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1. Introduction  

Deformable linear objects such as tubes, cords, cables, wires, and threads are used widely 
for fixing, fastening, wrapping, packing, suturing, and ligating of objects including 
themselves.  In such manipulative tasks, knotting of linear objects is required.  At the same 
time, their raveling must be avoided.  If unexpected ravel occurs, it takes much time to 
unravel.  For example, raveling of earphone/headphone cord of a portable audio player 
would puzzle you sometimes.  So, efficient unraveling is important as well as avoidance of 
such raveling. 
Knotting manipulation by robots has been studied.  Inoue et al. reported tying a knot in a 
rope with a manipulator utilizing visual feedback (Inoue & Inaba, 1984).  Hopcroft et al. 
devised an abstract language to express various knotting manipulations and performed 
knot-tying tasks with a manipulator (Hopcroft et al., 1991).  Matsuno et al. realized a task 
consisting of tying a cylinder with a rope using a dual manipulator system (Matsuno et al., 
2001).  Takamatsu et al. have been developing a system for knot planning from observation 
of human demonstrations (Takamatsu et al., 2006).  Saha and Isto proposed a motion 
planner for manipulating ropes and realized tying several knots using two cooperating 
robotic arms (Saha & Isto, 2006). Yamakawa et al. proposed a new strategy for making knots 
with one high-speed multifingered robot hand having tactile sensors (Yamakawa et al., 
2007). Unknotting manipulation, i.e., the inverse of knotting manipulation, has been also 
studied.  We have realized automatic planning and execution of knotting/unknotting 
manipulation (Wakamatsu et al., 2006).  Ladd and Kavraki developed an untangling planner 
for mathematical knots represented as closed piecewise linear curves (Ladd & Kavraki, 
2004). 
Unraveling is equivalent to unknotting.  However, the state of a raveled object can become 
more complex than that of a knotted object.  Moreover, it is difficult to recognize the state of 
a reveled object completely because it may twine itself.  Therefore, recognition of the object 
state and manipulation planning are both important for unraveling.  In this paper, we 
propose a planning method for unraveling a linear object when 3D information about the 
object state is unknown.  First, an unknotting process of a linear object, which is equivalent 
to its unraveling process, is represented as a sequence of crossing state transitions.  The 
object state is categorized according to three properties with respect to self-crossings of the 
object.  State transitions are defined by introducing four basic operations.  Then, possible 
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unknotting processes can be generated if the current crossing state is completely identified.  
Second, the crossing sequence of a linear object, which is related to its silhouette, is 
considered.  The crossing sequence can be categorized into two types: unravelable and not-
unravelable.  Third, a procedure to generate efficient unraveling processes based on 
unravelability of the crossing sequence is explained. An object with an unravelable crossing 
sequence can be unraveled by pulling its both endpoints.  Finally, examples of unraveling 
process generation with our developed system are demonstrated. 

2. Unknotting Process Generation 

In this section, we briefly explain a method to generate possible processes for unknotting of 
a linear object, which is equivalent to its unraveling.  First, the state of a linear object can be 
topologically represented using three properties after projecting its shape on a projection 
plane.  The first property is the crossing sequence.  It is determined by numbering a crossing 
met first with tracing along the projected curve from one endpoint to the other.  The i-th 

crossing is represented as symbol iC .  One endpoint where tracing starts is referred to as 

the left endpoint lE  and that where tracing ends as the right endpoint rE .  The second 

property is the location of a pair of points at each crossing, that is, which point is 

upper/lower.  The upper point of i-th crossing is described as symbol u
iC  and the lower 

point of that as symbol l
iC .  The third property is the helix of each crossing.  Let us define a 

crossing where the upper part overlaps first on the right side of the lower part and then 
overlaps on its left side as a left-handed helical crossing.  Conversely, in a right-handed helical 
crossing, the upper part first overlaps on the left side of the lower part and then overlaps on 

its right side.  The symbols −

iC  and +

iC  represent the i-th left- and right-handed helical 

crossing, respectively. 
Next, we introduce basic operations described in Fig.1, corresponding to state transitions.  
Crossing operations COI, COII, and COIV increases the number of crossings, while 
uncrossing operations UOI, UOII, and UOIV decrease the number.  Arranging operation AOIII 
does not change the number of crossings but permutes their sequence. Each basic operation 
can be applied to specific subsequences of crossings.  Let us investigate subsequences to 
which each operation is applicable.  Operation UOI is applicable to a subsequence 
represented as follows: 

