
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322387143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


27 

Efficient Simulation of Thermal and Electrical 
Behaviour of Industrial Cables  

Hans-Peter Schmidt 
University of Applied Sciences Amberg-Weiden  

Germany   

1. Introduction    

Numerical modelling is applied in industrial applications in various ways. This chapter 
describes the application of modern simulation packages for distributed parameters 
combined with standard network type calculations and numerical procedures. In an 
application driven approach, simulation with distributed parameters is used as input for 
lumped parameter calculations. Thermal loading and electrical behaviour with regards to 
signal transmission in plant and process automation is dealt with. The main focus is on 
efficient modelling which yields sufficient accurate results for the application while covering 
the relevant range of operating conditions.  
The well-known governing equations of electromagnetism and conservation equations for 
energy, momentum and mass may be solved via FEM and FVM methods to yield 
appropriate values for lumped parameters. Using these parameters an efficient network 
type calculation is carried out. Modelling and results for special cables used in power and 
data transmission are presented. Current carrying capacities for various operating 
conditions are studied.  

2. Application  

In industrial applications like materials handling, decentralized automation becomes widely 
applied. Loads like variable speed drives are not radially fed but connected to a power bus. 
Furthermore, power and data might be transmitted within one single cable. Here the need 
for thermal and electrical simulations arises. 
A model is derived to calculate the ampacity for various operating conditions and Comsol 
(Comsol 2006) is applied to determine thermal resistances. For the data transmission cable, 
parameter and crosstalk are determined for multi core cables.  

3. Thermal behaviour  

When a non standard cable is used, the ampacity is to be determined for various laying and 
operating conditions. This maximum permissible current Iz for a cable with respect to 
thermal overload is usually determined for a well-defined operational condition and then 
related to various actual conditions via equation 1 (IEC 60287 , VDE 0299). 
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 ∏⋅= irz fII  (1) 

The “rated current” Ir and the correction factors fi are to be determined to cover the relevant 
range of operational conditions. For optimal utilization actual operational conditions can be 
modelled in detail and appropriate corrections factors may be deduced. 

3.1 Thermal Modelling  

Joule heating is balanced by conduction, convection and radiation. All of the processes are 
temperature dependent and lead to a system of non-linear partial differential equations. A 
complete 3 D solution of the energy, momentum and continuity equation via a SIMPLEC 
(Patankar, 1980) type simulation (Bauder et. al. 1996, Schmidt 1996, Schmidt 2005) yields 
temperatures with reasonable accuracies.  
Nevertheless this is no practical way to determine the required correction factors. More 
suitable is the lumped parameter approach. This modelling of heat flow with an electrical 
network requires appropriate simplifications. However, the resulting non-linear circuit is 
solved with standard numerical procedures and the maximum permissible current may be 
determined explicitly.  As an example a typical multi-core flat cable is considered which is 
used for power and data transmission.  

W

h

 

Figure 1.  Schematic sketch of a typical flat multi core cable   

3.2 Lumped Parameter Model 

The usual modelling via an equivalent electrical circuit is applied (IEC 60287; Schmidt, 2005; 
Wutz;1991). Current sources account for temperature dependent Joule heating where 
cooling is modelled via resistances. The simple model with only one conductor is readily 
extended to the multi core case. The temperature depended heating is given via Pv.= I² Rel 

(ϑ). The thermal resistance of the insulation is modelled via Rth_iso, convection is modelled 
via Rth_a and Rth_s accounts for radiative heat transfer.  
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Figure   2.  Equivalent circuit with seven conductors and a single surface temperature 
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With this simple model the surface temperature of the cable is calculated from equation 2, 
using the effective thermal resistance which covers the heat transfer from the surface of the 
cable to the ambience. 
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The total heat flux is given by the summation over the conductors which may be at different 
temperatures as indicated in equation 3. 
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This may be expanded to account for various operational conditions or for a more 
geometrically detailed model of the surface. Therefore the temperature of the surface may be 

