to developing service robots, it is essential to use

them with a systematic software engineering process or method, like an object-oriented

analysis and design method, especially for real-time and embedded systems. It is not

possible to resolve the issues in integrating and developing the service robots discussed

before without systematic and comprehensive software development methods, particularly

for service robots.

In our case study, we applied COMET/UML method to developing the service robot. The

COMET object-oriented software life cycle model is a highly iterative software development

process based around the use case concept. In the requirements model, the service or

functions (i.e., the function requirements) of the robot system are defined in terms of actors

and use cases. In the analysis model, the use case is refined to describe the objects that

participate in the use case, and their interactions. In the design model, the robot software

architecture is developed, emphasizing issues of distribution, concurrency, and information

hiding. This project showed that this was a viable approach because applying the COMET

method with UML led to developing an effective service robot architecture by carefully

www.intechopen.com

UML-Based Service Robot Software Development: A Case Study

145

taking into account user needs and requirements, implementing technical components

based on the architecture, and integrating these components in a systematic and

comprehensive fashion.

4.3 Customizing the COMET method for service robot domain

Service robots like , PSR-1, PSR-2 and Jinny have been built at KIST based on the Tripodal
schematic control architecture. The Tripodal schematic design addressed on developing
efficient and well-defined control architecture and a system integration strategy for
constructing service robots. T-Rot is the next model of the PSR system under development
for assisting aged persons. One of our aims is to develop the intelligent service robot for the
elderly by cooperating and integrating the results of different research groups in accordance
with the Tripodal schematic control architecture that has already been implemented on the
PSR and successfully tested. Thus, the layered strategy of the Tripodal schematic design has
been applied for design and modeling of the T-Rot. In the collaboration diagrams of the
analysis modeling, and the consolidated collaboration diagram and the task architecture of
the design modeling, the Command Line Interface is located in the deliberate layer for
interfacing with a user, while the Sensor Interface, Wheel Actuator Interface, and Obstacle
Avoidance Timer are in the reactive layer for controlling and managing the components in the
reactive layer. The Navigation Control, Navigation Timer, Destination, Current Position,
Navigation Path, Navigation Map, Localizer, and Path Planer are positioned in the sequencing
layer for controlling the robot motion by executing relatively simple computations in real-
time. As a result, the Tripodal schematic control architecture was helpful in arranging
various hardware and software modules and functions.
Additionally, as stated in section 4.1, in COMET, the event sequencing logic is usually
described informally in Pseudo code. We found that the sequence diagram can help the
engineers describe the task event sequencing logic and implement the tasks by showing the
order in which messages are passed between tasks and objects. Hence, instead of using
informal Pseudo code, task event diagrams were developed for tasks by using the UML
sequence diagrams to improve understanding and readability. It turned out that these task
event diagrams are very useful when implementing these tasks.

4.4 Human communication

Human communication to understand and develop what is desired of the service robot is
likely to be more difficult than expected. In our case study, most engineers who are involved
in the project come from the mechanical or robotics engineering field. The different research
groups and teams tend to focus on their own technology and components and thus it is not
easy to realize how much knowledge they have and how much information will need to be
made explicit and communicated to integrate those components for the service robot.
Several things can be done to improve the situation. One is for engineers from different
teams, especially software engineers and mechanical engineers to work together for
analyzing, designing, and developing the robot system during the project. It is very
important that all engineers and developers from different groups and teams interact
directly. Also, in order to develop a common ground for understanding the domain,
technology, process and method, a common medium or language such as UML is critical.
In addition to the standard notation like UML, guidelines about what notation to use, when
to use it, and how to use the notation comprehensively and systematically are required. This

www.intechopen.com

 Service Robots

146

is why the method like COMET is needed. Domain knowledge and experiences in each area
will make it much easier to communicate what is desired, e.g. service robot domain, the
autonomous robot navigation, vision processing, and so on for software engineers, and
object-oriented concepts, software development process, and UML, etc for mechanical
engineers. If there is relatively little domain knowledge and experience, to have one day or
half-day technical workshop is needed. This has proved useful in a variety of settings in the
development of the robot system, such as developing and increasing background
knowledge of the domain and technology.