 AA −−− ul
i

lu
i

// CC . (1) 

That is, two crossing points corresponding to one crossing iC , should be adjacent to each 

other in applying UOI.  Operation UOII is applicable to subsequences described as follows: 
 

 AAA −−−−−− ul
j

ul
i

lu
j

lu
i

//// CCCC , (2) 

 AAA −−−−−− ul
i

ul
j

lu
j

lu
i

//// CCCC . (3) 
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(a) operation I (b) operation II

(c) operation III (d) operation IV

IVCO

IVUO

IIIAO

IIIAO

ICO

IUO

iC
IICO

IIUO

jCiC

iC

iC

jC

kC

 

Figure 1. Basic operations 

That is, two upper crossing points u
iC  and u

jC , should be adjacent to each other and the 

corresponding lower crossing points l
iC  and l

jC , should also be adjacent to each other.  

Operation UOIV is applicable to subsequences represented as follows: 

 AA −−−− ul
i

lu
il

// CCE , (4) 

 r
ul

i
lu

i ECC // −−−− AA . (5) 

That is, a crossing adjacent to an endpoint can be deleted by operation UOIV.  Operation 
AOIII is applicable to a subsequence represented as permutation of the following three 

subsequences: α, β, and γ, e.g., A − β − γ − α −A : 

 AA −−− u

ij

u

ji // CC:α , (6) 

 AA −−− u/l
/

/
/ CC: jk

ul

kjβ , (7) 

 AA −−− l

ki

l

ki // CC:γ . (8) 

That is, three crossings consisting of three segments one of which overlaps the others can be 
permuted by operation AOIII.  Uncrossing operations UOI, UOII, and UOIV and arranging 
operation AOIII are applicable to their specific crossing subsequences indicated above.  Once 
the initial and the objective crossing states of a linear object are given, we can generate 
possible sequences of crossing state transitions, that, is, possible processes of unknotting 
manipulation by repeating detection of applicable subsequences of individual operations 
and deletion/permutation of relevant crossings. 
Fig.2 shows an example of automatic generation of possible unknotting processes by our 
developed system. Required manipulation corresponds to untying a slipknot. Assuming 
that only uncrossing operations can be used, i.e., without operation AOIII, 14 crossing states 
and 39 state transitions are derived as shown in Fig.2. Including operation AOIII, we can 
derive 21 crossing states and 68 state transitions. 
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IVUO

IUO

IIUO

number of crossings

5 4 3 2 1 0

S1

S4

S3

S2

S9

S8

S10 S7

S6

S14

S13

S5

S12

S11

 

Figure 2. Example of state transition graph generation -untying slipknot- 

3. Introduction of Unravelable Crossing Sequence 

Once the current crossing state of a linear object is identified, we can unravel the object 
using the method proposed in the previous section.  To identify the crossing state 
completely, the location at each crossing should be known.  Morita recognized the state of a 
linear object with a 9-eye stereo camera (Morita et al., 2003) and Matsuno identified it 
utilizing variance of  luminance at crossings (Matsuno et al., 2005).  Now, let us assume that 
only silhouette, that is, 2D information about the object state is available.  It means that the 
location and the helix of any crossing can not be identified.  Then, we can perform operation 

UOI even if the location at crossing 
i
C  shown in Fig.1-(a) is unknown.  Operation UOIV can 

also be realized regardless of the location at crossing 
i
C  shown in Fig.1-(d).  Contrary, 

whether operations UOII and AOIII can be applied depends on the location of crossings.  
Fig.3 shows examples of crossings with a subsequence to which operations UOII and AOIII 
are applicable but with locations to which they can not be applied.  Any knot can be 
unknotted by applying operations UOIV alone (Wakamatsu et al., 2006).  Note that the state 
transition graph shown in Fig.2 includes unknotting processes consisting of only UOIV 
operations. This implies that a raveled linear object can be unraveled by applying operations 
UOIV alone regardless of the location at each crossing.  Recall that we often search for an 
endpoint and manipulate it to unravel a self-entwined rope.  However, such manipulation 
may be not efficient when the object is raveled intricately, i.e., it has many crossings.  In this 
section, we propose a method for generating efficient unraveling processes of a linear object 
based on its crossing sequence, i.e., its silhouette. 
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(a) with 2 crossings (b) with 3 crossings  