calculated from a single non-linear equation (xx) if core temperatures ϑ C_i are known. 
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The core and the surface temperature are related by the heat flux and may be substituted as 
required. Therefore effective thermal resistances may be presented in terms of surface or 
core temperatures. On the other hand, core temperatures have to be calculated from a set of 
non-linear equations. 
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Since the maximum permissible temperatures of the cores are known equation 5 may be 
simplified substantially. The electrical resistance of the core is calculated at the maximum 
permissible temperature. Then the related maximum permissible currents may be 
calculated.  If the cores are loaded with the identical currents then this model leads to a 
single non linear equation and the maximum current can be given for different number of 
loaded cores. 
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Maximum permissible currents for various operating conditions can be calculated 
efficiently.  The relevant quantities for the application i.e. Ir and fi ( eq. 1 ) are readily taken 
from theses results. 

3.3 Determination of Lumped Parameter Values  

Assuming a constant temperature at the surface, one can approximate the thermal resistance 
from conduction. The values are readily found by solving the well-known energy 
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conservation equation for heat conduction. Both FEM/FVM calculations yield high accuracy 
for arbitrary geometry and non-linear materials.  

 s−=∇⋅∇ ϑλc  (7) 

       s denotes the source term i.e. ohmic heating, λ denotes the thermal conductivity  
From the solution, i.e. the temperature field, the thermal resistances can be calculated by the 
ratio of temperatures to applied power. The thermal resistance calculated from this basic 
relation is in good agreement with an analytical approximation. More complex are 
convective and radiative heat transfer. The thermal resistance for natural convection may be 
represented by  

 
aA

R ath
1

_ =  (8) 

The heat transfer coefficient a may be determined via the boundary layer approach (VDI 
Wärmeatlas 2006) 

 L

Nu
a

λ⋅
=

 (9)  

Nusselt number:  
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Rayleigh number: 

   Pr⋅=GrRa  (11) 

Prandtl number: 

 
λ
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Grasshof number: 
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η  viscosity, cp thermal capacity, λ thermal conductivity, β compressibility, ν   viscosity, L 
length of surface, L‘ effective length  
Clearly, the heat transfer coefficient might be taken from detailed SIMPLEC type 
calculations, but this is not really efficient. So this is only used to check the boundary layer 
results for uncertainties. These are effective length and the like.  
Likewise the thermal resistance for radiation is temperature dependent. The simplest model 
(Wutz, 1991;  Schmidt, 2005) leads to  
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Considering different ambient conditions e.g. cable layings these effective resistances have 
to be re-determined. 
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3.4 Results of thermal modelling  

As an example, the results are given for two different laying conditions. The maximum 
permissible current for the relevant range of ambient temperatures is shown below.  
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Figure 3. Maximum currents for laying on a concrete wall  ( 70°C conductor temperature)  
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Figure 4. Maximum currents for laying on an insulating wall  ( 70°C conductor temperature)  

In figure 3, maximum permissible currents for a standard PVC installation (70°C max) are 
given for a laying on a concrete wall. In comparison, figure 4 gives these permissible 
currents when the cable is laid on an insulating wall.  
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The current carrying capacity (e.g. three cores loaded) is higher than that found in the 
standards. The standards deal mostly with round cables. Usually this type of cable has air 
pockets and is not compact. The flat cable considered here has no air pockets whatsoever 
and conduction to the surface is more effective. Furthermore, the surface area is larger than 
that considered in standards.  
All of the results are in good agreement with measurements by Graf ( Graf 2003). The 
reduction with temperature is also in very good agreement with derating factors given in 
standards (IEC 60287 and VDE 0299). 