4.5 Necessity of multi-aspect integration method for service robot domain

A service robot should be able to perform several tasks autonomously to provide various
services for human beings in a dynamic and partially unknown environment by applying
both technology and knowledge. In order to be able to achieve complex tasks, perform new
tasks, and integrate data learned from experience for the robot services, it is required to
consider not only the robot’s behavior, but also other robot’s characteristics such as learning,
planning, decision-making, and knowledge representation. It is necessary to allow existing
robot behaviors to be used in new ways, to plan for accomplishing more complex tasks, to
reuse the knowledge of one task in other tasks, and to complete tasks more efficiently by
learning various action sequences.
In the case study, we focused on designing and modeling the robot’s behavioral aspect,
which is related to the sequencing and reactive layers in the Tripodal layered design, by
applying the COMET/UML method. However, it is clear that planning and learning
abilities have to also be considered when designing and developing a service robot, which
correspond to the deliberate layer that is responsible for interfacing with a user and
executing the planning process. As a consequence, a task manager, which is located in the
deliberate layer, has been in charge of these robotic abilities in the project. Because the
planning process is knowledge based and not reactive, a different analysis and design
approach is needed for the task manager. Hence, we are convinced that methods to model
the robot’s learning, planning and decision making aspects as well as to incorporate, use
and maintain task knowledge are necessary. Furthermore, it is essential to integrate these
methods with the COMET method into a multi-aspect integration method for developing
service robot software.

5. Conclusions and future work

Service robots have been suggested for a growing number of applications. A service robot is
a complex system as it includes various technical components (i.e., hardware and software)
to be integrated correctly and many different research groups to develop the components.
As a result, it is not only essential to develop complex algorithms or technical components,
but also to integrate them adequately and correctly to provide the various robot services.
In the paper, we have presented our case study where we developed the autonomous
navigation system for the intelligent service robot for the elderly, T-Rot. The object-oriented
method for real-time embedded systems, COMET has been applied to the service robot T-
Rot with the industry standard UML. It makes it possible to reconcile specific engineering
techniques like robot technologies with the UML notation and furthermore to fit such
techniques into a fully defined development process towards developing the service robot

www.intechopen.com

UML-Based Service Robot Software Development: A Case Study

147

system. In this way, we contribute to developing service robot software with UML in a
systematic manner.
The service robot T-Rot is still under development (at this point, we are at the first stage of
total three stages). Thus, the current status of our work is to extend applications that include
vision processing, speech processing and manipulation for providing various robot services.
Also, we work on designing the knowledge-based task manager for improving the robot’s
ability.

6. Acknowledgements

This research was performed for the Intelligent Robotics Development Program, one of the
21st Century Frontier R&D Programs funded by the Ministry of Commerce, Industry and
Energy of Republic of Korea.

7. References

Booch, G. (1994). Object-Oriented Analysis and Design with Applications. 2nd edn, Addison
Wesley

Dominguez-Brito, C.; Hernandez-Sosa, D.; Isern-Gonzalez, J. & Cabrera-Games, J. (2004).
Integrating robotics software, Proceedings of IEEE International Conference on
Robotics and Automation, pp. 3423-3428, New Orleans, LA, May 2004, IEEE
Computer Society Press

Fowler, M. & Scott, K. (2000). UML Distilled 2nd Edition. Addison Wesley
Gomaa, H. (2000). Designing Concurrent, Distributed, and Real-Time Application with

UML, Addison-Wesley Object Technology Series
Jacobson I. (1992). Object-Oriented Software Engineering, Addison Wesley
Jong, G. (2002). A UML-Based Design Methodology for Real-Time and Embedded Systems,

Proceedings of Design Automation and Test in Europe (DATE2002), pp. 776-778,
Paris, France, March 2002, IEEE Computer Society Press

Kawamura, K. & Iskarous, M. (1994). Trends in service robots for the disabled and the
elderly, Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’94), pp. 1647-1654, Kyongju, Korea, October 1994, IEEE
Computer Society Press