Figure 3. Crossings not applicable uncrossing operations 

(a-1) (a-2)

(a-3) (a-4)

(b-1) (b-2)

(b-3) (b-4)

(b) not-unravelable(a) unravelable

1C 2C 3C
1C

2C
3C

 

Figure 4. Crossing sequences 

First, we define a knot in which some crossings remain even if all possible operations UOI, 
UOII, and AOIII are applied as a tightenable knot.  For example, an overhand knot and a 
figure-of-eight knot are tightenable knots.  Contrary, a knot which can be unknotted 
completely by applying operations UOI, UOII, and/or AOIII is defined as an untightenable 
knot.  The untightenable knot is unknotted when its both endpoints are pulled away from 
each other.  We can check whether a knot is tightenable or untightenable from its crossing 
state description (Wakamatsu et al., 2006).  
Fig.4-(a-1) illustrates the silhouette of a knot with 3 crossings.  Its crossing sequence is 
described as follows: 

 rl ECCCCCCE 123321 −−−−−−− . (9) 

Knots shown in Fig.4-(a-2) through (a-4) have the same crossing sequence.  They include 

subsequence AA −−− 33 CC  to which operation UOI can be applied.  When crossing 3C  is 

deleted, it is found that crossing 2C  can also be deleted by application of operation UOI.  

After deletion of crossing 2C , we can delete crossing 1C  by applying operation UOI once 

more.  This means that knots shown in Fig.4-(a-2) through (a-4) are untightenable.  Any knot 
with the crossing sequence described by eq.(9) can be unraveled by pulling its both 
endpoints regardless of the location at each crossing.  In this paper, we define such crossing 
sequence as an unravelable crossing sequence.  An untighenable knot has an unravelable 
crossing sequence. 
A knot shown in Fig. 4-(b-1) also has 3 crossings, sequence of which is as follows: 
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 rl ECCCCCCE 321321 −−−−−−− . (10) 

It is equivalent to that of knots shown in Fig. 4-(b-2) through (b-4).  Knots in Fig. 4-(b-3) and 
(b-4) are both untightenable, but the knot in Fig. 4-(b-2) corresponds to an overhand knot, 
that is, it is tightenable.  This implies that a tightenable knot with the crossing sequence 
described by eq.(10) exists.  Consequently, such crossing sequence is not unravelable.  Note 
that knots in Fig.4-(b-3) and (b-4) can be unraveled, but they can not be distinguished from 
the knot in Fig.4-(b-2) when 3D information, i.e., the location at each crossing is not given.  
Thus, we can categorize the crossing sequence of a knot into two types: unravelable and not-
unravelable.  The former can be unraveled by pulling its both endpoints regardless of the 
location at each crossing, while the latter may be tightened according to the location when 
its both endpoints are pulled. 
Fig.5 shows looped prime knots in knot theory.  We can not reduce the number of crossings 
of these knots even if any operation corresponding to Reidemister move (Adams, 1994) is 
applied.  They are closely related to tightenable knots.  Let us discuss the relationship 
between looped prime knots and unravelable crossing sequences.  If the looped prime knot 
with 3 crossings is cut as shown in Fig.5-(a), its crossing state is described as follows: 

 r
ululul

l ECCCCCCE 321321 −−−−−−− ++++++ . (11) 

If the crossing state of an unlooped linear object is described by eq.(11), it is equivalent to an 
overhand knot.  If the object has 3 crossings but their sequence differs from eq.(11), it can be 
unknotted by applying operation UOI, UOII, and/or AOIII.  Consequently, a linear object 
with 3 crossings can be unraveled by pulling both endpoints if and only if it does not have a 

not-unravelable crossing sequence: rl ECCCCCCE −−−−−−−
321321

. 