4. Modelling of the Electrical behaviour 

In automation, so-called hybrid cables with elaborate screening are commonly used to 
transmit data and auxiliary power within a single cable. A different approach is investigated 
here with AS-I (Actor Sensor interface) communication. Usually this communication 
employs a two-wire flat cable without shielding and piercing contacts. Data are encoded 
with sin square pulses at 167 kHz.  
The feasibility of using standard multi core cables for data and power transmission is 
investigated. Various cables are investigated and compared to standard cables as given by 
the specifications. 
Firstly, the cable parameters are determined and checked against the standard requirements. 
Secondly, the coupling between pairs of conductors is detailed to access cross talk from the 
power transmission to the signal carrying conductors. Again results are checked against 
measurements. 

4.1 Modelling 

Depending on cable laying various stray capacitances or inductances may come into play. 
E.g. cables may be mounted directly on a metal support (aluminium or sheet steel). This 
may affect stray and total capacitance with regard to the signal. Inductance and losses might 
increase considerably with steel supports.  
Relevant frequencies are smaller than 500 kHz and installations are limited to extensions of 
approximately 100 m. Thus a quasi static approach may be used. 
Lumped parameters are determined by calculations using Comsol (Comsol 2006). These 
parameters are used in network calculations where coupling and distortions are 
determined.   

4.2 Capacitances 

 The geometry of the cables are specified and the capacitances are readily calculated when 
the dielectric properties of the insulation are known. Materials in use vary e.g. from EPDM 
to PUR partly with PVC core insulation.  
The potential distribution is calculated from a standard Laplace equation, since there are no 
space charges.   

 0=Φ∇⋅∇ εc  (15) 

 Φ potential, ε dielectric constant  
Boundary condition are used to mimic the As-I conditions. Within the AS-i system there is 
strictly no grounding. Coupling to the actual ground/earth is via stray capacitances. 
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Therefore “floating potentials” are used as boundary condition for the conductors. A 
potential is set at the boundaries of the conductors which are not carrying the signals such 
that no current flow occurs. 

 0=∫surface Jn
f

c
f

  (16) 

Energies are calculated from the according fields.   

 dvDEW

Volume

el ∫∫∫= c
2

1
  (17) 

  

  

Figure 5.  Potential distributions for calculating capacitances using the folating potential 
approach.  

For the two signal carrying conductors there operational capacity is readily taken from that 
energy and the applied boundary conditions.  

 
( )212

2
Φ−Φ

= elW
C   (18) 

For assessing the coupling the mutual capacitances are to be determined from the 
capacitance matrix. The capacitance matrix is again computed from electric energy. The 
coefficients are given by the energies with only conductors i and j set to a voltage/ potential 
of 1 V and all other set to 0V. The capacitance of a conductor to ground is then given via the 
sum over the according row (Simonyi 1996).  
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A comparison of the capacitance calculated via the floating potentials and via matrix yields 
good agreement.  
Potential distributions are shown in figure 5 for four and five core cables. The capacitance is 
deducted from the floating potential approach. Adjacent and distant conductor pairs are 
compared. 

4.3 Inductances and resistances  

Inductances are calculated from DC flux coupling analogous to the capacitive matrix 
(Simonyi 1996). The governing equation reads 

 zeJA
ff

⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×∇×∇

µ

1
  (20) 

An iron support structure was assessed for some typical values of the permeability (100-
2000). With calculation at 167 kHz skin effect, proximity and eddy currents were studied.  
The governing equation becomes  

 ( ) zeJAAj
fff

⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×∇×∇+−

µ
εωωσ

12  (21) 

Losses and therefore resistance are quite affected by skin and proximity effects. With iron 
support structures additional losses may contribute remarkably.   

4.4 Lumped parameter modelling  

An equivalent circuit is used where a voltage is applied to a conductor pair and the voltage 
of the As-I pair is determined using standard network calculation. Tools like PSPICE are 
applied here. As an example the equivalent circuit for  multi core round cables are shown in 
figure 6. 
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2
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Figure 6. Equivalent circuit of a multi core cable used for capacitive coupling, where 
capacitance to ground is not shown for clarity 
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Attenuation and distortion is calculated from equivalent circuits were the cable is modelled 
by a multitude of the circuits shown in figure 7.  

k

L‘/4 L‘/4

L‘/4L‘/4

R‘/4R‘/4

R‘/4 R‘/4

G‘ C‘
…

 

Figure 7. Equivalent circuit for a short piece of a four conductor cable  

Other equipment is also modelled with standard equivalent circuits. These include the so 
called As-I master, the power supply and the slaves. With this modelling different 
topologies are investigated.  