Kim, G.; Chung, W.; Kim, M. & Lee, C. (2003). Tripodal Schematic Design of the Control
Architecture for the Service Robot PSR, Proceedings of the IEEE Conference on
Robotics and Automation, pp. 2792-2797, Taiwan, 2003, IEEE Computer Society
Press

Kim, G.; Chung, W.; Kim, M. & Lee, C. (2004). Implementation of Multi-Functional Service
Robots Using Tripodal Schematic Control Architecture, Proceedings of IEEE
Conference on Robotics and Automation, pp. 4005-4010, New Orleans, LA, May
2004, IEEE Computer Society Press

 Kim, M.; Lee, J.; Kang, K.; Hong, Y. & Bang, S. (2005). Re-engineering Software Architecture
of Home Service Robots: A Case Study, Proceedings of 27th International
Conference on Software Engineering (ICSE2005), pp. 505-513, St. Louis, USA, May
2005, IEEE Computer Society Press

www.intechopen.com

 Service Robots

148

Martin, G. (2002). UML for Embedded Systems Specification and Design: Motivation and
Overview, Proceedings of Design Automation and Test in Europe (DATE2002), pp.
773-775, Paris, France, March, 2002, IEEE Computer Society Press

Martin, G.; Lavagno, L. & Louis-Guerin, J. (2001). Embedded UML: a merger of real-time
UML and codesign, Proceedings of the Nnth nternational Smposium on
Hardware/Sofware Codesign (CODES 2001), pp. 23-28, ISBN 1-58113-364-2,
Copenhagen, Denmark, April 2001, ACM 2001

Meng, Q. & Lee, M.H. (2004). Learning and Control in Assistive Robotics for the Elderly,
Proceedings of the IEEE Conference on Robotics, Automation and Mechartonics,
pp. 71-76, Singapore, December 2004, IEEE Computer Society Press

Pineau, J.; Montemerlo, M.; Pollack, M.; Roy, N. & Thrun, S. (2003). Towards robotic
assistants in nursing homes: Challenges and results. Robotics and Autonomous
Systems, Vol. 42, No. 3-4, 2003, 271-281, ISSN 0921-8890

Rofer, T.; Lankenau, A. & Moratz, R. (2000). Service Robotics-Applications and Safety Issues
in an Emerging Market, Proceedings of Workshop W20 on European Conference
on Artificial Intelligence (ECAI) 2000, Berlin, August 2000

Real-Time Application Interface. (2004). Available at: http:// www.rtai.org
Schraft, R.D. (1994). Mechatronics and robotics for service applications. IEEE Robotics and

Automation Magazine, Vol. 1, No. 4, December 1994, 31-35, ISSN 1070-9932
OMG Unified Modeling Language, Version 1.5. (2003). Available at:http://www.uml.org
You, B.; Hwangbo, M.; Lee, S.; Oh, S.; Kwon, Y. & Lim, S. (2003). Development of a Home

Service Robot ‘ISSAC’, Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003), pp. 2630-2635, Nevada, Las Vegas,
2003, IEEE Computer Society Press

www.intechopen.com

Advances in Service Robotics

Edited by Ho Seok Ahn

ISBN 978-953-7619-02-2

Hard cover, 342 pages

Publisher InTech

Published online 01, July, 2008

Published in print edition July, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book consists of 18 chapters about current research results of service robots. Topics covered include

various kinds of service robots, development environments, architectures of service robots, Human-Robot

Interaction, networks of service robots and basic researches such as SLAM, sensor network, etc. This book

has some examples of the research activities on Service Robotics going on around the globe, but many

chapters in this book concern advanced research on this area and cover interesting topics. Therefore I hope

that all who read this book will find lots of helpful information and be interested in Service Robotics. I am really

appreciative of all authors who have invested a great deal of time to write such interesting and high quality

chapters.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Minseong Kim, Suntae Kim, Sooyong Park, Mun-Taek Choi, Munsang Kim and Hassan Gomaa (2008). UML-

Based Service Robot Software Development: A Case Study, Advances in Service Robotics, Ho Seok Ahn (Ed.),

ISBN: 978-953-7619-02-2, InTech, Available from:

http://www.intechopen.com/books/advances_in_service_robotics/uml-

based_service_robot_software_development__a_case_study

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