Fig.5-(b) shows the looped prime knot with 4 crossings.  Cutting the knot as shown in Fig.5-
(b-1) and tracing it counterclockwise from one endpoint, the crossing sequence is described 
as follows: 

 rl ECCCCCCCCE −−−−−−−−−
42341321

. (12) 

In the case of Fig.5-(b-2) and (b-3), the crossing sequence is described as follows:  

 rl ECCCCCCCCE 34124321 −−−−−−−−− . (13) 

A figure-of-eight knot has this crossing sequence.  A knot with the crossing sequence 
described by eq.(12) or (13) may be tightened.  This implies that a linear object with 4 
crossings is unraveled if it does not have the above two sequences. 
There are two types of the looped prime knot with 5 crossings as shown in Fig.5-(c).  One 
type illustrated in Fig.5-(c-1) has the crossing sequence as follows: 

 rl ECCCCCCCCCCE 5432154321 −−−−−−−−−−− . (14) 
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(a) with 3 crossings

(b) with 4 crossings

(c) with 5 crossings

(c-1) (c-2) (c-3) (c-4) (c-5)

(b-1) (b-2) (b-3)

1C

2C

3C

1C

2C
3C

4C 3C

2C
1C

4C 2C

4C
3C

1C

1C

2C 3C 4C

5C

1C
2C 3C

4C
5C

5C
4C 3C

2C
1C

5C
1C 2C

4C
3C

5C
4C 1C

2C
3C

 

Figure 5. Looped prime knots 

This sequence corresponds to that of a double overhand knot.  The other type illustrated in 
Fig.5-(c-2) through (c-5) has the following crossing sequences: 

 rl ECCCCCCCCCCE 5412354321 −−−−−−−−−−− , (15) 

 rl ECCCCCCCCCCE 3452154321 −−−−−−−−−−− , (16) 

 rl ECCCCCCCCCCE 5435124321 −−−−−−−−−−− , (17) 

 rl ECCCCCCCCCCE 4532541321 −−−−−−−−−−− . (18) 

Then, a linear object with 5 crossings but without the crossing sequence described by 
eqs.(14) through (18) is unravelable.  Thus, we can derive not-unravelable crossing 
sequences from looped prime knots in knot theory.  If the crossing sequence of a linear 
object with n crossings does not include not-unravelable sequences with 3 through n 
crossings, it can be unraveled by pulling its both endpoint instead of applying n UOIV 
operations. 
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4. Procedure to Generate Efficient Unraveling Processes 

In this section, we explain a procedure to generate unraveling processes.  Let us assume that 
the silhouette of a linear object shown in Fig.6-(a-1) is given.  Its crossing sequence is 
described as follows: 

(a)

(b)

(a-1) (a-2) (a-3)

(b-1) (b-2) (b-3)

1C
2C

3C
4C

5C

1C
2C

3C
4C

1C
2C

3C

1C
2C

3C
4C

5C

1C
2C 3C

4C

1C
2C 3C

 

Figure 6. Unraveling processes 

 rl ECCCCCCCCCCE 5412354321 −−−−−−−−−−− . (19) 

The above sequence corresponds to a not-unravelable sequence with 5 crossings.  It means 
that the object may be raveled and tightened if its both endpoints are pulled.  Then, let us 
consider application of operation UOIV so that the object does not include any not-
unravelable sequence.  If we apply operation UOIV to the left terminal segment, the object 
state changes into the state shown in Fig.6-(a-2).  Its crossing sequence is described as 
follows: 

 rl ECCCCCCCCE 43124321 −−−−−−−−− . (20) 

A set of closed regions surrounded by a linear object is defined  as the inner region, and the 
other region in the projection plane as the outer region.  Moreover, segments touch the outer 
region are referred to as outer segments, and segments do not touch as inner segments 
(Wakamatsu et al., 2006).  In Fig.6-(a-2), the left terminal segment is an inner segment.  
When one of terminal segments is inner, we can not pull both endpoints sufficiently without 
changing the crossing sequence.  So, we apply another operation UOIV to the left terminal 
segment.  Then, the following sequence is derived: 

 rl ECCCCCCE 321321 −−−−−−− . (21) 