4.5 Results und Discussion  

The capacitance matrices are calculated for various cables. Since manufacturers do not 
necessarily provide actual values of dielectric constants or their tolerances, these values  
have to be varied. Once adjusted to meet measurements of capacitances, tolerance might be 
investigated.  
The standard requirements for AS-i cables are C’ < 80 pF/m, 0.4 µH/m <L’ < 1.3 µH/m, R’ 

< 90 mΩ/m; G’ ≤ 5 µs/m; 70 Ω ≤ Z ≤ 140 Ω.  Theses requirements for resistance and 
capacitances, are usually met by cables with reasonably large cross-sections (> 1,5 mm²) .  
As expected, the parameters of all investigated As-I standard cables fulfil the requirements. 
Resulting capacitance of 40pF/m to 60pF/m may increase by 38% if the cable is laid on a 
metal support. With an iron support (µr up to 2000) the inductances increase by approx. 
15%. 
Almost all round cables which have been investigated fulfil the requirements. These include 
either four or five cores, cross sections of 1.5 mm² up to 4 mm² with various insulations. 
Inductances were well within the limits, capacitances reached up to 70 pF/m. Values of the 
characteristic impedance Z were not met for some five core cables. But adjacent pairs of 
conductors must not be used for As-i data transmission when a round cable is used. Despite 
this, a seven core flat cable was found to meet the requirements when two adjacent 
conductors carry the data signal.  
Only differences in capacitive coupling affect data transmission, since data are encoded with 
differential signals. If a four wire cable would be completely symmetric, there were to be no 
coupling at all when not using any adjacent conductor pairs. If adjacent cores are used, the 
amplitude of the capacitive coupled signal reaches 28% of the coupling amplitude. With a 
five-core cable, this capacitive coupling reaches app. 15% for non adjacent pairs and 23% for 
adjacent pairs. Coupling inductance reaches approx. 0.2 µH/m. Metal support structures 
have only a weak influence since cores are helically wound along the cable run.  
With the flat cable, the outer conductor pair is used for data transmission. The capacitive 
coupling reaches app. 15% when a metallic support is used and approx. 5% without a metal 
support. The coupling inductance reaches up to 0.15 µH/m. The protective earth, which is 
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next to the “As-i cores”, carries the harmonics from frequency inverters. Due to the 
relatively high frequency, this may well affect data transmissions. To improve signal 
integrity the protective earth core may be grounded at several points along the cable run. 
Also, short circuit current at power frequencies may lead to voltages that exceed safe 
operating conditions. Surge protection becomes mandatory.  
Experimental results   

The line parameters were measured with a precision impedance meter. Coupling was 
measured with a 10 kVA arbitrary wave form generator. 5 kHz square pulses with 
amplitudes up to 850 V were applied to check the capacitive coupling. Current pulses at 5 
kHz with up to 13 A were used to measure inductive coupling. Results from calculations 
were in reasonably good agreement with measurement. 
The amount of erroneous As-i telegrams was assessed. There was virtually no telegram 
repetition with the 4 core cable (no adjacent cores). Considerable inductive coupling led to 
telegram repetition with the flat cable and even more with the 5 core round cables. This is in 
accordance with the inductances. With increasing amplitudes malfunction of the AS-I data 
transmission was found. Reasonable agreement was also found for calculated and measured 
attenuation and signal wave forms.  
Further investigations are will carried to  simulate the complete data transmission including 
the translation of the physical signal wave form to actual data.  
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