The above sequence is equivalent to the not-unravelable sequence with 3 crossings.  This 
implies that additional UOIV operations are required to unravel the object.  Contrary, if we 
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apply 2 consecutive UOIV operations to the right terminal segment as shown in Fig.6-(b), the 
crossing sequence becomes as follows: 

 rl ECCCCCCE 123321 −−−−−−− . (22) 

As this sequence differs from the not-unravelable sequence, the knot shown in Fig.6-(b-3), 
which is equivalent to that in Fig.4-(a-1), can be unraveled by pulling its both endpoints.  
Consequently, we can conclude that unraveling process shown in Fig.6-(b) is more efficient 
than that shown in Fig.6-(a).  Thus, we can generate efficient unraveling processes of a linear 
object based on only its crossing sequence, i.e., its silhouette.  This indicates that we may 
unravel a linear object without a stereo camera. 
Not-unravelable sequences can be extracted from the list of looped prime knots in knot 
theory (Rolfsen, 1976).  Let us define the following subsequence as a not-unravelable 
subsequence with 3 crossings: 

 ( )kjikjikji <<−−−−−−−−−−−− AAAAAAA CCCCCC . (23) 

If the crossing state includes the above subsequence, the object has a part which may be 
tightened.  The not-unravelable sequence described by eq.(10) is a kind of this subsequence.  
We can also define not-unravelable subsequences with n crossings referring to not-
unravelable sequences.  When such not-unravelable subsequence is detected from the 
crossing sequence, we delete a crossing included in the subsequence and nearest to one 

endpoint by applying operations UOIV repeatedly.  Let liC  and rjC  be i-th and j-th crossing 

met first when we trace an object from the left and the right endpoint, respectively.  When 
the object has n crossings, we assume that only operation UOIV is applied to delete k (k=1, 
A , n) crossings.  Then, we check the number of remaining not-unravelable subsequences 

after deleting crossings liC (i=k, k-1, A , 1, 0) and rjC  (j=k-i).  If the crossing sequence does 

not include any not-unravelable subsequence by n-3 crossings are deleted, the rest can be 
uncrossed by applying one pulling operation instead of some UOIV operations.  This implies 
that the object can be unraveled efficiently.  For example, the crossing sequence described by 
eq.(19) is equivalent to the not-unravelable sequence with 5 crossings and includes three 
not-unravelable subsequences with 3 crossings: 

 AAAA −−−−−−−−− 541541 CCCCCC , (24) 

 AAAAA −−−−−−−−−− 542542 CCCCCC , (25) 

 AAA −−−−−−−− 543543 CCCCCC . (26) 

In this case, crossing 1C l = 1C  or 1Cr = 5C  can be deleted by operation UOIV.  If crossing 5C  

is uncrossed, all these subsequences are deleted.  Then, the object becomes unravelable.  

Contrary, subsequences described by eqs.(25) and (26) remain even if crossing 1C  is deleted.  

Consequently, we select application of operation UOIV to crossing 5C  as the first process for 

unraveling.  After that, the object is completely unraveled by pulling its both endpoints.  
Thus, efficient unraveling processes of a linear object can be derived even if only its crossing 
sequence is identified. 
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5. Case Study 

In this section, we discuss the effectiveness of our proposed method for efficient unraveling 
with some examples.  Fig.7 shows two examples of a raveled object.  They correspond to 
not-unravelable sequences with 8 crossings.  The crossing sequence in case-1 shown in Fig.7-
(a) is described as follows: 

 rl ECCCCCCCCCCCCCCCCE 7834568712654321 −−−−−−−−−−−−−−−−− . (27) 

In case-2, the crossing sequence shown in Fig.7-(b) is  represented as follows: 

(a) case-1 (b) case-2

1C

2C

3C

4C

5C
6C

7C

8C

1C

2C

3C

4C

5C

6C

7C

8C

 

Figure 7. Silhouette of raveled objects 

 rl ECCCCCCCCCCCCCCCCE 5876843765124321 −−−−−−−−−−−−−−−−− . (28) 

We developed a system to detect not-unravelable subsequences from a  given crossing 
sequence.  Using this system, it was found that the crossing sequence in case-1 include 49 
not-unravelable subsequences and that in case-2 includes 19.  Table 1 and 2 show the 

number of remaining not-unravelable subsequences after deleting crossings liC  and rjC  in 

case-1 and case-2, respectively.  As shown in Table 1, when 3 crossings 1C , 2C ,  and 7C  or 

1C , 7C , and 8C  are deleted, the crossing  sequence in case-1 does not include any not-

unravelable subsequences.  So, we can delete the rest crossings, i.e., we can unravel the 
object at once pulling away its both endpoints.  This indicates that we can perform 
unraveling with less operations than unraveling in which all 8 crossings are deleted by 

operation UOIV.  In case-2, 5 crossings 4C , 5C , 6C , 7C , and 8C  must be deleted to exclude 

not-unravelable subsequences from the  crossing sequence as shown in Table 2.  After that, 
we can unravel the object with one pulling operation.  This is a more efficient unraveling 
process than that consisting of 8 UOIV operations.  But, we have to delete more crossings in 
case-2 to change the crossing sequence into the unravelable one than in case-1.  Thus, it is 
found that the effectiveness of our proposed method depends on the crossing sequences.  
Efficient unraveling processes are derived from some crossing sequences but they are not 
from others.  However, we can determine whether 3D information is needed for its efficient 
unraveling from its crossing sequence, i.e., its silhouette. For more efficient unraveling in 

case-2, for example, we have to identify the location of some crossings. If crossings 3C  and 

4C  can be deleted by applying operation UOII, the object can be separated into two parts. 

Moreover, the left part is unravelable and it can be unraveled independently of the right 
part. Consequently, we should indentify the location of these crossings first. If their location 
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satisfies eq.(2) or (3), the object can be separated actually. Thus, we can rank crossings the 
location of which should be identified in order of importance for efficient unraveling. 3D 
information of not all crossings have to be identified when the unravelability, which is 
determined from the silhouette of a linear object, is considered. 

deleted crossings 
remaining 

not-unravelable 
subsequences 

none 49 

C1 
C7 

21 
21 

C1, C2 
C1, C7 

C7, C8 

7 
7 
7 

C1, C2, C3 
C1, C2, C7 
C1, C7, C8 
C3, C7, C8 

3 
0 
0 
3 

Table 1. Unraveling process for case-1 

deleted crossings 
remaining 

not-unravelable 
subsequences 

none 19 

C1 
C5 

11 
11 

C1, C2 
C1, C5 

C5, C8 

7 
7 
8 

C1, C2, C3 
C1, C2, C5 
C1, C5, C8 
C5, C7, C8 

2 
5 
5 
4 

C1, C2, C3, C4 
C1, C2, C3, C5 

C1, C2, C5, C8 

C1, C5, C7, C8 

C5, C6, C7, C8 

1 
2 
4 
2 
2 

C1, C2, C3, C4, C5 
C1, C2, C3, C5, C8 
C1, C2, C5, C7, C8 
C1, C5, C6, C7, C8 
C4, C5, C6, C7, C8 

1 
1 
1 
1 
0 

Table 2. Unraveling process for case-2 
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6. Conclusions 

A planning method for unraveling deformable linear objects based on their silhouette was 
proposed.  First, an unknotting process of a linear object, which is equivalent to its 
unraveling process, was represented as a sequence of crossing state transitions.  It can be 
generated on a computer if 3D information about the current crossing state is given.  
Second, the crossing sequence of a linear object, which corresponds to its 2D information, 
was categorized into two types: unravelable and not-unravelable.  Third, a procedure to 
generate efficient unraveling processes based on  unravelability of the crossing sequence 
was explained.  An object with an unravelable crossing sequence can be unraveled by 
pulling its both endpoints.  Finally, examples of unraveling process generation with our 
developed system were demonstrated.  The crossing sequence is not sufficient information 
for deriving efficient unraveling processes, but it is useful for that. 
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